Pollen Allergens for Molecular Diagnosis

Isabel Pablos, Sabrina Wildner, Claudia Asam, Michael Wallner, Gabriele Gadermaier, Isabel Pablos, Sabrina Wildner, Claudia Asam, Michael Wallner, Gabriele Gadermaier

Abstract

Pollen allergens are one of the main causes of type I allergies affecting up to 30% of the population in industrialized countries. Climatic changes affect the duration and intensity of pollen seasons and may together with pollution contribute to increased incidences of respiratory allergy and asthma. Allergenic grasses, trees, and weeds often present similar habitats and flowering periods compromising clinical anamnesis. Molecule-based approaches enable distinction between genuine sensitization and clinically mostly irrelevant IgE cross-reactivity due to, e. g., panallergens or carbohydrate determinants. In addition, sensitivity as well as specificity can be improved and lead to identification of the primary sensitizing source which is particularly beneficial regarding polysensitized patients. This review gives an overview on relevant pollen allergens and their usefulness in daily practice. Appropriate allergy diagnosis is directly influencing decisions for therapeutic interventions, and thus, reliable biomarkers are pivotal when considering allergen immunotherapy in the context of precision medicine.

Keywords: Grass pollen allergens; Molecule-based diagnosis; Pollen allergens; Tree pollen allergens; Weed pollen allergens.

Figures

Fig. 1
Fig. 1
Sequence identity matrix and 3D-models of allergenic protein families. a Ole e 1-like proteins and structure of Pla l 1.0101 (4Z8W), b pectate lyases and model of Amb a 1.0101 (template 1PXZ), and c lipid transfer proteins and model of Art v 3.0201 (template 2B5S). Multiple sequence alignments performed in Clustal Omega. Models were generated using Swiss-Model (www.swissmodel.expasy.org), and ribbon cartons are shown using UCSF Chimera (www.cgl.ucsf.edu/chimera). Green boxes represent demonstrated IgE cross-reactivity, light green boxes represent potential IgE cross-reactivity based on high sequence identity, red boxes represent no/limited demonstrated IgE cross-reactivity and light red boxes represent no/limited IgE cross-reactivity based on low sequence identity

References

    1. D'Amato G, et al. Effects on asthma and respiratory allergy of climate change and air pollution. Multidiscip Respir Med. 2015;10:39. doi: 10.1186/s40248-015-0036-x.
    1. Fukuoka A et al. Diesel exhaust particles exacerbate allergic rhinitis in mice by disrupting the nasal epithelial barrier. Clin Exp Allergy. 2015.
    1. Wimmer M, et al. Pollen-derived adenosine is a necessary cofactor for ragweed allergy. Allergy. 2015;70(8):944–954. doi: 10.1111/all.12642.
    1. Prado N, et al. Pollensomes as natural vehicles for pollen allergens. J Immunol. 2015;195(2):445–449. doi: 10.4049/jimmunol.1500452.
    1. Scevkova J, et al. Influence of airborne pollen counts and length of pollen season of selected allergenic plants on the concentration of sIgE antibodies on the population of Bratislava, Slovakia. Ann Agric Environ Med. 2015;22(3):451–455. doi: 10.5604/12321966.1167712.
    1. Newson RB, et al. Geographical variation in the prevalence of sensitization to common aeroallergens in adults: the GA(2) LEN survey. Allergy. 2014;69(5):643–651. doi: 10.1111/all.12397.
    1. Panzner P, et al. A comprehensive analysis of middle-European molecular sensitization profiles to pollen allergens. Int Arch Allergy Immunol. 2014;164(1):74–82. doi: 10.1159/000362760.
    1. D'Amato G, Liccardi G. Pollen-related allergy in the European Mediterranean area. Clin Exp Allergy. 1994;24(3):210–219. doi: 10.1111/j.1365-2222.1994.tb00222.x.
    1. Hauser M, et al. Bet v 1-like pollen allergens of multiple Fagales species can sensitize atopic individuals. Clin Exp Allergy. 2011;41(12):1804–1814. doi: 10.1111/j.1365-2222.2011.03866.x.
    1. Asero R, et al. Concomitant sensitization to ragweed and mugwort pollen: who is who in clinical allergy? Ann Allergy Asthma Immunol. 2014;113(3):307–313. doi: 10.1016/j.anai.2014.06.009.
    1. Ferreira F, Wolf M, Wallner M. Molecular approach to allergy diagnosis and therapy. Yonsei Med J. 2014;55(4):839–852. doi: 10.3349/ymj.2014.55.4.839.
    1. Himly M et al. Standardization of allergen products: 2. Detailed characterization of GMP-produced recombinant Phl p 5.0109 as European pharmacopoeia reference standard. Allergy. 2015. Extensive physico-chemcial and immunological characterization of Phl p 5 which is now available as European Pharmacopoeia allergen reference standard for grass pollen products.
    1. Niederberger V, Eckl-Dorna J, Pauli G. Recombinant allergen-based provocation testing. Methods. 2014;66(1):96–105. doi: 10.1016/j.ymeth.2013.07.037.
    1. Lupinek C, et al. Advances in allergen-microarray technology for diagnosis and monitoring of allergy: the MeDALL allergen-chip. Methods. 2014;66(1):106–119. doi: 10.1016/j.ymeth.2013.10.008.
    1. Khan FM, et al. Basophil activation test compared to skin prick test and fluorescence enzyme immunoassay for aeroallergen-specific Immunoglobulin-E. Allergy Asthma Clin Immunol. 2012;8(1):1. doi: 10.1186/1710-1492-8-1.
    1. Wong V, et al. Early pollen sensitization in children is dependent upon regional aeroallergen exposure. J Allergy. 2012;2012:583765. doi: 10.1155/2012/583765.
    1. Kleine-Tebbe J. Big-time sensitization rates in young Germans: big numbers—big risks—big confusion? Int Arch Allergy Immunol. 2014;163(1):3–4. doi: 10.1159/000356009.
    1. Price D, et al. The hidden burden of adult allergic rhinitis: UK healthcare resource utilisation survey. Clin Transl Allergy. 2015;5:39. doi: 10.1186/s13601-015-0083-6.
    1. Vorontsova MS, Clayton D, Simon BK. Grassroots e-floras in the Poaceae: growing GrassBase and GrassWorld. PhytoKeys. 2015;48:73–84. doi: 10.3897/phytokeys.48.7159.
    1. Davies JM. Grass pollen allergens globally: the contribution of subtropical grasses to burden of allergic respiratory diseases. Clin Exp Allergy. 2014;44(6):790–801. doi: 10.1111/cea.12317.
    1. Popescu FD. Molecular biomarkers for grass pollen immunotherapy. World J Methodol. 2014;4(1):26–45. doi: 10.5662/wjm.v4.i1.26.
    1. Darsow U, et al. Allergens. Heterogeneity of molecular sensitization profiles in grass pollen allergy—implications for immunotherapy? Clin Exp Allergy. 2014;44(5):778–786. doi: 10.1111/cea.12303.
    1. Scaparrotta A, et al. Sensitization to timothy grass pollen allergenic molecules in children. Multidiscip Respir Med. 2013;8(1):17. doi: 10.1186/2049-6958-8-17.
    1. Hatzler L et al. Molecular spreading and predictive value of preclinical IgE response to Phleum pratense in children with hay fever. J Allergy Clin Immunol. 2012;130(4):894–901. e5. Within this publication, the phenomenon “molecular spreading” which describes the sequential development of antibody response to non-cross-reacting molecules from the same source, starting with an initiator molecule was shown for grass pollen allergy.
    1. Campbell BC, et al. Total transcriptome, proteome, and allergome of Johnson grass pollen, which is important for allergic rhinitis in subtropical regions. J Allergy Clin Immunol. 2015;135(1):133–142. doi: 10.1016/j.jaci.2014.06.034.
    1. Andersson K, Lidholm J. Characteristics and immunobiology of grass pollen allergens. Int Arch Allergy Immunol. 2003;130(2):87–107. doi: 10.1159/000069013.
    1. Devanaboyina SC, et al. High-resolution crystal structure and IgE recognition of the major grass pollen allergen Phl p 3. Allergy. 2014;69(12):1617–1628. doi: 10.1111/all.12511.
    1. Nandy A, et al. Primary structure, recombinant expression, and molecular characterization of Phl p 4, a major allergen of timothy grass (Phleum pratense) Biochem Biophys Res Commun. 2005;337(2):563–570. doi: 10.1016/j.bbrc.2005.09.087.
    1. Sastre J. Molecular diagnosis in allergy. Clin Exp Allergy. 2010;40(10):1442–1460. doi: 10.1111/j.1365-2222.2010.03585.x.
    1. Asero R, et al. Prevalence and clinical relevance of IgE sensitization to profilin in childhood: a multicenter study. Int Arch Allergy Immunol. 2015;168(1):25–31. doi: 10.1159/000441222.
    1. Johansen N, et al. Extensive IgE cross-reactivity towards the Pooideae grasses substantiated for a large number of grass-pollen-sensitized subjects. Int Arch Allergy Immunol. 2009;150(4):325–334. doi: 10.1159/000226233.
    1. Timbrell VL, et al. An immunodiagnostic assay for quantitation of specific IgE to the major pollen allergen component, Pas n 1, of the subtropical Bahia grass. Int Arch Allergy Immunol. 2014;165(4):219–228. doi: 10.1159/000369341.
    1. Davies JM, et al. Functional immunoglobulin E cross-reactivity between Pas n 1 of Bahia grass pollen and other group 1 grass pollen allergens. Clin Exp Allergy. 2011;41(2):281–291. doi: 10.1111/j.1365-2222.2010.03670.x.
    1. Etto T, et al. Unique and cross-reactive T cell epitope peptides of the major Bahia grass pollen allergen, Pas n 1. Int Arch Allergy Immunol. 2012;159(4):355–366. doi: 10.1159/000338290.
    1. Marth K, et al. Human monoclonal antibody-based quantification of group 2 grass pollen allergens. J Allergy Clin Immunol. 2004;113(3):470–474. doi: 10.1016/j.jaci.2003.11.042.
    1. Gschwantner T, et al. Common tree definitions for national forest inventories in Europe. Silva Fennica. 2009;43(2):303–321. doi: 10.14214/sf.463.
    1. Asam C, et al. Tree pollen allergens-an update from a molecular perspective. Allergy. 2015;70(10):1201–1211. doi: 10.1111/all.12696.
    1. Burbach GJ et al. GA(2)LEN skin test study II: clinical relevance of inhalant allergen sensitizations in Europe. Allergy. 2009;64(10):1507–15. The study provides a comprehensive Europe-wide overview on allergic sensitization towards 18 inhalent allergens using skin prick tests.
    1. Campana R, et al. Hypoallergenic derivatives of the major birch pollen allergen Bet v 1 obtained by rational sequence reassembly. J Allergy Clin Immunol. 2010;126(5):1024–1031. doi: 10.1016/j.jaci.2010.05.023.
    1. Moverare R, et al. Different IgE reactivity profiles in birch pollen-sensitive patients from six European populations revealed by recombinant allergens: an imprint of local sensitization. Int Arch Allergy Immunol. 2002;128(4):325–335. doi: 10.1159/000063855.
    1. Sekerkova A, Polackova M. Detection of Bet v1, Bet v2 and Bet v4 specific IgE antibodies in the sera of children and adult patients allergic to birch pollen: evaluation of different IgE reactivity profiles depending on age and local sensitization. Int Arch Allergy Immunol. 2011;154(4):278–285. doi: 10.1159/000321819.
    1. Geroldinger-Simic M, et al. Birch pollen-related food allergy: clinical aspects and the role of allergen-specific IgE and IgG4 antibodies. J Allergy Clin Immunol. 2011;127(3):616–622. doi: 10.1016/j.jaci.2010.10.027.
    1. Price A, et al. Oral allergy syndrome (pollen-food allergy syndrome) Dermatitis. 2015;26(2):78–88. doi: 10.1097/DER.0000000000000087.
    1. Rossi RE, Monasterolo G, Monasterolo S. Detection of specific IgE antibodies in the sera of patients allergic to birch pollen using recombinant allergens Bet v 1, Bet v 2, Bet v 4: evaluation of different IgE reactivity profiles. Allergy. 2003;58(9):929–932. doi: 10.1034/j.1398-9995.2003.00245.x.
    1. Asturias JA, et al. Purification and characterization of Pla a 1, a major allergen from Platanus acerifolia pollen. Allergy. 2002;57(3):221–227. doi: 10.1034/j.1398-9995.2002.03406.x.
    1. Chen Z, et al. Characterization of two pollen allergens of the London plane tree in Shanghai. Iran J Allergy Asthma Immunol. 2015;14(2):139–148.
    1. Ibarrola I, et al. Identification of a polygalacturonase as a major allergen (Pla a 2) from Platanus acerifolia pollen. J Allergy Clin Immunol. 2004;113(6):1185–1191. doi: 10.1016/j.jaci.2004.02.031.
    1. Pazouki N, et al. Oriental plane pollen allergy: identification of allergens and cross-reactivity between relevant species. Allergy Asthma Proc. 2008;29(6):622–628. doi: 10.2500/aap.2008.29.3178.
    1. Lauer I, et al. Identification of a plane pollen lipid transfer protein (Pla a 3) and its immunological relation to the peach lipid-transfer protein, Pru p 3. Clin Exp Allergy. 2007;37(2):261–269. doi: 10.1111/j.1365-2222.2007.02653.x.
    1. Villalba M, Rodriguez R, Batanero E. The spectrum of olive pollen allergens. From structures to diagnosis and treatment. Methods. 2014;66(1):44–54. doi: 10.1016/j.ymeth.2013.07.038.
    1. Esteve C, et al. Analysis of olive allergens. Talanta. 2012;92:1–14. doi: 10.1016/j.talanta.2012.01.016.
    1. Barderas R, et al. Cloning, expression, and clinical significance of the major allergen from ash pollen, Fra e 1. J Allergy Clin Immunol. 2005;115(2):351–357. doi: 10.1016/j.jaci.2004.10.001.
    1. Imhof K, et al. Ash pollen allergy: reliable detection of sensitization on the basis of IgE to Ole e 1. Allergo J Int. 2014;23(3):78–83. doi: 10.1007/s40629-014-0010-8.
    1. Torres M, et al. An enzymatically active beta-1,3-glucanase from ash pollen with allergenic properties: a particular member in the oleaceae family. PLoS One. 2015;10(7) doi: 10.1371/journal.pone.0133066.
    1. Gonzalez E, Villalba M, Rodriguez R. Immunological and molecular characterization of the major allergens from lilac and privet pollens overproduced in Pichia pastoris. Clin Exp Allergy. 2001;31(2):313–321. doi: 10.1046/j.1365-2222.2001.00980.x.
    1. Scala E, et al. Cross-sectional survey on immunoglobulin E reactivity in 23,077 subjects using an allergenic molecule-based microarray detection system. Clin Exp Allergy. 2010;40(6):911–921. doi: 10.1111/j.1365-2222.2010.03470.x.
    1. Okamoto Y, et al. Present situation of cedar pollinosis in Japan and its immune responses. Allergol Int. 2009;58(2):155–162. doi: 10.2332/allergolint.08-RAI-0074.
    1. Yoshida K, et al. Cedar and cypress pollen counts are associated with the prevalence of allergic diseases in Japanese schoolchildren. Allergy. 2013;68(6):757–763. doi: 10.1111/all.12164.
    1. Pettyjohn M, Levetin E. A comparative biochemical study of conifer pollen allergens. Aerobiologia. 1997;13:259–267. doi: 10.1007/BF02694493.
    1. Mori T, et al. Purification, identification, and cDNA cloning of Cha o 2, the second major allergen of Japanese cypress pollen. Biochem Biophys Res Commun. 1999;263(1):166–171. doi: 10.1006/bbrc.1999.1261.
    1. Yokoyama M, et al. Purification, identification, and cDNA cloning of Jun a 2, the second major allergen of mountain cedar pollen. Biochem Biophys Res Commun. 2000;275(1):195–202. doi: 10.1006/bbrc.2000.3273.
    1. Stemeseder T, et al. Marker allergens of weed pollen - basic considerations and diagnostic benefits in the clinical routine: part 16 of the series molecular allergology. Allergo J Int. 2014;23(8):274–280. doi: 10.1007/s40629-014-0033-1.
    1. Gadermaier G, Hauser M, Ferreira F. Allergens of weed pollen: an overview on recombinant and natural molecules. Methods. 2014;66(1):55–66. doi: 10.1016/j.ymeth.2013.06.014.
    1. Villalba M et al. Amaranthaceae pollens: review of an emerging allergy in the mediterranean area. J Investig Allergol Clin Immunol. 2014;24(6):371–81. quiz 2 p preceding 382. An extensive overview on Amaranthaceae pollen allergens and their physicochemical and immunological properties is provided.
    1. Chan-Yeung M, et al. Geographical variations in the prevalence of atopic sensitization in six study sites across Canada. Allergy. 2010;65(11):1404–1413. doi: 10.1111/j.1398-9995.2010.02399.x.
    1. Bousquet PJ, et al. Geographical variation in the prevalence of positive skin tests to environmental aeroallergens in the European Community Respiratory Health Survey I. Allergy. 2007;62(3):301–309. doi: 10.1111/j.1398-9995.2006.01293.x.
    1. Christensen LH, et al. Short ragweeds is highly cross-reactive with other ragweeds. Ann Allergy Asthma Immunol. 2015;115(6):490–495. doi: 10.1016/j.anai.2015.09.016.
    1. Rueff F, et al. Sensitization to common ragweed in southern Bavaria: clinical and geographical risk factors in atopic patients. Int Arch Allergy Immunol. 2012;159(1):65–74. doi: 10.1159/000335192.
    1. Ziska L, et al. Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proc Natl Acad Sci U S A. 2011;108(10):4248–4251. doi: 10.1073/pnas.1014107108.
    1. Storkey J, et al. A process-based approach to predicting the effect of climate change on the distribution of an invasive allergenic plant in Europe. PLoS One. 2014;9(2) doi: 10.1371/journal.pone.0088156.
    1. Bordas-Le Floch V, et al. Identification of novel short ragweed pollen allergens using combined transcriptomic and immunoproteomic approaches. PLoS One. 2015;10(8) doi: 10.1371/journal.pone.0136258.
    1. Pichler U, et al. Pectate lyase pollen allergens: sensitization profiles and cross-reactivity pattern. PLoS One. 2015;10(5) doi: 10.1371/journal.pone.0120038.
    1. Jahn-Schmid B, et al. Humoral and cellular cross-reactivity between Amb a 1, the major ragweed pollen allergen, and its mugwort homolog Art v 6. J Immunol. 2012;188(3):1559–1567. doi: 10.4049/jimmunol.1102445.
    1. Bouley J, et al. Identification of the cysteine protease Amb a 11 as a novel major allergen from short ragweed. J Allergy Clin Immunol. 2015;136(4):1055–1064. doi: 10.1016/j.jaci.2015.03.001.
    1. Leonard R, et al. A new allergen from ragweed (Ambrosia artemisiifolia) with homology to art v 1 from mugwort. J Biol Chem. 2010;285(35):27192–27200. doi: 10.1074/jbc.M110.127118.
    1. Li J et al. A multicentre study assessing the prevalence of sensitizations in patients with asthma and/or rhinitis in China. Allergy. 2009.
    1. Himly M, et al. Art v 1, the major allergen of mugwort pollen, is a modular glycoprotein with a defensin-like and a hydroxyproline-rich domain. Am Fasten J. 2003;17(1):106–108.
    1. Moverare R, et al. Mugwort-sensitized individuals from North Europe, South Europe and North America show different IgE reactivity patterns. Int Arch Allergy Immunol. 2011;154(2):164–172. doi: 10.1159/000320231.
    1. Egger M, et al. The role of lipid transfer proteins in allergic diseases. Curr Allergy Asthma Rep. 2010;10(5):326–335. doi: 10.1007/s11882-010-0128-9.
    1. Gao ZS, et al. Peach allergy in China: a dominant role for mugwort pollen lipid transfer protein as a primary sensitizer. J Allergy Clin Immunol. 2013;131(1):224–226. doi: 10.1016/j.jaci.2012.07.015.
    1. Sanchez-Lopez J, et al. Role of Art v 3 in pollinosis of patients allergic to Pru p 3. J Allergy Clin Immunol. 2014;133(4):1018–1025. doi: 10.1016/j.jaci.2013.08.005.
    1. Scala E, et al. Lipid transfer protein sensitization: reactivity profiles and clinical risk assessment in an Italian cohort. Allergy. 2015;70(8):933–943. doi: 10.1111/all.12635.
    1. Ariano R, Canonica GW, Passalacqua G. Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Ann Allergy Asthma Immunol. 2010;104(3):215–222. doi: 10.1016/j.anai.2009.12.005.
    1. Stumvoll S, et al. Identification of cross-reactive and genuine Parietaria judaica pollen allergens. J Allergy Clin Immunol. 2003;111(5):974–979. doi: 10.1067/mai.2003.1376.
    1. Tordesillas L, et al. Plant lipid transfer protein allergens: no cross-reactivity between those from foods and olive and Parietaria pollen. Int Arch Allergy Immunol. 2011;156(3):291–296. doi: 10.1159/000323503.
    1. Gonzalez-Rioja R, et al. Diagnosis of Parietaria judaica pollen allergy using natural and recombinant Par j 1 and Par j 2 allergens. Clin Exp Allergy. 2007;37(2):243–250. doi: 10.1111/j.1365-2222.2007.02643.x.
    1. Gadermaier G et al. Plantago lanceolata: an important trigger of summer pollinosis with limited IgE cross-reactivity. J Allergy Clin Immunol. 2014;134(2):472–5. e5. This is the first report about the high clinical relevance of English plantain pollen allergy in a cohort of the temperate climate.
    1. Sousa R, et al. Identification of Plantago lanceolata pollen allergens using an immunoproteomic approach. J Investig Allergol Clin Immunol. 2014;24(3):177–183.
    1. Nouri HR, et al. Diagnosis of Chenopodium album allergy with a cocktail of recombinant allergens as a tool for component-resolved diagnosis. Mol Biol Rep. 2012;39(3):3169–3178. doi: 10.1007/s11033-011-1083-9.
    1. Farrokhi S, et al. Common aeroallergens in patients with asthma and allergic rhinitis living in southwestern part of Iran: based on skin prick test reactivity. Iran J Allergy Asthma Immunol. 2015;14(2):133–138.
    1. Barber D, et al. Understanding patient sensitization profiles in complex pollen areas: a molecular epidemiological study. Allergy. 2008;63(11):1550–1558. doi: 10.1111/j.1398-9995.2008.01807.x.
    1. Barber D, et al. Component-resolved diagnosis of pollen allergy based on skin testing with profilin, polcalcin and lipid transfer protein pan-allergens. Clin Exp Allergy. 2009;39(11):1764–1773. doi: 10.1111/j.1365-2222.2009.03351.x.
    1. Barderas R, et al. A pectin methylesterase as an allergenic marker for the sensitization to Russian thistle (Salsola kali) pollen. Clin Exp Allergy. 2007;37(7):1111–1119. doi: 10.1111/j.1365-2222.2007.02744.x.
    1. Cuesta-Herranz J, et al. Differences among pollen-allergic patients with and without plant food allergy. Int Arch Allergy Immunol. 2010;153(2):182–192. doi: 10.1159/000312636.
    1. Mas S, et al. A recombinant Sal k 1 isoform as an alternative to the polymorphic allergen from Salsola kali pollen for allergy diagnosis. Int Arch Allergy Immunol. 2015;167(2):83–93. doi: 10.1159/000434680.
    1. Castro L, et al. Sal k 5, a member of the widespread Ole e 1-like protein family, is a new allergen of Russian thistle (Salsola kali) pollen. Int Arch Allergy Immunol. 2014;163(2):142–153. doi: 10.1159/000356345.
    1. Barderas R, et al. Identification and characterization of Che a 1 allergen from Chenopodium album pollen. Int Arch Allergy Immunol. 2002;127(1):47–54. doi: 10.1159/000048168.
    1. Sirvent S, et al. Pollen and plant food profilin allergens show equivalent IgE reactivity. Ann Allergy Asthma Immunol. 2011;106(5):429–435. doi: 10.1016/j.anai.2011.01.001.
    1. Vallverdu A, et al. Characterization of recombinant Mercurialis annua major allergen Mer a 1 (profilin) J Allergy Clin Immunol. 1998;101(3):363–370. doi: 10.1016/S0091-6749(98)70249-0.
    1. Hauser M, et al. Panallergens and their impact on the allergic patient. Allergy Asthma Clin Immunol. 2010;6(1):1. doi: 10.1186/1710-1492-6-1.
    1. Stringari G, et al. The effect of component-resolved diagnosis on specific immunotherapy prescription in children with hay fever. J Allergy Clin Immunol. 2014;134(1):75–81. doi: 10.1016/j.jaci.2014.01.042.
    1. Asero R. Hypersensitivity to pollen panallergens (profilin and polcalcin) detected in vitro and in vivo: a comparative analysis. J Investig Allergol Clin Immunol. 2011;21(4):323–324.
    1. Hamilton RG, Kleine-Tebbe J. Molecular allergy diagnostics: analytical features that support clinical decisions. Curr Allergy Asthma Rep. 2015;15(9):57. doi: 10.1007/s11882-015-0556-7.
    1. Canonica GW, et al. Allergen immunotherapy (AIT): a prototype of precision medicine. World Allergy Organ J. 2015;8(1):31. doi: 10.1186/s40413-015-0079-7.

Source: PubMed

Подписаться