Kynurenine pathway and cognitive impairments in schizophrenia: Pharmacogenetics of galantamine and memantine

Maju Mathew Koola, Maju Mathew Koola

Abstract

The Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) project designed to facilitate the development of new drugs for the treatment of cognitive impairments in people with schizophrenia, identified three drug mechanisms of particular interest: dopaminergic, cholinergic, and glutamatergic. Galantamine is an acetylcholinesterase inhibitor and a positive allosteric modulator of the α7 nicotinic receptors. Memantine is an N-methyl-D-aspartate (NMDA) receptor antagonist. There is evidence to suggest that the combination of galantamine and memantine may be effective in the treatment of cognitive impairments in schizophrenia. There is a growing body of evidence that excess kynurenic acid (KYNA) is associated with cognitive impairments in schizophrenia. The α-7 nicotinic and the NMDA receptors may counteract the effects of kynurenic acid (KYNA) resulting in cognitive enhancement. Galantamine and memantine through its α-7 nicotinic and NMDA receptors respectively may counteract the effects of KYNA thereby improving cognitive impairments. The Single Nucleotide Polymorphisms in the Cholinergic Receptor, Nicotinic, Alpha 7 gene (CHRNA7), Glutamate (NMDA) Receptor, Metabotropic 1 (GRM1) gene, Dystrobrevin Binding Protein 1 (DTNBP1) and kynurenine 3-monooxygenase (KMO) gene may predict treatment response to galantamine and memantine combination for cognitive impairments in schizophrenia in the kynurenine pathway.

Keywords: Cognitive impairments; Kynurenine pathway; Pharmacogenetics; Schizophrenia; α-7 nicotinic receptor and NMDA receptor.

Figures

Fig. 1
Fig. 1
Kynurenine pathway and cognitive impairments in schizophrenia and the association of α-7 nicotinic and the NMDA receptors. Kynurenine pathway metabolism is initiated by the oxidative ring opening of tryptophan by both indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. In the brain, the metabolite L-kynurenine is enzymatically converted in microglial cells and astrocytes. In schizophrenia, there is a persistent reduction of microglial kynurenine 3-monooxygenase activity, along with increased L-kynurenine influx from the circulation. This results in increased kynurenic acid formation in astrocytes (Wonodi and Schwarcz et al., 2010). Galantamine and memantine through its α-7 nicotinic and NMDA receptors respectively may counteract the effects of KYNA thereby improving cognitive impairments.

References

    1. Abbasinazari M., Adib-Eshgh L., Rostami A., Beyraghi N., Dabir S., Jafari R. Memantine in the prevention or alleviation of electroconvulsive therapy induces cognitive disorders: A placebo controlled trial. Asian J. Psychiatr. 2015;15:5–9.
    1. Alexander K.S., Pocivavsek A., Wu H.Q., Pershing M.L., Schwarcz R., Bruno J.P. Early developmental elevations of brain kynurenic acid impair cognitive flexibility in adults: Reversal with galantamine. Neuroscience. 2013;238:19–28.
    1. Alizadeh N.S., Maroufi A., Jamshidi M., Hassanzadeh K., Gharibi F., Ghaderi E. Effect of memantine on cognitive performance in patients under electroconvulsive therapy: A double-blind randomized clinical trial. Clin. Neuropharmacol. 2015;38(6):236–240.
    1. Aoyama N., Takahashi N., Saito S., Maeno N., Ishihara R., Ji X. Association study between kynurenine 3-monooxygenase gene and schizophrenia in the Japanese population. Genes Brain Behav. 2006;5(4):364–368.
    1. Baek J.H., Kim J.S., Ryu S., Oh S., Noh J., Lee W.K., Park T., Lee Y.S., Lee D., Kwon J.S., Hong K.S. Association of genetic variations in DTNBP1 with cognitive function in schizophrenia patients and healthy subjects. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(7):841–849.
    1. Bakanidze G., Roinishvili M., Chkonia E., Kitzrow W., Richter S., Neumann K. Association of the nicotinic receptor α7 subunit gene (CHRNA7) with schizophrenia and visual backward masking. Front Psychiatry. 2013;4(133):1–10.
    1. Baran H., Jellinger K., Deecke L. Kynurenine metabolism in Alzheimer's disease. J. Neural Transm. 1999;106(2):165–181.
    1. Bilder R.M., Howe A., Novak N., Sabb F.W., Parker D.S. The genetics of cognitive impairment in schizophrenia: A phenomic perspective. Trends Cogn. Sci. 2011;15(9):428–435.
    1. Buchanan R.W., Freedman R., Javitt D.C., Abi-Dargham A., Lieberman J.A. Recent advances in the development of novel pharmacological agents for the treatment of cognitive impairments in schizophrenia. Schizophr. Bull. 2007;33(5):1120–1130.
    1. Buchanan R.W., Conley R.R., Dickinson D., Ball M.P., Feldman S., Gold J.M. Galantamine for the treatment of cognitive impairments in people with schizophrenia. Am. J. Psychiatry. 2008;165(1):82–89.
    1. Burdick K.E., Lencz T., Funke B., Finn C.T., Szeszko P.R., Kane J.M., Kucherlapati R., Malhotra A.K. Genetic variation in DTNBP1 influences general cognitive ability. Hum Mol Genet. 2006;15(10):1563–1568.
    1. Chen S.L., Tao P.L., Chu C.H., Chen S.H., Wu H.E., Tseng L.F. Low-dose memantine attenuated morphine addictive behavior through its anti-inflammation and neurotrophic effects in rats. J. Neuroimmune Pharmacol. 2012;7(2):444–453.
    1. Cho G.S., Lee J.C., Ju C., Kim C., Kim W.K. N-Methyl-D-aspartate receptor antagonists memantine and MK-801 attenuate the cerebral infarct accelerated by intracorpus callosum injection of lipopolysaccharides. Neurosci. Lett. 2013;538:9–14.
    1. Clunie M., Crone L.A., Klassen L., Yip R. Psychiatric side effects of indomethacin in parturients. Can. J. Anaesth. 2003;50(6):586–588.
    1. Collier D.A., Li T. The genetics of schizophrenia: Glutamate not dopamine? Eur. J. Pharmacol. 2003;480(1–3):177–184.
    1. Cumiskey D., Curran B.P., Herron C.E., O'Connor J.J. A role for inflammatory mediators in the IL-18 mediated attenuation of LTP in the rat dentate gyrus. Neuropharmacology. 2007;52(8):1616–1623.
    1. Donohoe G., Morris D.W., Clarke S., McGhee K.A., Schwaiger S., Nangle J.M., Garavan H., Robertson I.H., Gill M., Corvin A. Variance in neurocognitive performance is associated with dysbindin-1 in schizophrenia: a preliminary study. Neuropsychologia. 2007;45(2):454–458.
    1. Erhardt S., Blennow K., Nordin C., Skogh E., Lindstrom L.H., Engberg G. Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci. Lett. 2001;313(1–2):96–98.
    1. Freedman R., Leonard S., Gault J.M., Hopkins J., Cloninger C.R., Kaufmann C.A. Linkage disequilibrium for schizophrenia at the chromosome 15q13-14 locus of the alpha7-nicotinic acetylcholine receptor subunit gene (CHRNA7) Am. J. Med. Genet. 2001;105(1):20–22.
    1. Geerts H., Roberts P., Spiros A. Assessing the synergy between cholinomimetics and memantine as augmentation therapy in cognitive impairment in schizophrenia. A virtual human patient trial using quantitative systems pharmacology. Front. Pharmacol. 2015;6(198):1–11.
    1. Giunta B., Ehrhart J., Townsend K., Sun N., Vendrame M., Shytle D. Galantamine and nicotine have a synergistic effect on inhibition of microglial activation induced by HIV-1 gp120. Brain Res. Bull. 2004;64(2):165–170.
    1. Glahn D.C., Thompson P.M., Blangero J. Neuroimaging endophenotypes: Strategies for finding genes influencing brain structure and function. Hum. Brain Mapp. 2007;28(6):488–501.
    1. Greenwood T.A., Lazzeroni L.C., Murray S.S., Cadenhead K.S., Calkins M.E., Dobie D.J. Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am. J. Psychiatry. 2011;168(9):930–946.
    1. Hilmas C., Pereira E.F., Alkondon M., Rassoulpour A., Schwarcz R., Albuquerque E.X. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: Physiopathological implications. J. Neurosci. 2001;21(19):7463–7473.
    1. Holtze M., Saetre P., Engberg G., Schwieler L., Werge T., Andreassen O.A., Hall H., Terenius L., Agartz I., Jönsson E.G., Schalling M., Erhardt S. Kynurenine 3-monooxygenase polymorphisms: relevance for kynurenic acid synthesis in patients with schizophrenia and healthy controls. J Psychiatry Neurosci. 2012;37(1):53–57.
    1. Ji H., Rabbi M.F., Labis B., Pavlov V.A., Tracey K.J., Ghia J.E. Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunol. 2014;7(2):335–347.
    1. Karakuła-Juchnowicz H., Flis M., Szymona K., Kuczyńska M., Stelmach E., Kowal-Popczak A. New prospects for antipsychotic treatment — The role of the kynurenine pathway. Psychiatr. Pol. 2014;48(6):1167–1177.
    1. Keefe R.S., Meltzer H.A., Dgetluck N., Gawryl M., Koenig G., Moebius H.J. Randomized, double-blind, placebo-controlled study of encenicline, an α7 nicotinic acetylcholine receptor agonist, as a treatment for cognitive impairment in schizophrenia. Neuropsychopharmacology. 2015;40(13):3053–3060.
    1. Kegel M.E., Bhat M., Skogh E., Samuelsson M., Lundberg K., Dahl M.L. Imbalanced kynurenine pathway in schizophrenia. Int. J. Tryptophan Res. 2014;7:15–22.
    1. Kishi T., Iwata N. NMDA receptor antagonists interventions in schizophrenia: Meta-analysis of randomized, placebo-controlled trials. J. Psychiatr. Res. 2013;47(9):1143–1149.
    1. Koola M.M., Buchanan R.W., Pillai A., Aitchison K.J., Weinberger D.R., Aaronson S.T. Potential role of the combination of galantamine and memantine to improve cognition in schizophrenia. Schizophr. Res. 2014;157(1–3):84–89.
    1. Koshy Cherian A., Gritton H., Johnson D.E., Young D., Kozak R., Sarter M. A systemically-available kynurenine aminotransferase II (KAT II) inhibitor restores nicotine-evoked glutamatergic activity in the cortex of rats. Neuropharmacology. 2014;82:41–48.
    1. Kozak R., Campbell B.M., Strick C.A., Horner W., Hoffmann W.E., Kiss T. Reduction of brain kynurenic acid improves cognitive function. J. Neurosci. 2014;34(32):10592–10602.
    1. Krystal J.H., Karper L.P., Seibyl J.P., Freeman G.K., Delaney R., Bremner J.D. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry. 1994;51(3):199–214.
    1. Lee S.W., Lee J.G., Lee B.J., Kim Y.H. A 12-week, double-blind, placebo-controlled trial of galantamine adjunctive treatment to conventional antipsychotics for the cognitive impairments in chronic schizophrenia. Int. Clin. Psychopharmacol. 2007;22(2):63–68.
    1. Lindblad S.S., Mydel P., Hellvard A., Jonsson I.M., Bokarewa M.I. The N-methyl-d-aspartic acid receptor antagonist memantine ameliorates and delays the development of arthritis by enhancing regulatory T cells. Neurosignals. 2012;20(2):61–71.
    1. Lindenmayer J.P., Khan A. Galantamine augmentation of long-acting injectable risperidone for cognitive impairments in chronic schizophrenia. Schizophr. Res. 2011;125(2–3):267–277.
    1. Linderholm K.R., Skogh E., Olsson S.K., Dahl M.L., Holtze M., Engberg G. Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr. Bull. 2012;38(3):426–432.
    1. Liu J., Pearlson G., Windemuth A., Ruano G., Perrone-Bizzozero N.I., Calhoun V. Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA. Hum Brain Mapp. 2009;30(1):241–255.
    1. Majláth Z., Török N., Toldi J., Vécsei L. Memantine and kynurenic acid: current neuropharmacological aspects. Curr Neuropharmacol. 2016;14(2):200–209.
    1. Matsuzono K., Hishikawa N., Ohta Y., Yamashita T., Deguchi K., Nakano Y. Combination therapy of cholinesterase inhibitor (donepezil or galantamine) plus memantine in the Okayama Memantine Study. J. Alzheimers Dis. 2015;45(3):771–780.
    1. Melnikova T., Savonenko A., Wang Q., Liang X., Hand T., Wu L. Cycloxygenase-2 activity promotes cognitive deficits but not increased amyloid burden in a model of Alzheimer's disease in a sex-dimorphic pattern. Neuroscience. 2006;141(3):1149–1162.
    1. Miller C.L., Llenos I.C., Dulay J.R., Barillo M.M., Yolken R.H., Weis S. Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol. Dis. 2004;15(3):618–629.
    1. Muller N., Schwarz M. Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox. Res. 2006;10(2):131–148.
    1. Müller N., Riedel M., Schwarz M.J., Engel R.R. Clinical effects of COX-2 inhibitors on cognition in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2005;255(2):149–151.
    1. Nilsson L.K., Linderholm K.R., Engberg G., Paulson L., Blennow K., Lindström L.H. Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophr. Res. 2005;80(2–3):315–322.
    1. Omranifard V., Rajabi F., Mohammadian-Sichani M., Maracy M. The effect of add-on memantine on global function and quality of life in schizophrenia: A randomized, double-blind, controlled, clinical trial. Adv. Biomed. Res. 2015;4(211):1–12.
    1. Parsons C.G., Danysz W., Quack G., Hartmann S., Lorenz B., Wollenburg C. Novel systemically active antagonists of the glycine site of the N-methyl-D-aspartate receptor: Electrophysiological, biochemical and behavioral characterization. J. Pharmacol. Exp. Ther. 1997;283(3):1264–1275.
    1. Pavlov V.A., Parrish W.R., Rosas-Ballina M., Ochani M., Puerta M., Ochani K. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav. Immun. 2009;23(1):41–45.
    1. Petrova N.N., Dorofeykova M.V. Mechanisms of neurocognitive deficit development in schizophrenia and current treatment approaches. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova. 2014;114(11):116–123.
    1. Rigbi A., Yakir A., Sarner-Kanyas K., Pollak Y., Lerer B. Why do young women smoke? VI. A controlled study of nicotine effects on attention: Pharmacogenetic interactions. Pharmacogenomics J. 2011;11(1):45–52.
    1. Rowland L.M., Summerfelt A., Wijtenburg S.A., Du X., Chiappelli J.J., Krishna N. Frontal glutamate and γ-aminobutyric acid levels and their associations with mismatch negativity and digit sequencing task performance in schizophrenia. JAMA Psychiatry. 2016;73(2):166–174.
    1. Satapathy S.K., Ochani M., Dancho M., Hudson L.K., Rosas-Ballina M., Valdes-Ferrer S.I. Galantamine alleviates inflammation and other obesity-associated complications in high-fat diet-fed mice. Mol. Med. 2011;17(7–8):599–606.
    1. Schubert M.H., Young K.A., Hicks P.B. Galantamine improves cognition in schizophrenic patients stabilized on risperidone. Biol. Psychiatry. 2006;60(6):530–533.
    1. Schwarcz R., Rassoulpour A., Wu H.Q., Medoff D., Tamminga C.A., Roberts R.C. Increased cortical kynurenate content in schizophrenia. Biol. Psychiatry. 2001;50(7):521–530.
    1. Schwieler L., Erhardt S., Erhardt C., Engberg G. Prostaglandin-mediated control of rat brain kynurenic acid synthesis—Opposite actions by COX-1 and COX-2 isoforms. J. Neural Transm. 2005;112(7):863–872.
    1. Schwieler L., Larsson M.K., Skogh E., Kegel M.E., Orhan F., Abdelmoaty S. Increased levels of IL-6 in the cerebrospinal fluid of patients with chronic schizophrenia—Significance for activation of the kynurenine pathway. J. Psychiatry Neurosci. 2015;40(2):126–133.
    1. Stone T.W. Neuropharmacology of quinolinic and kynurenic acids. Pharmacol. Rev. 1993;45(3):309–379.
    1. Swerdlow N.R., Bhakta S., Chou H.H., Talledo J.A., Balvaneda B., Light G.A. Memantine effects on sensorimotor gating and mismatch negativity in patients with chronic psychosis. Neuropsychopharmacology. 2016;41(2):419–430.
    1. Tharumaratnam D., Bashford S., Khan S.A. Indomethacin induced psychosis. Postgrad. Med. J. 2000;76(901):736–737.
    1. Tregellas J.R., Tanabe J., Rojas D.C., Shatti S., Olincy A., Johnson L., Martin L.F., Soti F., Kem W.R., Leonard S., Freedman R. Effects of an alpha 7-nicotinic agonist on default network activity in schizophrenia. Biol Psychiatry. 2011;69(1):7–11.
    1. van Westerloo D., van der Poll T. Acute vagotomy activates the cholinergic anti-inflammatory pathway. Am. J. Physiol. Heart Circ. Physiol. 2005;288(2):H977–H978. (author reply H978-9)
    1. Varela-Gomez N., Mata I., Perez-Iglesias R., Rodriguez-Sanchez J.M., Ayesa R., Fatjo-Vilas M., Crespo-Facorro B. Dysbindin gene variability is associated with cognitive abnormalities in first-episode non-affective psychosis. Cogn Neuropsychiatry. 2015;20(2):144–156.
    1. Wenk G.L., Rosi S., McGann K., Hauss-Wegrzyniak B. A nitric oxide-donating flurbiprofen derivative reduces neuroinflammation without interacting with galantamine in the rat. Eur. J. Pharmacol. 2002;453(2–3):319–324.
    1. Wijegunaratne H., Qazi H., Koola M.M. Chronic and bedtime use of benztropine with antipsychotics: Is it necessary? Schizophr. Res. 2014;153(1–3):248–249.
    1. Wonodi I., Schwarcz R. Cortical kynurenine pathway metabolism: A novel target for cognitive enhancement in Schizophrenia. Schizophr. Bull. 2010;36(2):211–218.
    1. Wonodi I., Stine O.C., Sathyasaikumar K.V., Roberts R.C., Mitchell B.D., Hong L.E. Downregulated kynurenine 3-monooxygenase gene expression and enzyme activity in schizophrenia and genetic association with schizophrenia endophenotypes. Arch. Gen. Psychiatry. 2011;68(7):665–674.
    1. Wonodi I., McMahon R.P., Krishna N., Mitchell B.D., Liu J., Glassman M. Influence of kynurenine 3-monooxygenase (KMO) gene polymorphism on cognitive function in schizophrenia. Schizophr. Res. 2014;160(1–3):80–87.

Source: PubMed

Подписаться