Neoadjuvant chemotherapy is associated with a transient increase of intratumoral T-cell density in microsatellite stable colorectal liver metastases

Vegar Johansen Dagenborg, Serena Elizabeth Marshall, Sheraz Yaqub, Krzysztof Grzyb, Kjetil Boye, Marius Lund-Iversen, Eirik Høye, Audun E Berstad, Åsmund Avdem Fretland, Bjørn Edwin, Anne Hansen Ree, Kjersti Flatmark, Vegar Johansen Dagenborg, Serena Elizabeth Marshall, Sheraz Yaqub, Krzysztof Grzyb, Kjetil Boye, Marius Lund-Iversen, Eirik Høye, Audun E Berstad, Åsmund Avdem Fretland, Bjørn Edwin, Anne Hansen Ree, Kjersti Flatmark

Abstract

Patients with colorectal liver metastases (CLM) commonly receive neoadjuvant chemotherapy (NACT) prior to surgical resection. NACT may induce immunogenic cell death with subsequent recruitment of T-cells to the tumor microenvironment, which could be exploited by immune checkpoint inhibition (ICI). In theory, this could expand the use of ICI to obtain responses also in microsatellite stable colorectal cancer, but evidence to suggest optimal treatment schedules are lacking. In this study, densities of total-, cytotoxic-, helper- and regulatory T-cells were quantified by immunohistochemistry in resected CLM from 92 patients included in the OSLO-COMET trial (NCT01516710). All but one patient had microsatellite stable tumors (91/92). Associations between T-cell densities and clinicopathological parameters were analyzed. Fluoropyrimidine-based NACT (in most cases with addition of oxaliplatin or irinotecan) was administered to 45 patients completed median 8 weeks prior to surgical resection. No overall association was found between NACT administration and intratumoral T-cell densities. However, within the NACT group, a short time interval (<9.5 weeks) between NACT completion and CLM resection was strongly associated with high intratumoral T-cell densities compared to the long-interval and no NACT groups (medians 491, 236, and 292 cells/mm2, respectively; P < .0001). The results from this study suggest that the observed increase in intratumoral T-cells after NACT administration may be transient. The significance of this finding should be further explored to ensure that optimal treatment schedules are chosen for studies combining cytotoxic chemotherapy and ICI.

Keywords: Liver metastases; colorectal cancer; immune check-point inhibition; immunogenic cell death; neoadjuvant chemotherapy; t-cell densities.

Figures

Figure 1.
Figure 1.
Scatter plot showing the correlation between the total number of T-cells (Ttot) and the sum of cytotoxic and helper T-cell subtypes (CTL and TH) in all tumor regions and adjacent liver tissue. The diagonal line indicates linear regression analysis (R2 = 0.99), suggesting that CTL and TH corresponded well to Ttot.
Figure 2.
Figure 2.
Dot density plots of intratumoral T-cell densities (cells/mm2) in the NACT subgroups. Light gray circles, No-NACT group (n = 57 tumors); dark gray triangles, short-interval group (n = 54 tumors); and open circles, long-interval group (n = 33 tumors). Group median is indicated by the horizontal lines. Subgroups are compared pairwise, and significant differences are indicated: *, P < .05; **, P < .01; ***, P < .001; ****, P < .0001. a) Ttot, total amount of T-cells, b) CTL, cytotoxic T-cells, c) TH, helper T-cells, d) Treg, regulatory T-cells
Figure 3.
Figure 3.
Representative immunohistochemistry images from the intratumoral region of two cases with colorectal liver metastasis. Sections were stained to detect the total amount of T-cells (CD3+) and cytotoxic T-cells (CD8+). On serial slides, corresponding hotspots were selected to quantify T-cells for each case, shown by the black rectangles. (Images were acquired at 4x magnification and the black line represents 0.2 mm). Case 1 (short-interval NACT subgroup): (a) total number of T-cells. (b) cytotoxic T-cells. Case 2 (no NACT subgroup): (c) total number of T-cells. (d) cytotoxic T-cells
Figure 3.
Figure 3.
Representative immunohistochemistry images from the intratumoral region of two cases with colorectal liver metastasis. Sections were stained to detect the total amount of T-cells (CD3+) and cytotoxic T-cells (CD8+). On serial slides, corresponding hotspots were selected to quantify T-cells for each case, shown by the black rectangles. (Images were acquired at 4x magnification and the black line represents 0.2 mm). Case 1 (short-interval NACT subgroup): (a) total number of T-cells. (b) cytotoxic T-cells. Case 2 (no NACT subgroup): (c) total number of T-cells. (d) cytotoxic T-cells

References

    1. Donadon M, Ribero D, Morris-Stiff G, Abdalla EK, Vauthey JN.. New paradigm in the management of liver-only metastases from colorectal cancer. Gastrointestinal Cancer Res. 2007. Jan-Feb;1(1):20–27.
    1. Kanas GP, Taylor A, Primrose JN, Langeberg WJ, Kelsh MA, Mowat FS, Alexander DD, Choti MA, Poston G.. Survival after liver resection in metastatic colorectal cancer: review and meta-analysis of prognostic factors. Clin Epidemiol. 2012;4:283–301. doi:10.2147/CLEP.S34285.
    1. van Amerongen MJ, Jenniskens SFM, van den Boezem PB, Futterer JJ, de Wilt JHW. Radiofrequency ablation compared to surgical resection for curative treatment of patients with colorectal liver metastases - a meta-analysis. HPB (Oxford). 2017. September;19(9):749–756. doi:10.1016/j.hpb.2017.05.011.
    1. Fretland AA, Dagenborg VJ, Bjornelv GMW, Kazaryan AM, Kristiansen R, Fagerland MW, Hausken J, Tønnessen TI, Abildgaard A, Barkhatov L, et al. Laparoscopic versus open resection for colorectal liver metastases: the OSLO-COMET randomized controlled trial. Ann Surg. 2018 Feb;267(2):199–207. doi:10.1097/SLA.0000000000002353.
    1. Nordlinger B, Sorbye H, Glimelius B, Poston GJ, Schlag PM, Rougier P, Bechstein WO, Primrose JN, Walpole ET, Finch-Jones M, et al. Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): long-term results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2013. November;14(12):1208–1215. DOI:10.1016/S1470-2045(13)70447-9.
    1. Kloor M, Michel S, von Knebel Doeberitz M. Immune evasion of microsatellite unstable colorectal cancers. Int J Cancer. 2010. September 01;127(5):1001–1010. doi:10.1002/ijc.v127:5.
    1. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015. June 25;372(26):2509–2520. doi:10.1056/NEJMoa1500596.
    1. Ji RR, Chasalow SD, Wang L, Hamid O, Schmidt H, Cogswell J, Alaparthy S, Berman D, Jure-Kunkel M, Siemers NO, et al. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol ImmunoTher. 2012. July 01;61(7):1019–1031. doi:10.1007/s00262-011-1172-6.
    1. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2016. October 17. online;17:97. DOI:10.1038/nri.2016.107.
    1. Pfirschke C, Engblom C, Rickelt S, Cortez-Retamozo V, Garris C, Pucci F, Yamazaki T, Poirier-Colame V, Newton A, Redouane Y, et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity. 2016. February 16;44(2):343–354. doi:10.1016/j.immuni.2015.11.024.
    1. Dosset M, Vargas TR, Lagrange A, Boidot R, Vegran F, Roussey A, Chalmin F, Dondaine L, Paul C, Marie-Joseph EL, et al. PD-1/PD-L1 pathway: an adaptive immune resistance mechanism to immunogenic chemotherapy in colorectal cancer. (2162-4011 (Print)). doi:10.1080/2162402X.2018.1433981.
    1. Trujillo JA, Sweis RF, Bao R, Luke JJ. T cell–inflamed versus non-t cell–inflamed tumors: a conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immuno Res. 2018;6(9):990. doi:10.1158/2326-6066.CIR-18-0277.
    1. Ostrup O, Dagenborg VJ, Rodland EA, Skarpeteig V, Silwal-Pandit L, Grzyb K, Berstad AE, Fretland ÅA, Mælandsmo GM, Børresen-Dale AL, et al. Molecular signatures reflecting microenvironmental metabolism and chemotherapy-induced immunogenic cell death in colorectal liver metastases. Oncotarget. 2017. September 29;8(44):76290–76304. doi:10.18632/oncotarget.v8i44.
    1. Kalanxhi E, Meltzer S, Schou JV, Larsen FO, Dueland S, Flatmark K, Jensen BV, Hole KH, Seierstad T, Redalen KR, et al. Systemic immune response induced by oxaliplatin-based neoadjuvant therapy favours survival without metastatic progression in high-risk rectal cancer. Br J Cancer. 2018. May 01;118(10):1322–1328. doi:10.1038/s41416-018-0085-y.
    1. Meltzer S, Kalanxhi E, Hektoen HH, Dueland S, Flatmark K, Redalen KR, Ree AH. Systemic release of osteoprotegerin during oxaliplatin-containing induction chemotherapy and favorable systemic outcome of sequential radiotherapy in rectal cancer. Oncotarget. 2016. June 7;7(23):34907–34917. doi:10.18632/oncotarget.v7i23.
    1. Tanis E, Julie C, Emile JF, Mauer M, Nordlinger B, Aust D, Roth A, Lutz MP, Gruenberger T, Wrba F, et al. Prognostic impact of immune response in resectable colorectal liver metastases treated by surgery alone or surgery with perioperative FOLFOX in the randomised EORTC study 40983. Eur J Cancer. 2015. November;51(17):2708–2717. DOI:10.1016/j.ejca.2015.08.014.
    1. Ledys F, Klopfenstein Q, Truntzer C, Arnould L, Vincent J, Bengrine L, Remark R, Boidot R, Ladoire S, Ghiringhelli F, et al. RAS status and neoadjuvant chemotherapy impact CD8+ cells and tumor HLA class I expression in liver metastatic colorectal cancer. J ImmunoTher Cancer. 2018;6(1):123. doi:10.1186/s40425-018-0438-3.
    1. Inoue Y, Hazama S, Suzuki N, Tokumitsu Y, Kanekiyo S, Tomochika S, Tsunedomi R, Tokuhisa Y, Iida M, Sakamoto K, et al. Cetuximab strongly enhances immune cell infiltration into liver metastatic sites in colorectal cancer. Cancer Sci. 2017;108(3):455–460. doi:10.1111/cas.13162.
    1. Ogura A, Akiyoshi T, Yamamoto N, Kawachi H, Ishikawa Y, Mori S, Oba K, Nagino M, Fukunaga Y, Ueno M. et al. Pattern of programmed cell death-ligand 1 expression and CD8-positive T-cell infiltration before and after chemoradiotherapy in rectal cancer. Eur J Cancer. 2018. March 01;91:11–20. DOI:10.1016/j.ejca.2017.12.005.
    1. Matsutani S, Shibutani M, Maeda K, Nagahara H, Fukuoka T, Nakao S, Hirakawa K, Ohira M. Significance of tumor-infiltrating lymphocytes before and after neoadjuvant therapy for rectal cancer. Cancer Sci. 2018;109(4):966–979. doi:10.1111/cas.2018.109.issue-4.
    1. Miyashita M, Sasano H, Tamaki K, Hirakawa H, Takahashi Y, Nakagawa S, Watanabe G, Tada H, Suzuki A, Ohuchi N, et al. Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple-negative breast cancer: a retrospective multicenter study. Breast Cancer Res. 2015;17(1):124. doi:10.1186/s13058-015-0632-x.
    1. Parra ER, Villalobos P, Behrens C, Jiang M, Pataer A, Swisher SG, William WN, Zhang J, Lee J, Cascone T, et al. Effect of neoadjuvant chemotherapy on the immune microenvironment in non-small cell lung carcinomas as determined by multiplex immunofluorescence and image analysis approaches. J ImmunoTher Cancer. 2018;6(1):48. doi:10.1186/s40425-018-0368-0.
    1. Liang Y, Lü W, Zhang X, Lü B. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes before and after neoadjuvant chemotherapy in cervical cancer. Diagn Pathol. 2018;13(1):93. doi:10.1186/s13000-018-0770-4.
    1. Sideras K, Galjart B, Vasaturo A, Pedroza-Gonzalez A, Biermann K, Mancham S, Nigg AL, Hansen BE, Stoop HA, Zhou G, et al. Prognostic value of intra-tumoral CD8(+)/FoxP3(+) lymphocyte ratio in patients with resected colorectal cancer liver metastasis. J Surg Oncol. 2018;118(1):68–76. doi:10.1002/jso.25091.
    1. Rosenbaum MW, Bledsoe JR, Morales-Oyarvide V, Huynh TG, Mino-Kenudson M. PD-L1 expression in colorectal cancer is associated with microsatellite instability, BRAF mutation, medullary morphology and cytotoxic tumor-infiltrating lymphocytes. Mod Pathol. 2016. September 01;29(9):1104–1112. doi:10.1038/modpathol.2016.95.
    1. D’Alterio C, Nasti G, Polimeno M, Ottaiano A, Conson M, Circelli L, Botti G, Scognamiglio G, Santagata S, De Divitiis C, et al. CXCR4-CXCL12-CXCR7, TLR2-TLR4, and PD-1/PD-L1 in colorectal cancer liver metastases from neoadjuvant-treated patients. Oncoimmunology. 2016;5(12):e1254313–e. doi:10.1080/2162402X.2016.1254313.
    1. Fretland AA, Kazaryan AM, Bjornbeth BA, Flatmark K, Andersen MH, Tonnessen TI, Bjørnelv GMW, Fagerland MW, Kristiansen R, Øyri K, et al. Open versus laparoscopic liver resection for colorectal liver metastases (the Oslo-CoMet Study): study protocol for a randomized controlled trial. Trials. 2015;16:73. doi:10.1186/s13063-015-0577-5.
    1. Halama N, Michel S, Kloor M, Zoernig I, Benner A, Spille A, Pommerencke T, von Knebel DM, Folprecht G, Luber B, et al. Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res. 2011;71(17):5670. doi:10.1158/0008-5472.CAN-11-0268.
    1. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960. doi:10.1126/science.1129139.
    1. Mlecnik B, Van den Eynde M, Bindea G, Church SE, Vasaturo A, Fredriksen T, Lafontaine L, Haicheur N, Marliot F, Debetancourt D, et al. Comprehensive intrametastatic immune quantification and major impact of immunoscore on survival. JNCI. 2018;110(1):djx123–djx. doi:10.1093/jnci/djx123.
    1. Katz SC, Bamboat ZM, Maker AV, Shia J, Pillarisetty VG, Yopp AC, Hedvat CV, Gonen M, Jarnagin WR, Fong Y, et al. Regulatory T Cell Infiltration Predicts Outcome Following Resection of Colorectal Cancer Liver Metastases. Ann Surg Oncol. 2013. September 26;20(3):946–955. doi:10.1245/s10434-012-2668-9.
    1. Galon J, Pages F, Marincola FM, Angell HK, Thurin M, Lugli A, Zlobec I, Berger A, Bifulco C, Botti G, et al. Cancer classification using the Immunoscore: a worldwide task force. J Transl Med. 2012. October;3(10):205. DOI:10.1186/1479-5876-10-205.
    1. Galon J, Pagès F, Marincola FM, Thurin M, Trinchieri G, Fox BA, Gajewski TF, Ascierto PA. The immune score as a new possible approach for the classification of cancer. J Transl Med. 2012. January 03;10(1):1. doi:10.1186/1479-5876-10-1.
    1. Sorbye H, Glimelius B, Berglund A, Fokstuen T, Tveit KM, Braendengen M, Øgreid D, Dahl O. Multicenter phase II study of Nordic fluorouracil and folinic acid bolus schedule combined with oxaliplatin as first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2004. January 1;22(1):31–38. doi:10.1200/JCO.2004.05.188.
    1. Sobin LHGM, Wittekind C, editors. TNM Classification of Malignant Tumours. 7th ed. International Union Against Cancer (UICC). Hoboken (NJ): Wiley-Blackwell; 2010.
    1. Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, Carbone PP. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982. December;5(6):649–655. doi:10.1097/00000421-198212000-00014.
    1. Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg. 1999. September;230(3):309–318. discussion 18–21. doi:10.1097/00000658-199909000-00004.
    1. Ojlert AK, Halvorsen AR, Nebdal D, Lund-Iversen M, Solberg S, Brustugun OT, Lingjaerde OC, Helland Å. The immune microenvironment in non-small cell lung cancer is predictive of prognosis after surgery. Mol Oncol. 2019. May;13(5):1166–1179. doi:10.1002/1878-0261.12475.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009. January;45(2):228–247. DOI:10.1016/j.ejca.2008.10.026.

Source: PubMed

Подписаться