A novel meningococcal outer membrane vesicle vaccine with constitutive expression of FetA: A phase I clinical trial

L Marsay, C Dold, C A Green, C S Rollier, G Norheim, M Sadarangani, M Shanyinde, C Brehony, A J Thompson, H Sanders, H Chan, K Haworth, J P Derrick, I M Feavers, M C Maiden, A J Pollard, L Marsay, C Dold, C A Green, C S Rollier, G Norheim, M Sadarangani, M Shanyinde, C Brehony, A J Thompson, H Sanders, H Chan, K Haworth, J P Derrick, I M Feavers, M C Maiden, A J Pollard

Abstract

Objectives: Outer membrane vesicle (OMV) vaccines are used against outbreaks of capsular group B Neisseria meningitidis (MenB) caused by strains expressing particular PorA outer membrane proteins (OMPs). Ferric enterobactin receptor (FetA) is another variable OMP that induces type-specific bactericidal antibodies, and the combination of judiciously chosen PorA and FetA variants in vaccine formulations is a potential approach to broaden protection of such vaccines.

Methods: The OMV vaccine MenPF-1 was generated by genetically modifying N. meningitidis strain 44/76 to constitutively express FetA. Three doses of 25 μg or 50 μg of MenPF-1 were delivered intra-muscularly to 52 healthy adults.

Results: MenPF-1 was safe and well tolerated. Immunogenicity was measured by serum bactericidal assay (SBA) against wild-type and isogenic mutant strains. After 3 doses, the proportion of volunteers with SBA titres ≥1:4 (the putative protective titre) was 98% for the wild-type strain, and 77% for the strain 44/76 FetA(on)PorA(off) compared to 51% in the strain 44/76 FetA(off)PorA(off), demonstrating that vaccination with MenPF-1 simultaneously induced FetA and PorA bactericidal antibodies.

Conclusion: This study provides a proof-of-concept for generating bactericidal antibodies against FetA after OMV vaccination in humans. Prevalence-based choice of PorA and FetA types can be used to formulate a vaccine for broad protection against MenB disease.

Keywords: FetA; Molecular epidemiology; Neisseria meningitidis; Outer membrane vesicles; Vaccine.

Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

Figures

Figure 1
Figure 1
A vaccine recipe (5PorA–FetA) based on that from Russell et al., 2008was used to estimate potential coverage and longevity of a PorA/FetA based recipe over a number of decades in England and Wales. (A) Potential coverage of PorA/FetA recipes in England and Wales 1975–1995, 2000–2002 and 2010–2013 dataset with increasing number of components (PorA variable regions – VRs). (B) Theoretical amount of disease incidence prevented/present if 5PorA/FetA recipe was implemented in England and Wales 1975–2012. Isolates with an exact match to at least one of the five PorA VR1, VR2 and FetA VRs were considered to be covered by the recipe.
Figure 2
Figure 2
Flow diagram for recruitment, enrolment and completion of trial. Withdrawals were not related to the study vaccine and all new and medically relevant information that was detected at screening were communicated to the candidate volunteers' General Practitioners with their permission.
Figure 3
Figure 3
Percentage of participants that had an SBA titre ≥1:4 at baseline and 4 weeks after 2 or 3 doses of MenPF-1. Percentage of participants with an SBA titre ≥1:4 as main bars (with 95% CI error bars) for participants receiving 25 μg of vaccine (lines) and 50 μg of vaccine (dark solid) at baseline and 4 weeks after 2 or 3 doses of MenPF-1. SBA titres were determined as the reciprocal dilution where bacterial survival was less than 50% of that of controls for the parental wild-type strain 44/76 (A), 44/76 FetAoffPorAoff(B), 44/76 FetAoffPorAon(C), 44/76 FetAonPorAoff(D) and 44/76 FetAonPorAon(E).

References

    1. ECDC. European Centre for Disease Prevention and Control . ECDC; 2010. Surveillance of invasive bacterial diseases in Europe 2007.
    1. Prevention CfDCa. Centers for Disease Control and Prevention . 2009. Active Bacterial Core Surveillance Report, Emerging Infections Program Network, Neisseria meningitidis, 2008.
    1. England PH. Public Health England .
    1. Rollier C.S., Dold C., Marsay L., Sadarangani M., Pollard A.J. The capsular group B meningococcal vaccine, 4CMenB: clinical experience and potential efficacy. Expert Opin Biol Ther. 2015;15(1):131–142.
    1. Finne J., Leinonen M., Makela P.H. Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet. 1983;2(8346):355–357.
    1. Wyle F.A., Artenstein M.S., Brandt B.L., Tramont E.C., Kasper D.L., Altieri P.L. Immunologic response of man to group B meningococcal polysaccharide vaccines. J Infect Dis. 1972;126(5):514–521.
    1. Holst J., Martin D., Arnold R., Huergo C.C., Oster P., O'Hallahan J. Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine. 2009;27(Suppl. 2):B3–B12.
    1. Sierra G.V., Campa H.C., Varcacel N.M., Garcia I.L., Izquierdo P.L., Sotolongo P.F. Vaccine against group B Neisseria meningitidis: protection trial and mass vaccination results in Cuba. NIPH Ann. 1991;14(2):195–207. [discussion 8–10]
    1. de Moraes J.C., Perkins B.A., Camargo M.C., Hidalgo N.T., Barbosa H.A., Sacchi C.T. Protective efficacy of a serogroup B meningococcal vaccine in Sao Paulo, Brazil. Lancet. 1992;340(8827):1074–1078.
    1. Oster P., Lennon D., O'Hallahan J., Mulholland K., Reid S., Martin D. MeNZB: a safe and highly immunogenic tailor-made vaccine against the New Zealand Neisseria meningitidis serogroup B disease epidemic strain. Vaccine. 2005;23(17–18):2191–2196.
    1. Bjune G., Hoiby E.A., Gronnesby J.K., Arnesen O., Fredriksen J.H., Halstensen A. Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet. 1991;338(8775):1093–1096.
    1. Caron F., Delbos V., Houivet E., Deghmane A.E., Leroy J.P., Hong E. Evolution of immune response against Neisseria meningitidis B:14:P1.7,16 before and after the outer membrane vesicle vaccine MenBvac. Vaccine. 2012;30(34):5059–5062.
    1. Arnold R., Galloway Y., McNicholas A., O'Hallahan J. Effectiveness of a vaccination programme for an epidemic of meningococcal B in New Zealand. Vaccine. 2011;29(40):7100–7106.
    1. Martin D.R., Ruijne N., McCallum L., O'Hallahan J., Oster P. The VR2 epitope on the PorA P1.7-2,4 protein is the major target for the immune response elicited by the strain-specific group B meningococcal vaccine MeNZB. Clin Vaccine Immunol – CVI. 2006;13(4):486–491.
    1. Serruto D., Bottomley M.J., Ram S., Giuliani M.M., Rappuoli R. The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: immunological, functional and structural characterization of the antigens. Vaccine. 2012;30(Suppl. 2):B87–B97.
    1. Christensen H., Hickman M., Edmunds W.J., Trotter C.L. Introducing vaccination against serogroup B meningococcal disease: an economic and mathematical modelling study of potential impact. Vaccine. 2013;31(23):2638–2646.
    1. Derrick J.P., Maiden M.C., Feavers I.M. Crystal structure of an Fab fragment in complex with a meningococcal serosubtype antigen and a protein G domain. J Mol Biol. 1999;293(1):81–91.
    1. Russell J.E., Jolley K.A., Feavers I.M., Maiden M.C., Suker J. PorA variable regions of Neisseria meningitidis. Emerg Infect Dis. 2004;10(4):674–678.
    1. Wedege E., Kuipers B., Bolstad K., van Dijken H., Frøholm L.O., Vermont C. Antibody specificities and effect of meningococcal carriage in Icelandic teenagers receiving the Norwegian serogroup B outer membrane vesicle vaccine. Infect Immun. 2003;71(7):3775–3781.
    1. Ala'Aldeen D.A., Davies H.A., Borriello S.P. Vaccine potential of meningococcal FrpB: studies on surface exposure and functional attributes of common epitopes. Vaccine. 1994;12(6):535–541.
    1. Pettersson A., Kuipers B., Pelzer M., Verhagen E., Tiesjema R.H., Tommassen J. Monoclonal antibodies against the 70-kilodalton iron-regulated protein of Neisseria meningitidis are bactericidal and strain specific. Infect Immun. 1990;58(9):3036–3041.
    1. Thompson E.A., Feavers I.M., Maiden M.C. Antigenic diversity of meningococcal enterobactin receptor FetA, a vaccine component. Microbiology. 2003;149(Pt 7):1849–1858.
    1. van der Ley P., van der Biezen J., Sutmuller R., Hoogerhout P., Poolman J.T. Sequence variability of FrpB, a major iron-regulated outer-membrane protein in the pathogenic neisseriae. Microbiology. 1996;142(Pt 11):3269–3274.
    1. Kortekaas J., Muller S.A., Ringler P., Gregorini M., Weynants V.E., Rutten L. Immunogenicity and structural characterisation of an in vitro folded meningococcal siderophore receptor (FrpB, FetA) Microbes Infect/Institut Pasteur. 2006;8(8):2145–2153.
    1. Wedege E., Bolstad K., Aase A., Herstad T.K., McCallum L., Rosenqvist E. Functional and specific antibody responses in adult volunteers in New Zealand who were given one of two different meningococcal serogroup B outer membrane vesicle vaccines. Clin Vaccine Immunol – CVI. 2007;14(7):830–838.
    1. Wedege E., Hoiby E.A., Rosenqvist E., Bjune G. Immune responses against major outer membrane antigens of Neisseria meningitidis in vaccinees and controls who contracted meningococcal disease during the Norwegian serogroup B protection trial. Infect Immun. 1998;66(7):3223–3231.
    1. Tsai J., Dyer D., Sparling P. Loss of transferrin receptor activity in Neisseria meningitidis correlates with inability to use transferrin as an iron source. Infect Immun. 1988;56(12):3132–3138.
    1. Tsolakos N., Lie K., Bolstad K., Maslen S., Kristiansen P.A., Hoiby E.A. Characterization of meningococcal serogroup B outer membrane vesicle vaccines from strain 44/76 after growth in different media. Vaccine. 2010;28(18):3211–3218.
    1. Frasch C.E., van Alphen L., Holst J., Poolman J.T., Rosenqvist E. Outer membrane protein vesicle vaccines for meningococcal disease. Methods Mol Med. 2001;66:81–107.
    1. Saleem M., Prince S.M., Rigby S.E., Imran M., Patel H., Chan H. Use of a molecular decoy to segregate transport from antigenicity in the FrpB iron transporter from Neisseria meningitidis. PLoS One. 2013;8(2):e56746.
    1. Hollander A., Mercante A.D., Shafer W.M., Cornelissen C.N. The iron-repressed, AraC-like regulator MpeR activates expression of fetA in Neisseria gonorrhoeae. Infect Immun. 2011;79(12):4764–4776.
    1. Urwin R., Russell J.E., Thompson E.A., Holmes E.C., Feavers I.M., Maiden M.C. Distribution of surface protein variants among hyperinvasive meningococci: implications for vaccine design. Infect Immun. 2004;72(10):5955–5962.
    1. Brehony C., Trotter C.L., Ramsay M.E., Chandra M., Jolley K.A., van der Ende A. Implications of differential age distribution of disease-associated meningococcal lineages for vaccine development. Clin Vaccine Immunol – CVI. 2014;21(6):847–853.
    1. Brehony C., Jolley K.A., Maiden M.C. Multilocus sequence typing for global surveillance of meningococcal disease. FEMS Microbiol Rev. 2007;31(1):15–26.
    1. Russell J.E., Urwin R., Gray S.J., Fox A.J., Feavers I.M., Maiden M.C. Molecular epidemiology of meningococcal disease in England and Wales 1975–1995, before the introduction of serogroup C conjugate vaccines. Microbiology. 2008;154(Pt 4):1170–1177.
    1. EU-IBIS . EU-IBIS; December 2003. Invasive Neisseria meningitidis in Europe 2002. Report No.
    1. HPA . HPA; 22 February 2013. Health protection weekly report. Report No.
    1. Gray S.J., Trotter C.L., Ramsay M.E., Guiver M., Fox A.J., Borrow R. Epidemiology of meningococcal disease in England and Wales 1993/94 to 2003/04: contribution and experiences of the Meningococcal Reference Unit. J Med Microbiol. 2006;55(Pt 7):887–896.
    1. Fredriksen J.H., Rosenqvist E., Wedege E., Bryn K., Bjune G., Froholm L.O. Production, characterization and control of MenB-vaccine “Folkehelsa”: an outer membrane vesicle vaccine against group B meningococcal disease. NIPH Ann. 1991;14(2):67–79. [discussion 79–80]
    1. Borrow R., Carlone G.M. Springer; 2001. Serogroup B and C serum bactericidal assays. Meningococcal vaccines; pp. 289–304.
    1. Sanders H, Norheim G, Chan H, Vipond C, Pollard AJ, Feavers I. Bactericidal FetA antibodies induced by an outer membrane vesicle vaccine derived from a serogroup B meningococcal isolate with constitutive FetA expression. PLoS One [Under review].
    1. Thornton V., Lennon D., Rasanathan K., O'Hallahan J., Oster P., Stewart J. Safety and immunogenicity of New Zealand strain meningococcal serogroup B OMV vaccine in healthy adults: beginning of epidemic control. Vaccine. 2006;24(9):1395–1400.
    1. Black J.R., Dyer D., Thompson M., Sparling P. Human immune response to iron-repressible outer membrane proteins of Neisseria meningitidis. Infect Immun. 1986;54(3):710–713.
    1. Wong S.H., Lennon D.R., Jackson C.M., Stewart J.M., Reid S., Ypma E. Immunogenicity and tolerability in infants of a New Zealand epidemic strain meningococcal B outer membrane vesicle vaccine. Pediatr Infect Dis J. 2009;28(5):385–390.
    1. Kimura A., Toneatto D., Kleinschmidt A., Wang H.J., Dull P. Immunogenicity and safety of a multicomponent meningococcal serogroup B vaccine and a quadrivalent meningococcal CRM197 conjugate vaccine against serogroups A, C, W-135, and Y in adults who are at increased risk for occupational exposure to meningococcal isolates. Clin Vaccine Immunol. 2011;18(3):483–486.
    1. Findlow J., Taylor S., Aase A., Horton R., Heyderman R., Southern J. Comparison and correlation of Neisseria meningitidis serogroup B immunologic assay results and human antibody responses following three doses of the Norwegian meningococcal outer membrane vesicle vaccine MenBvac. Infect Immun. 2006;74(8):4557–4565.
    1. Santolaya M.E., O'Ryan M., Valenzuela M.T., Prado V., Vergara R.F., Munoz A. Persistence of antibodies in adolescents 18–24 months after immunization with one, two, or three doses of 4CMenB meningococcal serogroup B vaccine. Hum Vaccines Immunother. 2013;9(11):2304–2310.
    1. Tappero J.W., Lagos R., Ballesteros A.M., Plikaytis B., Williams D., Dykes J. Immunogenicity of 2 serogroup B outer-membrane protein meningococcal vaccines: a randomized controlled trial in Chile. J Am Med Assoc. 1999;281(16):1520–1527.
    1. Luijkx T.A., van Dijken H., Hamstra H.-J., Kuipers B., van der Ley P., van Alphen L. Relative immunogenicity of PorA subtypes in a multivalent Neisseria meningitidis vaccine is not dependent on presentation form. Infect Immun. 2003;71(11):6367–6371.
    1. Perkins B., Jonsdottir K., Briem H., Griffiths E., Plikaytis B., Hoiby E. Immunogenicity of two efficacious outer membrane protein-based serogroup B meningococcal vaccines among young adults in Iceland. J Infect Dis. 1998;177(3):683–691.
    1. Ladhani S.N., Flood J.S., Ramsay M.E., Campbell H., Gray S.J., Kaczmarski E.B. Invasive meningococcal disease in England and Wales: implications for the introduction of new vaccines. Vaccine. 2012;30(24):3710–3716.
    1. Watkins E.R., Maiden M.C. Persistence of hyperinvasive meningococcal strain types during global spread as recorded in the PubMLST Database. PLoS One. 2012;7(9):e45349.
    1. Weynants V.E., Feron C.M., Goraj K.K., Bos M.P., Denoel P.A., Verlant V.G. Additive and synergistic bactericidal activity of antibodies directed against minor outer membrane proteins of Neisseria meningitidis. Infect Immun. 2007;75(11):5434–5442.

Source: PubMed

Подписаться