Consensus guidelines for the definition, detection and interpretation of immunogenic cell death

Lorenzo Galluzzi, Ilio Vitale, Sarah Warren, Sandy Adjemian, Patrizia Agostinis, Aitziber Buqué Martinez, Timothy A Chan, George Coukos, Sandra Demaria, Eric Deutsch, Dobrin Draganov, Richard L Edelson, Silvia C Formenti, Jitka Fucikova, Lucia Gabriele, Udo S Gaipl, Sofia R Gameiro, Abhishek D Garg, Encouse Golden, Jian Han, Kevin J Harrington, Akseli Hemminki, James W Hodge, Dewan Md Sakib Hossain, Tim Illidge, Michael Karin, Howard L Kaufman, Oliver Kepp, Guido Kroemer, Juan Jose Lasarte, Sherene Loi, Michael T Lotze, Gwenola Manic, Taha Merghoub, Alan A Melcher, Karen L Mossman, Felipe Prosper, Øystein Rekdal, Maria Rescigno, Chiara Riganti, Antonella Sistigu, Mark J Smyth, Radek Spisek, John Stagg, Bryan E Strauss, Daolin Tang, Kazuki Tatsuno, Stefaan W van Gool, Peter Vandenabeele, Takahiro Yamazaki, Dmitriy Zamarin, Laurence Zitvogel, Alessandra Cesano, Francesco M Marincola, Lorenzo Galluzzi, Ilio Vitale, Sarah Warren, Sandy Adjemian, Patrizia Agostinis, Aitziber Buqué Martinez, Timothy A Chan, George Coukos, Sandra Demaria, Eric Deutsch, Dobrin Draganov, Richard L Edelson, Silvia C Formenti, Jitka Fucikova, Lucia Gabriele, Udo S Gaipl, Sofia R Gameiro, Abhishek D Garg, Encouse Golden, Jian Han, Kevin J Harrington, Akseli Hemminki, James W Hodge, Dewan Md Sakib Hossain, Tim Illidge, Michael Karin, Howard L Kaufman, Oliver Kepp, Guido Kroemer, Juan Jose Lasarte, Sherene Loi, Michael T Lotze, Gwenola Manic, Taha Merghoub, Alan A Melcher, Karen L Mossman, Felipe Prosper, Øystein Rekdal, Maria Rescigno, Chiara Riganti, Antonella Sistigu, Mark J Smyth, Radek Spisek, John Stagg, Bryan E Strauss, Daolin Tang, Kazuki Tatsuno, Stefaan W van Gool, Peter Vandenabeele, Takahiro Yamazaki, Dmitriy Zamarin, Laurence Zitvogel, Alessandra Cesano, Francesco M Marincola

Abstract

Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.

Keywords: immunology; molecular biology; oncology.

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY. Published by BMJ.

Figures

Figure 1
Figure 1
Major factors dictating the immunogenicity of cell death. Cells undergoing regulated cell death (RCD) in response to stress can prime an adaptive immune response specific for dead cell-associated antigens provided that (1) those antigens are not perfectly covered by central tolerance, and (2) dying cells emit a panel of immunostimulatory damage-associated molecular patterns (DAMPs) and cytokines that, when delivered according to a precise spatiotemporal pattern, support the recruitment, phagocytic activity and maturation of antigen-presenting cells (APCs), de facto enabling them to engulf antigenic material, migrate to lymph nodes and prime a cytotoxic T lymphocyte (CTL)-dependent immune response. As they express tumor neoantigens (TNAs, which are not covered by central tolerance) and/or tumor-associated antigens (TAAs, for which central tolerance is leaky), cancer cells can undergo bona fide immunogenic cell death (ICD) in response to select stimuli, including (but not limited to) some chemotherapeutic agents commonly employed in the clinic, as well as radiation therapy. However, the TME is generally characterized by an immunosuppressive profile that may prevent either the initiation or the execution of ICD-driven anticancer immunity. Thus, the ultimate ability of RCD to drive adaptive immunity does not depend only on the initiating stimulus and the dying cell, but also on features that are intrinsic to the host. IFNAR, interferon-alpha/beta receptor; PRR, pattern recognition receptor; TREG, regulatory T; TME, tumor microenvironment.
Figure 2
Figure 2
Current methods to assess ICD in vivo, in oncological settings. Current models to ascertain the ability of dying cancer cells to elicit an adaptive, tumor-specific immune response in vivo invariably rely on mouse neoplasms established in immunocompetent syngeneic hosts. In prophylactic models, mouse cancer cells succumbing in vitro to a potential inducer of immunogenic celldeath (ICD) are used as a vaccine, either as such, or on loading on immature, syngeneic dendritic cells (DCs). The ability of mice to reject (tumor incidence) or control (tumor growth) a rechallenge with living cancer cells of the same type inoculated 1–2 weeks later is monitored as a sign of protective anticancer immunity. In therapeutic settings, mouse tumors developing in immunocompetent syngeneic hosts are treated with autologous DCs preloaded with cancer cells exposed to a potential ICD inducer in vitro (generally in combination with immunological adjuvants), or with autologous CD8+ cytotoxic lymphocytes primed in vitro by the same DCs (generally in combination with IL-2 or other cytokines that support expansion in vivo). Tumor control and mouse survival are monitored as indicators of therapeutic anticancer immunity. In abscopal models, mouse cancer cells are harnessed to generate lesions at distant anatomical sites (either artificially, or exploiting the natural capacity of some cell lines to generate metastases), followed by treatment at only one disease site (generally in the context of otherwise inactive systemic immunostimulation). Tumor control at the non-treated disease site and mouse survival are monitored as signs of systemic anticancer immunity with therapeutic relevance. Finally, in intracranial/extracranial models, mouse cancer cells are employed to generate one intracranial and one extracranial tumor, only one of which receives treatment (generally, a systemic agent that cannot cross the blood–brain barrier [BBB] for extracranial lesion, or radiation therapy for intracranial lesions, in both cases in combination with otherwise inactive immunostimulants). As in abscopal models, tumor control at the non-treated disease site and mouse survival are monitored as indicators of therapeutic anticancer immunity with systemic outreach. In all these models, mice achieving systemic, long-term disease eradication are often rechallenged with cancer cells to monitor durability (with the same cancer cells employed for disease establishment) and specificity (with unrelated, but syngeneic cancer cells). ICD, immunogenic cell death; IL-2, interleukin 2.

References

    1. Galluzzi L, Vitale I, Aaronson SA, et al. . Molecular mechanisms of cell death: recommendations of the nomenclature Committee on cell death 2018. Cell Death Differ 2018;25:486–541. 10.1038/s41418-017-0012-4
    1. Tang D, Kang R, Berghe TV, et al. . The molecular machinery of regulated cell death. Cell Res 2019;29:347–64. 10.1038/s41422-019-0164-5
    1. Green DR, Ferguson T, Zitvogel L, et al. . Immunogenic and tolerogenic cell death. Nat Rev Immunol 2009;9:353–63. 10.1038/nri2545
    1. Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell 2011;147:742–58. 10.1016/j.cell.2011.10.033
    1. Galluzzi L, Buqué A, Kepp O, et al. . Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 2017;17:97–111. 10.1038/nri.2016.107
    1. Torchinsky MB, Garaude J, Martin AP, et al. . Innate immune recognition of infected apoptotic cells directs Th17 cell differentiation. Nature 2009;458:78–82. 10.1038/nature07781
    1. Campisi L, Barbet G, Ding Y, et al. . Apoptosis in response to microbial infection induces autoreactive Th17 cells. Nat Immunol 2016;17:1084–92. 10.1038/ni.3512
    1. Nair-Gupta P, Baccarini A, Tung N, et al. . Tlr signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 2014;158:506–21. 10.1016/j.cell.2014.04.054
    1. Fend L, Yamazaki T, Remy C, et al. . Immune checkpoint blockade, immunogenic chemotherapy or IFN-α blockade boost the local and Abscopal effects of oncolytic virotherapy. Cancer Res 2017;77:4146–57. 10.1158/0008-5472.CAN-16-2165
    1. Koks CA, Garg AD, Ehrhardt M, et al. . Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int J Cancer 2015;136:E313–25. 10.1002/ijc.29202
    1. Donnelly OG, Errington-Mais F, Steele L, et al. . Measles virus causes immunogenic cell death in human melanoma. Gene Ther 2013;20:7–15. 10.1038/gt.2011.205
    1. Brown MC, Holl EK, Boczkowski D, et al. . Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen–specific CTLs. Sci Transl Med 2017;9:eaan4220 10.1126/scitranslmed.aan4220
    1. Hirvinen M, Rajecki M, Kapanen M, et al. . Immunological effects of a tumor necrosis factor Alpha–Armed oncolytic adenovirus. Hum Gene Ther 2015;26:134–44. 10.1089/hum.2014.069
    1. Siurala M, Bramante S, Vassilev L, et al. . Oncolytic adenovirus and doxorubicin-based chemotherapy results in synergistic antitumor activity against soft-tissue sarcoma. Int J Cancer 2015;136:945–54. 10.1002/ijc.29048
    1. Liikanen I, Ahtiainen L, Hirvinen MLM, et al. . Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients. Molecular Therapy 2013;21:1212–23. 10.1038/mt.2013.51
    1. Diaconu I, Cerullo V, Hirvinen MLM, et al. . Immune response is an important aspect of the antitumor effect produced by a CD40L-encoding oncolytic adenovirus. Cancer Res 2012;72:2327–38. 10.1158/0008-5472.CAN-11-2975
    1. Zhou H, Forveille S, Sauvat A, et al. . The oncolytic peptide LTX-315 triggers immunogenic cell death. Cell Death Dis 2016;7:e2134 10.1038/cddis.2016.47
    1. Forveille S, Zhou H, Sauvat A, et al. . The oncolytic peptide LTX-315 triggers necrotic cell death. Cell Cycle 2015;14:3506–12. 10.1080/15384101.2015.1093710
    1. Zhou H, Sauvat A, Gomes-da-Silva LC, et al. . The oncolytic compound LTX-401 targets the Golgi apparatus. Cell Death Differ 2016;23:2031–41. 10.1038/cdd.2016.86
    1. Casares N, Pequignot MO, Tesniere A, et al. . Caspase-Dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 2005;202:1691–701. 10.1084/jem.20050915
    1. Fucikova J, Kralikova P, Fialova A, et al. . Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res 2011;71:4821–33. 10.1158/0008-5472.CAN-11-0950
    1. Obeid M, Tesniere A, Ghiringhelli F, et al. . Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007;13:54–61. 10.1038/nm1523
    1. Tesniere A, Schlemmer F, Boige V, et al. . Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 2010;29:482–91. 10.1038/onc.2009.356
    1. Kopecka J, Salaroglio IC, Righi L, et al. . Loss of C/EBP-β lip drives cisplatin resistance in malignant pleural mesothelioma. Lung Cancer 2018;120:34–45. 10.1016/j.lungcan.2018.03.022
    1. Spisek R, Charalambous A, Mazumder A, et al. . Bortezomib enhances dendritic cell (DC)–mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 2007;109:4839–45. 10.1182/blood-2006-10-054221
    1. Christiansen AJ, West A, Banks K-M, et al. . Eradication of solid tumors using histone deacetylase inhibitors combined with immune-stimulating antibodies. Proc Natl Acad Sci U S A 2011;108:4141–6. 10.1073/pnas.1011037108
    1. Fragale A, Romagnoli G, Licursi V, et al. . Antitumor effects of Epidrug/IFNα combination driven by modulated gene signatures in both colorectal cancer and dendritic cells. Cancer Immunol Res 2017;5:604–16. 10.1158/2326-6066.CIR-17-0080
    1. Riganti C, Lingua MF, Salaroglio IC, et al. . Bromodomain inhibition exerts its therapeutic potential in malignant pleural mesothelioma by promoting immunogenic cell death and changing the tumor immune-environment. Oncoimmunology 2018;7:e1398874 10.1080/2162402X.2017.1398874
    1. West AC, Mattarollo SR, Shortt J, et al. . An intact immune system is required for the anticancer activities of histone deacetylase inhibitors. Cancer Res 2013;73:7265–76. 10.1158/0008-5472.CAN-13-0890
    1. Sonnemann J, Greßmann S, Becker S, et al. . The histone deacetylase inhibitor vorinostat induces calreticulin exposure in childhood brain tumour cells in vitro. Cancer Chemother Pharmacol 2010;66:611–6. 10.1007/s00280-010-1302-4
    1. Sagiv-Barfi I, Kohrt HE, Burckhardt L, et al. . Ibrutinib enhances the antitumor immune response induced by intratumoral injection of a TLR9 ligand in mouse lymphoma. Blood 2015;125:2079–86. 10.1182/blood-2014-08-593137
    1. Pozzi C, Cuomo A, Spadoni I, et al. . The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nat Med 2016;22:624–31. 10.1038/nm.4078
    1. Liu P, Zhao L, Pol J, et al. . Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nat Commun 2019;10:1486 10.1038/s41467-019-09415-3
    1. Bugaut H, Bruchard M, Berger H, et al. . Bleomycin exerts ambivalent antitumor immune effect by triggering both immunogenic cell death and proliferation of regulatory T cells. PLoS One 2013;8:e65181 10.1371/journal.pone.0065181
    1. Chen H-M, Wang P-H, Chen S-S, et al. . Shikonin induces immunogenic cell death in tumor cells and enhances dendritic cell-based cancer vaccine. Cancer Immunol Immunother 2012;61:1989–2002. 10.1007/s00262-012-1258-9
    1. Yang M, Li C, Zhu S, et al. . Tfam is a novel mediator of immunogenic cancer cell death. Oncoimmunology 2018;7:e1431086 10.1080/2162402X.2018.1431086
    1. Ho WS, Wang H, Maggio D, et al. . Pharmacologic inhibition of protein phosphatase-2A achieves durable immune-mediated antitumor activity when combined with PD-1 blockade. Nat Commun 2018;9:2126 10.1038/s41467-018-04425-z
    1. D’Eliseo D, Manzi L, Velotti F. Capsaicin as an inducer of damage-associated molecular patterns (DAMPs) of immunogenic cell death (ICD) in human bladder cancer cells. Cell Stress and Chaperones 2013;18:801–8. 10.1007/s12192-013-0422-2
    1. Garg AD, Vandenberk L, Koks C, et al. . Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci Transl Med 2016;328:ra27.
    1. Ogawa M, Tomita Y, Nakamura Y, et al. . Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity. Oncotarget 2017;8:10425–36. 10.18632/oncotarget.14425
    1. Fucikova J, Moserova I, Truxova I, et al. . High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int. J. Cancer 2014;135:1165–77. 10.1002/ijc.28766
    1. Golden EB, Frances D, Pellicciotta I, et al. . Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 2014;3:e28518 10.4161/onci.28518
    1. Adkins I, Sadilkova L, Hradilova N, et al. . Severe, but not mild heat-shock treatment induces immunogenic cell death in cancer cells. Oncoimmunology 2017;6:e1311433 10.1080/2162402X.2017.1311433
    1. Guo S, Jing Y, Burcus NI, et al. . Nano-pulse stimulation induces potent immune responses, eradicating local breast cancer while reducing distant metastases. Int J Cancer 2018;142:629–40. 10.1002/ijc.31071
    1. Rubner Y, Muth C, Strnad A, et al. . Fractionated radiotherapy is the main stimulus for the induction of cell death and of Hsp70 release of p53 mutated glioblastoma cell lines. Radiat Oncol 2014;9:89 10.1186/1748-717X-9-89 10.1186/1748-717X-9-89
    1. Gameiro SR, Jammeh ML, Wattenberg MM, et al. . Radiation-Induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 2014;5:403–16. 10.18632/oncotarget.1719
    1. Ventura A, Vassall A, Robinson E, et al. . Extracorporeal photochemotherapy drives Monocyte-to-Dendritic cell maturation to induce anticancer immunity. Cancer Res 2018;78:4045–58. 10.1158/0008-5472.CAN-18-0171
    1. Weiss EM, Meister S, Janko C, et al. . High hydrostatic pressure treatment generates inactivated mammalian tumor cells with immunogeneic features. J Immunotoxicol 2010;7:194–204. 10.3109/15476911003657414
    1. Vancsik T, Kovago C, Kiss E, et al. . Modulated electro-hyperthermia induced loco-regional and systemic tumor destruction in colorectal cancer allografts. J Cancer 2018;9:41–53. 10.7150/jca.21520
    1. Wu J, Waxman DJ. Immunogenic chemotherapy: dose and schedule dependence and combination with immunotherapy. Cancer Lett 2018;419:210–21. 10.1016/j.canlet.2018.01.050
    1. Ko EC, Benjamin KT, Formenti SC. Generating antitumor immunity by targeted radiation therapy: role of dose and fractionation. Adv Radiat Oncol 2018;3:486–93. 10.1016/j.adro.2018.08.021
    1. Deutsch E, Chargari C, Galluzzi L, et al. . Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol 2019;20:e452–63. 10.1016/S1470-2045(19)30171-8
    1. Garg AD, Agostinis P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev 2017;280:126–48. 10.1111/imr.12574
    1. Yatim N, Albert ML. Dying to replicate: the orchestration of the viral life cycle, cell death pathways, and immunity. Immunity 2011;35:478–90. 10.1016/j.immuni.2011.10.010
    1. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013;39:1–10. 10.1016/j.immuni.2013.07.012
    1. Pfirschke C, Engblom C, Rickelt S, et al. . Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 2016;44:343–54. 10.1016/j.immuni.2015.11.024
    1. Voorwerk L, Slagter M, Horlings HM, et al. . Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the tonic trial. Nat Med 2019;25:920–8. 10.1038/s41591-019-0432-4
    1. Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. . Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2015;22:58–73. 10.1038/cdd.2014.137
    1. Aaes TL, Kaczmarek A, Delvaeye T, et al. . Vaccination with Necroptotic cancer cells induces efficient anti-tumor immunity. Cell Rep 2016;15:274–87. 10.1016/j.celrep.2016.03.037
    1. Van Hoecke L, Van Lint S, Roose K, et al. . Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes. Nat Commun 2018;9:3417 10.1038/s41467-018-05979-8
    1. Yang H, Ma Y, Chen G, et al. . Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncoimmunology 2016;5:e1149673 10.1080/2162402X.2016.1149673
    1. Werthmöller N, Frey B, Wunderlich R, et al. . Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T-cell-dependent manner. Cell Death Dis 2015;6:e1761 10.1038/cddis.2015.129
    1. Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015;517:311–20. 10.1038/nature14191
    1. Menger L, Vacchelli E, Kepp O, et al. . Trial Watch: cardiac glycosides and cancer therapy. Oncoimmunology 2013;2:e23082 10.4161/onci.23082
    1. Palucka AK, Coussens LM. The basis of oncoimmunology. Cell 2016;164:1233–47. 10.1016/j.cell.2016.01.049
    1. Han J, Lotze MT. The Adaptome as biomarker for assessing cancer immunity and immunotherapy. Methods Mol Biol 2055;2020:369–97.
    1. Goldszmid RS, Dzutsev A, Trinchieri G. Host immune response to infection and cancer: unexpected commonalities. Cell Host Microbe 2014;15:295–305. 10.1016/j.chom.2014.02.003
    1. Garg AD, Galluzzi L, Apetoh L, et al. . Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol 2015;6:588 10.3389/fimmu.2015.00588
    1. Bloy N, Garcia P, Laumont CM, et al. . Immunogenic stress and death of cancer cells: contribution of antigenicity vs adjuvanticity to immunosurveillance. Immunol Rev 2017;280:165–74. 10.1111/imr.12582
    1. Krysko DV, Garg AD, Kaczmarek A, et al. . Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012;12:860–75. 10.1038/nrc3380
    1. Rufo N, Garg AD, Agostinis P. The unfolded protein response in immunogenic cell death and cancer immunotherapy. Trends in Cancer 2017;3:643–58. 10.1016/j.trecan.2017.07.002
    1. Hou W, Zhang Q, Yan Z, et al. . Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis 2013;4:e966 10.1038/cddis.2013.493
    1. Galluzzi L, Buqué A, Kepp O, et al. . Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 2015;28:690–714. 10.1016/j.ccell.2015.10.012
    1. Obeid M, Panaretakis T, Joza N, et al. . Calreticulin exposure is required for the immunogenicity of γ-irradiation and UVC light-induced apoptosis. Cell Death Differ 2007;14:1848–50. 10.1038/sj.cdd.4402201
    1. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015;348:69–74. 10.1126/science.aaa4971
    1. Vesely MD, Kershaw MH, Schreiber RD, et al. . Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011;29:235–71. 10.1146/annurev-immunol-031210-101324
    1. Golden EB, Demaria S, Schiff PB, et al. . An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 2013;1:365–72. 10.1158/2326-6066.CIR-13-0115
    1. Dewan MZ, Galloway AE, Kawashima N, et al. . Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clinical Cancer Research 2009;15:5379–88. 10.1158/1078-0432.CCR-09-0265
    1. Twyman-Saint Victor C, Rech AJ, Maity A, et al. . Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015;520:373–7. 10.1038/nature14292
    1. Braciale TJ, Hahn YS. Immunity to viruses. Immunol Rev 2013;255:5–12. 10.1111/imr.12109
    1. Dorhoi A, Kaufmann SHE. Fine-Tuning of T cell responses during infection. Curr Opin Immunol 2009;21:367–77. 10.1016/j.coi.2009.07.004
    1. Broz P, Monack DM. Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol 2013;13:551–65. 10.1038/nri3479
    1. Cao X. Self-Regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 2016;16:35–50. 10.1038/nri.2015.8
    1. Tang D, Kang R, Coyne CB, et al. . Pamps and DAMPs: signal 0s that Spur autophagy and immunity. Immunol Rev 2012;249:158–75. 10.1111/j.1600-065X.2012.01146.x
    1. Klein L, Kyewski B, Allen PM, et al. . Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 2014;14:377–91. 10.1038/nri3667
    1. Waldmann H. Tolerance: an overview and perspectives. Nat Rev Nephrol 2010;6:569–76. 10.1038/nrneph.2010.108
    1. Ishak CA, Classon M, De Carvalho DD. Deregulation of retroelements as an emerging therapeutic opportunity in cancer. Trends Cancer 2018;4:583–97. 10.1016/j.trecan.2018.05.008
    1. Jones PA, Ohtani H, Chakravarthy A, et al. . Epigenetic therapy in immune-oncology. Nat Rev Cancer 2019;19:151–61. 10.1038/s41568-019-0109-9
    1. Smith CC, Beckermann KE, Bortone DS, et al. . Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J Clin Invest 2018;128:4804–20. 10.1172/JCI121476
    1. Raposo B, Merky P, Lundqvist C, et al. . T cells specific for post-translational modifications escape intrathymic tolerance induction. Nat Commun 2018;9:353 10.1038/s41467-017-02763-y
    1. Zervoudi E, Saridakis E, Birtley JR, et al. . Rationally designed inhibitor targeting antigen-trimming aminopeptidases enhances antigen presentation and cytotoxic T-cell responses. Proc Natl Acad Sci U S A 2013;110:19890–5. 10.1073/pnas.1309781110
    1. Doyle HA, Mamula MJ. Autoantigenesis: the evolution of protein modifications in autoimmune disease. Curr Opin Immunol 2012;24:112–8. 10.1016/j.coi.2011.12.003
    1. Starck SR, Shastri N. Nowhere to hide: unconventional translation yields cryptic peptides for immune surveillance. Immunol Rev 2016;272:8–16. 10.1111/imr.12434
    1. Scally SW, Petersen J, Law SC, et al. . A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J Exp Med 2013;210:2569–82. 10.1084/jem.20131241
    1. van Lummel M, Duinkerken G, van Veelen PA, et al. . Posttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes. Diabetes 2014;63:237–47. 10.2337/db12-1214
    1. Greaves M. Evolutionary determinants of cancer. Cancer Discov 2015;5:806–20. 10.1158/-15-0439
    1. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 2017;168:613–28. 10.1016/j.cell.2017.01.018
    1. Schumacher TN, Hacohen N. Neoantigens encoded in the cancer genome. Curr Opin Immunol 2016;41:98–103. 10.1016/j.coi.2016.07.005
    1. Balachandran VP, Łuksza M, Zhao JN, et al. . Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 2017;551:512–6. 10.1038/nature24462
    1. Kanaseki T, Tokita S, Torigoe T. Proteogenomic discovery of cancer antigens: neoantigens and beyond. Pathol Int 2019;69:511–8. 10.1111/pin.12841
    1. Schumacher TN, Scheper W, Kvistborg P. Cancer neoantigens. Annu Rev Immunol 2019;37:173–200. 10.1146/annurev-immunol-042617-053402
    1. Sprooten J, Ceusters J, Coosemans A, et al. . Trial Watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 2019;8:e1638212 10.1080/2162402X.2019.1638212
    1. Bezu L, Kepp O, Cerrato G, et al. . Trial Watch: peptide-based vaccines in anticancer therapy. Oncoimmunology 2018;7:e1511506 10.1080/2162402X.2018.1511506
    1. Kirkin AF, Dzhandzhugazyan KN, Guldberg P, et al. . Adoptive cancer immunotherapy using DNA-demethylated T helper cells as antigen-presenting cells. Nat Commun 2018;9:785 10.1038/s41467-018-03217-9
    1. Simpson AJG, Caballero OL, Jungbluth A, et al. . Cancer/Testis antigens, gametogenesis and cancer. Nat Rev Cancer 2005;5:615–25. 10.1038/nrc1669
    1. Coulie PG, Van den Eynde BJ, van der Bruggen P, et al. . Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 2014;14:135–46. 10.1038/nrc3670
    1. Schuster H, Peper JK, Bösmüller H-C, et al. . The immunopeptidomic landscape of ovarian carcinomas. Proc Natl Acad Sci U S A 2017;114:E9942–51. 10.1073/pnas.1707658114
    1. Gilboa E. The makings of a tumor rejection antigen. Immunity 1999;11:263–70. 10.1016/S1074-7613(00)80101-6
    1. Stone JD, Harris DT, Kranz DM. Tcr affinity for p/MHC formed by tumor antigens that are self-proteins: impact on efficacy and toxicity. Curr Opin Immunol 2015;33:16–22. 10.1016/j.coi.2015.01.003
    1. Malaker SA, Penny SA, Steadman LG, et al. . Identification of glycopeptides as posttranslationally modified neoantigens in leukemia. Cancer Immunol Res 2017;5:376–84. 10.1158/2326-6066.CIR-16-0280
    1. Campbell BB, Light N, Fabrizio D, et al. . Comprehensive analysis of hypermutation in human cancer. Cell 2017;171:1042–56. 10.1016/j.cell.2017.09.048
    1. Lawrence MS, Stojanov P, Polak P, et al. . Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013;499:214–8. 10.1038/nature12213
    1. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. . Signatures of mutational processes in human cancer. Nature 2013;500:415–21. 10.1038/nature12477
    1. McGranahan N, Furness AJS, Rosenthal R, et al. . Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016;351:1463–9. 10.1126/science.aaf1490
    1. Riaz N, Havel JJ, Makarov V, et al. . Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 2017;171:934–49. 10.1016/j.cell.2017.09.028
    1. Vitale I, Sistigu A, Manic G, et al. . Mutational and antigenic landscape in tumor progression and cancer immunotherapy. Trends Cell Biol 2019;29:396–416. 10.1016/j.tcb.2019.01.003
    1. Hellmann MD, Ciuleanu T-E, Pluzanski A, et al. . Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 2018;378:2093–104. 10.1056/NEJMoa1801946
    1. Hellmann MD, Callahan MK, Awad MM, et al. . Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell 2018;33:853–61. 10.1016/j.ccell.2018.04.001
    1. Mandal R, Samstein RM, Lee K-W, et al. . Genetic diversity of tumors with mismatch repair deficiency influences anti–PD-1 immunotherapy response. Science 2019;364:485–91. 10.1126/science.aau0447
    1. Turan T, Kannan D, Patel M, et al. . Immune oncology, immune responsiveness and the theory of everything. J Immunother Cancer 2018;6:50 10.1186/s40425-018-0355-5
    1. Kroemer G, Galluzzi L, Kepp O, et al. . Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013;31:51–72. 10.1146/annurev-immunol-032712-100008
    1. Garrido F, Aptsiauri N, Doorduijn EM, et al. . The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol 2016;39:44–51. 10.1016/j.coi.2015.12.007
    1. O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol 2019;16:151–67. 10.1038/s41571-018-0142-8
    1. McGranahan N, Rosenthal R, Hiley CT, et al. . Allele-Specific HLA loss and immune escape in lung cancer evolution. Cell 2017;171:1259–71. 10.1016/j.cell.2017.10.001
    1. Rooney MS, Shukla SA, Wu CJ, et al. . Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015;160:48–61. 10.1016/j.cell.2014.12.033
    1. Grasso CS, Giannakis M, Wells DK, et al. . Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov 2018;8:730–49. 10.1158/-17-1327
    1. Goel S, DeCristo MJ, Watt AC, et al. . Cdk4/6 inhibition triggers anti-tumour immunity. Nature 2017;548:471–5. 10.1038/nature23465
    1. Lhuillier C, Rudqvist N-P, Elemento O, et al. . Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med 2019;11:40 10.1186/s13073-019-0653-7
    1. Chabanon RM, Muirhead G, Krastev DB, et al. . Parp inhibition enhances tumor cell–intrinsic immunity in ERCC1-deficient non–small cell lung cancer. J Clin Invest 2019;129:1211–28. 10.1172/JCI123319
    1. Dillon MT, Bergerhoff KF, Pedersen M, et al. . Atr inhibition potentiates the radiation-induced inflammatory tumor microenvironment. Clin Cancer Res 2019;25:3392–403. 10.1158/1078-0432.CCR-18-1821
    1. Woller N, Gürlevik E, Fleischmann-Mundt B, et al. . Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening Neoantigenome-directed T-cell responses. Molecular Therapy 2015;23:1630–40. 10.1038/mt.2015.115
    1. Briere D, Sudhakar N, Woods DM, et al. . The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol Immunother 2018;67:381–92. 10.1007/s00262-017-2091-y
    1. Segovia C, San José-Enériz E, Munera-Maravilla E, et al. . Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nat Med 2019;25:1073–81. 10.1038/s41591-019-0499-y
    1. Weber J, Salgaller M, Samid D, et al. . Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2'-deoxycytidine. Cancer Res 1994;54:1766–71.
    1. Vanpouille-Box C, Hoffmann JA, Galluzzi L. Pharmacological modulation of nucleic acid sensors — therapeutic potential and persisting obstacles. Nat Rev Drug Discov 2019;18:845–67. 10.1038/s41573-019-0043-2
    1. Gay NJ, Symmons MF, Gangloff M, et al. . Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 2014;14:546–58. 10.1038/nri3713
    1. Kawai T, Akira S. Toll-Like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011;34:637–50. 10.1016/j.immuni.2011.05.006
    1. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010;11:373–84. 10.1038/ni.1863
    1. Ablasser A, Chen ZJ. cGAS in action: expanding roles in immunity and inflammation. Science 2019;363:eaat8657 10.1126/science.aat8657
    1. Chow KT, Gale M, Loo Y-M. Rig-I and other RNA sensors in antiviral immunity. Annu Rev Immunol 2018;36:667–94. 10.1146/annurev-immunol-042617-053309
    1. Galluzzi L, Vanpouille-Box C, Bakhoum SF, et al. . Snapshot: cGAS-STING signaling. Cell 2018;173:276–276.e1. 10.1016/j.cell.2018.03.015
    1. Motta V, Soares F, Sun T, et al. . Nod-Like receptors: versatile cytosolic sentinels. Physiol Rev 2015;95:149–78. 10.1152/physrev.00009.2014
    1. Kersse K, Bertrand MJM, Lamkanfi M, et al. . Nod-Like receptors and the innate immune system: coping with danger, damage and death. Cytokine Growth Factor Rev 2011;22:257–76. 10.1016/j.cytogfr.2011.09.003
    1. Kuriakose T, Kanneganti T-D. Zbp1: innate sensor regulating cell death and inflammation. Trends Immunol 2018;39:123–34. 10.1016/j.it.2017.11.002
    1. Alarcón CR, Goodarzi H, Lee H, et al. . Hnrnpa2B1 is a mediator of m6A-Dependent nuclear RNA processing events. Cell 2015;162:1299–308. 10.1016/j.cell.2015.08.011
    1. Wang L, Wen M, Cao X. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science 2019;365:eaav0758 10.1126/science.aav0758
    1. McNab F, Mayer-Barber K, Sher A, et al. . Type I interferons in infectious disease. Nat Rev Immunol 2015;15:87–103. 10.1038/nri3787
    1. Kepp O, Senovilla L, Vitale I, et al. . Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014;3:e955691 10.4161/21624011.2014.955691
    1. Michaud M, Martins I, Sukkurwala AQ, et al. . Autophagy-Dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011;334:1573–7. 10.1126/science.1208347
    1. Ghiringhelli F, Apetoh L, Tesniere A, et al. . Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat Med 2009;15:1170–8. 10.1038/nm.2028
    1. Garg AD, Vandenberk L, Fang S, et al. . Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing. Cell Death Differ 2017;24:832–43. 10.1038/cdd.2017.15
    1. Chiba S, Baghdadi M, Akiba H, et al. . Tumor-Infiltrating DCs suppress nucleic acid–mediated innate immune responses through interactions between the receptor Tim-3 and the alarmin HMGB1. Nat Immunol 2012;13:832–42. 10.1038/ni.2376
    1. Apetoh L, Ghiringhelli F, Tesniere A, et al. . Toll-Like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007;13:1050–9. 10.1038/nm1622
    1. Yang H, Hreggvidsdottir HS, Palmblad K, et al. . A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci U S A 2010;107:11942–7. 10.1073/pnas.1003893107
    1. Soloff AC, Lotze MT. A peaceful death orchestrates immune balance in a chaotic environment. Proc Natl Acad Sci U S A 2019;116:22901–3. 10.1073/pnas.1916211116
    1. Gorgulho CM, Romagnoli GG, Bharthi R, et al. . Johnny on the Spot-Chronic inflammation is driven by HMGB1. Front Immunol 2019;10:1561 10.3389/fimmu.2019.01561
    1. Vacchelli E, Ma Y, Baracco EE, et al. . Chemotherapy-Induced antitumor immunity requires formyl peptide receptor 1. Science 2015;350:972–8. 10.1126/science.aad0779
    1. Sistigu A, Yamazaki T, Vacchelli E, et al. . Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 2014;20:1301–9. 10.1038/nm.3708
    1. Krombach J, Hennel R, Brix N, et al. . Priming anti-tumor immunity by radiotherapy: dying tumor cell-derived DAMPs trigger endothelial cell activation and recruitment of myeloid cells. Oncoimmunology 2019;8:e1523097 10.1080/2162402X.2018.1523097
    1. Panaretakis T, Joza N, Modjtahedi N, et al. . The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ 2008;15:1499–509. 10.1038/cdd.2008.67
    1. Ahrens S, Zelenay S, Sancho D, et al. . F-Actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 2012;36:635–45. 10.1016/j.immuni.2012.03.008
    1. Krysko DV, Agostinis P, Krysko O, et al. . Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol 2011;32:157–64. 10.1016/j.it.2011.01.005
    1. Zhang Q, Raoof M, Chen Y, et al. . Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010;464:104–7. 10.1038/nature08780
    1. Rodriguez-Ruiz ME, Buqué A, Hensler M, et al. . Apoptotic caspases inhibit abscopal responses to radiation and identify a new prognostic biomarker for breast cancer patients. Oncoimmunology 2019;8:e1655964 10.1080/2162402X.2019.1655964
    1. Martins I, Wang Y, Michaud M, et al. . Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ 2014;21:79–91. 10.1038/cdd.2013.75
    1. Martins I, Michaud M, Sukkurwala AQ, et al. . Premortem autophagy determines the immunogenicity of chemotherapy-induced cancer cell death. Autophagy 2012;8:413–5. 10.4161/auto.19009
    1. Apetoh L, Ghiringhelli F, Tesniere A, et al. . The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 2007;220:47–59. 10.1111/j.1600-065X.2007.00573.x
    1. Yang D, Han Z, Oppenheim JJ. Alarmins and immunity. Immunol Rev 2017;280:41–56. 10.1111/imr.12577
    1. Di Virgilio F, Sarti AC, Falzoni S, et al. . Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer 2018;18:601–18. 10.1038/s41568-018-0037-0
    1. Vanpouille-Box C, Demaria S, Formenti SC, et al. . Cytosolic DNA sensing in organismal tumor control. Cancer Cell 2018;34:361–78. 10.1016/j.ccell.2018.05.013
    1. Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 2018;18:309–24. 10.1038/nri.2017.142
    1. Galluzzi L, Yamazaki T, Kroemer G. Linking cellular stress responses to systemic homeostasis. Nat Rev Mol Cell Biol 2018;19:731–45. 10.1038/s41580-018-0068-0
    1. Galluzzi L, Baehrecke EH, Ballabio A, et al. . Molecular definitions of autophagy and related processes. Embo J 2017;36:1811–36. 10.15252/embj.201796697
    1. Sicari D, Igbaria A, Chevet E. Control of protein homeostasis in the early secretory pathway: current status and challenges. Cells 2019;8:1347 10.3390/cells8111347
    1. Long M, McWilliams TG. Monitoring autophagy in cancer: from bench to bedside. Semin Cancer Biol 2019. 10.1016/j.semcancer.2019.05.016
    1. Juste YR, Cuervo AM. Analysis of chaperone-mediated autophagy. Methods Mol Biol 1880;2019:703–27.
    1. Boyd-Tressler A, Penuela S, Laird DW, et al. . Chemotherapeutic drugs induce ATP release via caspase-gated pannexin-1 channels and a caspase/pannexin-1-independent mechanism. J. Biol. Chem. 2014;289:27246–63. 10.1074/jbc.M114.590240
    1. Garg AD, Krysko DV, Verfaillie T, et al. . A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. Embo J 2012;31:1062–79. 10.1038/emboj.2011.497
    1. Elliott MR, Chekeni FB, Trampont PC, et al. . Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009;461:282–6. 10.1038/nature08296
    1. Panaretakis T, Kepp O, Brockmeier U, et al. . Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. Embo J 2009;28:578–90. 10.1038/emboj.2009.1
    1. Senovilla L, Vitale I, Martins I, et al. . An immunosurveillance mechanism controls cancer cell ploidy. Science 2012;337:1678–84. 10.1126/science.1224922
    1. Truxova I, Kasikova L, Salek C, et al. . Calreticulin exposure on malignant blasts correlates with improved natural killer cell-mediated cytotoxicity in acute myeloid leukemia patients. Haematologica 2019:haematol.2019.223933 10.3324/haematol.2019.223933
    1. Bezu L, Sauvat A, Humeau J, et al. . eIF2α phosphorylation is pathognomonic for immunogenic cell death. Cell Death Differ 2018;25:1375–93. 10.1038/s41418-017-0044-9
    1. Sukkurwala AQ, Martins I, Wang Y, et al. . Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death Differ 2014;21:59–68. 10.1038/cdd.2013.73
    1. Tufi R, Panaretakis T, Bianchi K, et al. . Reduction of endoplasmic reticulum Ca2+ levels favors plasma membrane surface exposure of calreticulin. Cell Death Differ 2008;15:274–82. 10.1038/sj.cdd.4402275
    1. Moserova I, Truxova I, Garg AD, et al. . Caspase-2 and oxidative stress underlie the immunogenic potential of high hydrostatic pressure-induced cancer cell death. Oncoimmunology 2017;6:e1258505 10.1080/2162402X.2016.1258505
    1. Musahl A-S, Huang X, Rusakiewicz S, et al. . A long non-coding RNA links calreticulin-mediated immunogenic cell removal to Rb1 transcription. Oncogene 2015;34:5046–54. 10.1038/onc.2014.424
    1. Colangelo T, Polcaro G, Ziccardi P, et al. . The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis 2016;7:e2108 10.1038/cddis.2016.29
    1. Liu C-C, Leclair P, Pedari F, et al. . Integrins and ERp57 coordinate to regulate cell surface calreticulin in immunogenic cell death. Front Oncol 2019;9:411 10.3389/fonc.2019.00411
    1. Gardai SJ, McPhillips KA, Frasch SC, et al. . Cell-Surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005;123:321–34. 10.1016/j.cell.2005.08.032
    1. Chen X, Fosco D, Kline DE, et al. . Calreticulin promotes immunity and type I interferon-dependent survival in mice with acute myeloid leukemia. Oncoimmunology 2017;6:e1278332 10.1080/2162402X.2016.1278332
    1. Fucikova J, Kasikova L, Truxova I, et al. . Relevance of the chaperone-like protein calreticulin for the biological behavior and clinical outcome of cancer. Immunol Lett 2018;193:25–34. 10.1016/j.imlet.2017.11.006
    1. Radogna F, Diederich M. Stress-Induced cellular responses in immunogenic cell death: implications for cancer immunotherapy. Biochem Pharmacol 2018;153:12–23. 10.1016/j.bcp.2018.02.006
    1. Vanpouille-Box C, Alard A, Aryankalayil MJ, et al. . Dna exonuclease TREX1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 2017;8:15618 10.1038/ncomms15618
    1. Deng L, Liang H, Xu M, et al. . Sting-Dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 2014;41:843–52. 10.1016/j.immuni.2014.10.019
    1. Zitvogel L, Galluzzi L, Kepp O, et al. . Type I interferons in anticancer immunity. Nat Rev Immunol 2015;15:405–14. 10.1038/nri3845
    1. Diamond JM, Vanpouille-Box C, Spada S, et al. . Exosomes shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol Res 2018;6:910–20. 10.1158/2326-6066.CIR-17-0581
    1. Kang R, Tang D, Schapiro NE, et al. . The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene 2014;33:567–77. 10.1038/onc.2012.631
    1. Kang R, Chen R, Xie M, et al. . The receptor for advanced glycation end products activates the AIM2 inflammasome in acute pancreatitis. J.i. 2016;196:4331–7. 10.4049/jimmunol.1502340
    1. Boone BA, Orlichenko L, Schapiro NE, et al. . The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther 2015;22:326–34. 10.1038/cgt.2015.21
    1. Bianchi ME, Crippa MP, Manfredi AA, et al. . High-Mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol Rev 2017;280:74–82. 10.1111/imr.12601
    1. Venereau E, Casalgrandi M, Schiraldi M, et al. . Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 2012;209:1519–28. 10.1084/jem.20120189
    1. Garg AD, Dudek AM, Ferreira GB, et al. . Ros-Induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 2013;9:1292–307. 10.4161/auto.25399
    1. Yatim N, Jusforgues-Saklani H, Orozco S, et al. . RIPK1 and NF- B signaling in dying cells determines cross-priming of CD8+ T cells. Science 2015;350:328–34. 10.1126/science.aad0395
    1. Martins I, Kepp O, Schlemmer F, et al. . Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 2011;30:1147–58. 10.1038/onc.2010.500
    1. Aranda F, Bloy N, Pesquet J, et al. . Immune-dependent antineoplastic effects of cisplatin plus pyridoxine in non-small-cell lung cancer. Oncogene 2015;34:3053–62. 10.1038/onc.2014.234
    1. Garg AD, Elsen S, Krysko DV, et al. . Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget 2015;6:26841–60. 10.18632/oncotarget.4754
    1. Dudek-Peri AM, Ferreira GB, Muchowicz A, et al. . Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res 2015;75:1603–14. 10.1158/0008-5472.CAN-14-2089
    1. Chao MP, Jaiswal S, Weissman-Tsukamoto R, et al. . Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med 2010;2:63ra94 10.1126/scitranslmed.3001375
    1. Romano E, Rufo N, Korf H, et al. . Bnip3 modulates the interface between B16-F10 melanoma cells and immune cells. Oncotarget 2018;9:17631–44. 10.18632/oncotarget.24815 10.18632/oncotarget.24815
    1. Fucikova J, Moserova I, Urbanova L, et al. . Prognostic and predictive value of DAMPs and DAMP-Associated processes in cancer. Front Immunol 2015;6:402 10.3389/fimmu.2015.00402
    1. Fucikova J, Becht E, Iribarren K, et al. . Calreticulin expression in human Non–Small cell lung cancers correlates with increased accumulation of antitumor immune cells and favorable prognosis. Cancer Res 2016;76:1746–56. 10.1158/0008-5472.CAN-15-1142
    1. Ladoire S, Penault-Llorca F, Senovilla L, et al. . Combined evaluation of LC3B puncta and HMGB1 expression predicts residual risk of relapse after adjuvant chemotherapy in breast cancer. Autophagy 2015;11:1878–90. 10.1080/15548627.2015.1082022
    1. Yamazaki T, Hannani D, Poirier-Colame V, et al. . Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ 2014;21:69–78. 10.1038/cdd.2013.72
    1. Fucikova J, Truxova I, Hensler M, et al. . Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. Blood 2016;128:3113–24. 10.1182/blood-2016-08-731737
    1. Wemeau M, Kepp O, Tesnière A, et al. . Calreticulin exposure on malignant blasts predicts a cellular anticancer immune response in patients with acute myeloid leukemia. Cell Death Dis 2010;1:e104 10.1038/cddis.2010.82
    1. Bidwell BN, Slaney CY, Withana NP, et al. . Silencing of IRF7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med 2012;18:1224–31. 10.1038/nm.2830
    1. Suzuki S, Yokobori T, Tanaka N, et al. . Cd47 expression regulated by the miR-133a tumor suppressor is a novel prognostic marker in esophageal squamous cell carcinoma. Oncol Rep 2012;28:465–72. 10.3892/or.2012.1831
    1. Majeti R, Chao MP, Alizadeh AA, et al. . Cd47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009;138:286–99. 10.1016/j.cell.2009.05.045
    1. Wang H, Tan M, Zhang S, et al. . Expression and significance of CD44, CD47 and c-Met in ovarian clear cell carcinoma. Int J Mol Sci 2015;16:3391–404. 10.3390/ijms16023391
    1. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol 2015;16:343–53. 10.1038/ni.3123
    1. Fridman WH, Zitvogel L, Sautès–Fridman C, et al. . The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 2017;14:717–34. 10.1038/nrclinonc.2017.101
    1. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017;541:321–30. 10.1038/nature21349
    1. Sharma P, Hu-Lieskovan S, Wargo JA, et al. . Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017;168:707–23. 10.1016/j.cell.2017.01.017
    1. Sabatos-Peyton CA, Nevin J, Brock A, et al. . Blockade of Tim-3 binding to phosphatidylserine and CEACAM1 is a shared feature of anti-Tim-3 antibodies that have functional efficacy. Oncoimmunology 2018;7:e1385690 10.1080/2162402X.2017.1385690
    1. Mittal SK, Roche PA. Suppression of antigen presentation by IL-10. Curr Opin Immunol 2015;34:22–7. 10.1016/j.coi.2014.12.009
    1. Pickup M, Novitskiy S, Moses HL. The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer 2013;13:788–99. 10.1038/nrc3603
    1. Shalapour S, Karin M. Pas de deux: control of anti-tumor immunity by cancer-associated inflammation. Immunity 2019;51:15–26. 10.1016/j.immuni.2019.06.021
    1. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res 2017;27:109–18. 10.1038/cr.2016.151
    1. Wellenstein MD, de Visser KE. Cancer-Cell-Intrinsic mechanisms shaping the tumor immune landscape. Immunity 2018;48:399–416. 10.1016/j.immuni.2018.03.004
    1. Vitale I, Manic G, Coussens LM, et al. . Macrophages and metabolism in the tumor microenvironment. Cell Metab 2019;30:36–50. 10.1016/j.cmet.2019.06.001
    1. Montalbán del Barrio I, Penski C, Schlahsa L, et al. . Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages – a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape. J Immunother Cancer 2016;4:49 10.1186/s40425-016-0154-9
    1. d’Almeida SM, Kauffenstein G, Roy C, et al. . The ecto-ATPDase CD39 is involved in the acquisition of the immunoregulatory phenotype by M-CSF-macrophages and ovarian cancer tumor-associated macrophages: regulatory role of IL-27. Oncoimmunology 2016;5:e1178025 10.1080/2162402X.2016.1178025
    1. Mandapathil M, Hilldorfer B, Szczepanski MJ, et al. . Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J Biol Chem 2010;285:7176–86. 10.1074/jbc.M109.047423
    1. Vijayan D, Young A, Teng MWL, et al. . Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer 2017;17:709–24. 10.1038/nrc.2017.86
    1. Li C, Zhang Y, Cheng X, et al. . Pink1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated Immunometabolism. Dev Cell 2018;46:441–55. 10.1016/j.devcel.2018.07.012
    1. Shimada K, Crother TR, Karlin J, et al. . Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012;36:401–14. 10.1016/j.immuni.2012.01.009
    1. McLane LM, Abdel-Hakeem MS, Wherry EJ. Cd8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol 2019;37:457–95. 10.1146/annurev-immunol-041015-055318
    1. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 2015;15:486–99. 10.1038/nri3862
    1. Munn DH, Bronte V. Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol 2016;39:1–6. 10.1016/j.coi.2015.10.009
    1. Ribas A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov 2015;5:915–9. 10.1158/-15-0563
    1. Chang C-H, Qiu J, O'Sullivan D, et al. . Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015;162:1229–41. 10.1016/j.cell.2015.08.016
    1. Bantug GR, Galluzzi L, Kroemer G, et al. . The spectrum of T cell metabolism in health and disease. Nat Rev Immunol 2018;18:19–34. 10.1038/nri.2017.99
    1. Labadie BW, Bao R, Luke JJ. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the Tryptophan–Kynurenine–Aryl hydrocarbon axis. Clin Cancer Res 2019;25:1462–71. 10.1158/1078-0432.CCR-18-2882
    1. Colegio OR, Chu N-Q, Szabo AL, et al. . Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014;513:559–63. 10.1038/nature13490
    1. Voron T, Colussi O, Marcheteau E, et al. . Vegf-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 2015;212:139–48. 10.1084/jem.20140559
    1. Flavell RA, Sanjabi S, Wrzesinski SH, et al. . The polarization of immune cells in the tumour environment by TGFβ. Nat Rev Immunol 2010;10:554–67. 10.1038/nri2808
    1. Yamauchi M, Barker TH, Gibbons DL, et al. . The fibrotic tumor stroma. J Clin Invest 2018;128:16–25. 10.1172/JCI93554
    1. Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis 2018;9:115 10.1038/s41419-017-0061-0
    1. Menger L, Vacchelli E, Adjemian S, et al. . Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci Transl Med 2012;143:ra99.
    1. Kepp O, Galluzzi L, Lipinski M, et al. . Cell death assays for drug discovery. Nat Rev Drug Discov 2011;10:221–37. 10.1038/nrd3373
    1. Galluzzi L, Aaronson SA, Abrams J, et al. . Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 2009;16:1093–107. 10.1038/cdd.2009.44
    1. van Schadewijk A, van’t Wout EFA, Stolk J, et al. . A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. Cell Stress and Chaperones 2012;17:275–9. 10.1007/s12192-011-0306-2
    1. Lam AR, Le Bert N, Ho SSW, et al. . Rae1 ligands for the NKG2D receptor are regulated by STING-dependent DNA sensor pathways in lymphoma. Cancer Res 2014;74:2193–203. 10.1158/0008-5472.CAN-13-1703
    1. Duewell P, Beller E, Kirchleitner SV, et al. . Targeted activation of melanoma differentiation-associated protein 5 (MDA5) for immunotherapy of pancreatic carcinoma. Oncoimmunology 2015;4:e1029698 10.1080/2162402X.2015.1029698
    1. Shen YJ, Le Bert N, Chitre AA, et al. . Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells. Cell Rep 2015;11:460–73. 10.1016/j.celrep.2015.03.041
    1. Diner EJ, Burdette DL, Wilson SC, et al. . The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human sting. Cell Rep 2013;3:1355–61. 10.1016/j.celrep.2013.05.009
    1. Seo GJ, Kim C, Shin W-J, et al. . TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing. Nat Commun 2018;9:613 10.1038/s41467-018-02936-3
    1. Klionsky DJ, Abdelmohsen K, Abe A, et al. . Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016;12:1–222. 10.1080/15548627.2015.1100356
    1. Teo ZL, Versaci S, Dushyanthen S, et al. . Combined Cdk4/6 and PI3Kα inhibition is synergistic and immunogenic in triple-negative breast cancer. Cancer Res 2017;77:6340–52. 10.1158/0008-5472.CAN-17-2210
    1. Lu J, Liu X, Liao Y-P, et al. . Breast cancer chemo-immunotherapy through liposomal delivery of an immunogenic cell death stimulus plus interference in the IDO-1 pathway. ACS Nano 2018;12:11041–61. 10.1021/acsnano.8b05189
    1. Sukkurwala AQ, Adjemian S, Senovilla L, et al. . Screening of novel immunogenic cell death inducers within the NCI mechanistic diversity set. Oncoimmunology 2014;3:e28473 10.4161/onci.28473
    1. Garg AD, Krysko DV, Vandenabeele P, et al. . Hypericin-Based photodynamic therapy induces surface exposure of damage-associated molecular patterns like Hsp70 and calreticulin. Cancer Immunol Immunother 2012;61:215–21. 10.1007/s00262-011-1184-2
    1. Hossain DMS, Javaid S, Cai M, et al. . Dinaciclib induces immunogenic cell death and enhances anti-PD1–mediated tumor suppression. J Clin Invest 2018;128:644–54. 10.1172/JCI94586
    1. Imamura H, Huynh Nhat KP, Togawa H, et al. . Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 2009;106:15651–6. 10.1073/pnas.0904764106
    1. Melis MHM, Simpson KL, Dovedi SJ, et al. . Sustained tumour eradication after induced caspase-3 activation and synchronous tumour apoptosis requires an intact host immune response. Cell Death Differ 2013;20:765–73. 10.1038/cdd.2013.8
    1. Martins I, Kepp O, Menger L, et al. . Fluorescent biosensors for the detection of HMGB1 release. Methods Mol Biol 2013;1004:43–56. 10.1007/978-1-62703-383-1_4
    1. Schiavoni G, Sistigu A, Valentini M, et al. . Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res 2011;71:768–78. 10.1158/0008-5472.CAN-10-2788
    1. Schildkopf P, Frey B, Ott OJ, et al. . Radiation combined with hyperthermia induces Hsp70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages. Radiother Oncol 2011;101:109–15. 10.1016/j.radonc.2011.05.056
    1. Lorenzi S, Mattei F, Sistigu A, et al. . Type I IFNs control antigen retention and survival of CD8α(+) dendritic cells after uptake of tumor apoptotic cells leading to cross-priming. J Immunol 2011;186:5142–50. 10.4049/jimmunol.1004163
    1. Kulzer L, Rubner Y, Deloch L, et al. . Norm- and hypo-fractionated radiotherapy is capable of activating human dendritic cells. J Immunotoxicol 2014;11:328–36. 10.3109/1547691X.2014.880533
    1. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 2018;281:8–27. 10.1111/imr.12621
    1. Mantovani A, Dinarello CA, Molgora M, et al. . Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 2019;50:778–95. 10.1016/j.immuni.2019.03.012
    1. Mattei F, Schiavoni G, Sestili P, et al. . Irf-8 controls melanoma progression by regulating the cross talk between cancer and immune cells within the tumor microenvironment. Neoplasia 2012;14:1223–43. 10.1593/neo.121444
    1. Sagwal SK, Pasqual-Melo G, Bodnar Y, et al. . Combination of chemotherapy and physical plasma elicits melanoma cell death via upregulation of SLC22A16. Cell Death Dis 2018;9:1179 10.1038/s41419-018-1221-6
    1. Parlato S, De Ninno A, Molfetta R, et al. . 3D microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells. Sci Rep 2017;7:1093 10.1038/s41598-017-01013-x
    1. Nam G-H, Lee EJ, Kim YK, et al. . Combined Rho-kinase inhibition and immunogenic cell death triggers and propagates immunity against cancer. Nat Commun 2018;9:2165 10.1038/s41467-018-04607-9
    1. Ma Y, Aymeric L, Locher C, et al. . Contribution of IL-17–producing γδ T cells to the efficacy of anticancer chemotherapy. J Exp Med 2011;208:491–503. 10.1084/jem.20100269
    1. Malamas AS, Gameiro SR, Knudson KM, et al. . Sublethal exposure to alpha radiation (223Ra dichloride) enhances various carcinomas' sensitivity to lysis by antigen-specific cytotoxic T lymphocytes through calreticulin-mediated immunogenic modulation. Oncotarget 2016;7:86937–47. 10.18632/oncotarget.13520
    1. Duewell P, Steger A, Lohr H, et al. . Rig-I-Like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells. Cell Death Differ 2014;21:1825–37. 10.1038/cdd.2014.96
    1. Prestwich RJ, Errington F, Ilett EJ, et al. . Tumor infection by oncolytic reovirus primes adaptive antitumor immunity. Clinical Cancer Research 2008;14:7358–66. 10.1158/1078-0432.CCR-08-0831
    1. Müller LME, Holmes M, Michael JL, et al. . Plasmacytoid dendritic cells orchestrate innate and adaptive anti-tumor immunity induced by oncolytic coxsackievirus A21. J Immunother Cancer 2019;7:164 10.1186/s40425-019-0632-y
    1. Ma Y, Adjemian S, Mattarollo SR, et al. . Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 2013;38:729–41. 10.1016/j.immuni.2013.03.003
    1. Wculek SK, Amores-Iniesta J, Conde-Garrosa R, et al. . Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. J Immunother Cancer 2019;7:100 10.1186/s40425-019-0565-5
    1. Bauer C, Bauernfeind F, Sterzik A, et al. . Dendritic cell-based vaccination combined with gemcitabine increases survival in a murine pancreatic carcinoma model. Gut 2007;56:1275–82. 10.1136/gut.2006.108621
    1. Lu X, Ding Z-C, Cao Y, et al. . Alkylating Agent Melphalan Augments the Efficacy of Adoptive Immunotherapy Using Tumor-Specific CD4 + T Cells. J.i. 2015;194:2011–21. 10.4049/jimmunol.1401894
    1. Rodriguez-Ruiz ME, Rodriguez I, Garasa S, et al. . Abscopal effects of radiotherapy are enhanced by combined immunostimulatory mAbs and are dependent on CD8 T cells and Crosspriming. Cancer Res 2016;76:5994–6005. 10.1158/0008-5472.CAN-16-0549
    1. Vanpouille-Box C, Diamond JM, Pilones KA, et al. . Tgfβ is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 2015;75:2232–42. 10.1158/0008-5472.CAN-14-3511
    1. Hartmann J, Wölfelschneider J, Stache C, et al. . Novel technique for high-precision stereotactic irradiation of mouse brains. Strahlenther Onkol 2016;192:806–14. 10.1007/s00066-016-1014-8
    1. Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell 2017;31:326–41. 10.1016/j.ccell.2017.02.009
    1. Ngwa W, Irabor OC, Schoenfeld JD, et al. . Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 2018;18:313–22. 10.1038/nrc.2018.6
    1. Demaria S, Kawashima N, Yang AM, et al. . Immune-Mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 2005;11:728–34.
    1. Rodríguez-Ruiz ME, Rodríguez I, Mayorga L, et al. . Tgfβ blockade enhances radiotherapy Abscopal efficacy effects in combination with anti-PD1 and Anti-CD137 immunostimulatory monoclonal antibodies. Mol Cancer Ther 2019;18:621–31. 10.1158/1535-7163.MCT-18-0558
    1. Zamarin D, Holmgaard RB, Subudhi SK, et al. . Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 2014;226:ra32.
    1. Singh M, Savage N, Singh SK. In vivo murine models of brain metastasis. Methods Mol Biol 1869;2019:231–8.
    1. Taggart D, Andreou T, Scott KJ, et al. . Anti–PD-1/anti–CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8 + T cell trafficking. Proc Natl Acad Sci U S A 2018;115:E1540–9. 10.1073/pnas.1714089115
    1. Seitz C, Rückert M, Deloch L, et al. . Tumor cell-based vaccine generated with high hydrostatic pressure synergizes with radiotherapy by generating a favorable anti-tumor immune microenvironment. Front Oncol 2019;9:805 10.3389/fonc.2019.00805
    1. Zschaler J, Schlorke D, Arnhold J. Differences in innate immune response between man and mouse. Crit Rev Immunol 2014;34:433–54.
    1. Buqué A, Galluzzi L. Modeling tumor immunology and immunotherapy in mice. Trends in Cancer 2018;4:599–601. 10.1016/j.trecan.2018.07.003
    1. Bonnotte B, Gough M, Phan V, et al. . Intradermal injection, as opposed to subcutaneous injection, enhances immunogenicity and suppresses tumorigenicity of tumor cells. Cancer Res 2003;63:2145–9.
    1. Santi A, Kugeratski FG, Zanivan S. Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics 2018;18:e1700167 10.1002/pmic.201700167
    1. Zitvogel L, Pitt JM, Daillère R, et al. . Mouse models in oncoimmunology. Nat Rev Cancer 2016;16:759–73. 10.1038/nrc.2016.91
    1. Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer 2017;17:751–65. 10.1038/nrc.2017.92
    1. Olson B, Li Y, Lin Y, et al. . Mouse models for cancer immunotherapy research. Cancer Discov 2018;8:1358–65. 10.1158/-18-0044
    1. Kemp CJ. Animal models of chemical carcinogenesis: driving breakthroughs in cancer research for 100 years: table 1. Cold Spring Harb Protoc 2015;2015:pdb.top069906–74. 10.1101/pdb.top069906
    1. Kersten K, Visser KE, Miltenburg MH, et al. . Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med 2017;9:137–53. 10.15252/emmm.201606857
    1. Galuschka C, Proynova R, Roth B, et al. . Models in translational oncology: a public resource database for preclinical cancer research. Cancer Res 2017;77:2557–63. 10.1158/0008-5472.CAN-16-3099
    1. Walsh NC, Kenney LL, Jangalwe S, et al. . Humanized mouse models of clinical disease. Annu Rev Pathol 2017;12:187–215. 10.1146/annurev-pathol-052016-100332
    1. Shultz LD, Goodwin N, Ishikawa F, et al. . Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb Protoc 2014;2014:pdb.top073585–708. 10.1101/pdb.top073585
    1. Shultz LD, Brehm MA, Garcia-Martinez JV, et al. . Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 2012;12:786–98. 10.1038/nri3311
    1. Ali N, Flutter B, Sanchez Rodriguez R, et al. . Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγnull mice display a T-Effector memory phenotype. PLoS One 2012;7:e44219 10.1371/journal.pone.0044219
    1. Mosier DE, Gulizia RJ, Baird SM, et al. . Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988;335:256–9. 10.1038/335256a0
    1. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol 2007;7:118–30. 10.1038/nri2017
    1. Halkias J, Yen B, Taylor KT, et al. . Conserved and divergent aspects of human T-cell development and migration in humanized mice. Immunol Cell Biol 2015;93:716–26. 10.1038/icb.2015.38
    1. Saito Y, Ellegast JM, Rafiei A, et al. . Peripheral blood CD34+ cells efficiently engraft human cytokine knock-in mice. Blood 2016;128:1829–33. 10.1182/blood-2015-10-676452
    1. Rongvaux A, Willinger T, Martinek J, et al. . Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 2014;32:364–72. 10.1038/nbt.2858
    1. Melkus MW, Estes JD, Padgett-Thomas A, et al. . Humanized mice Mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 2006;12:1316–22. 10.1038/nm1431
    1. Lan P, Tonomura N, Shimizu A, et al. . Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 2006;108:487–92. 10.1182/blood-2005-11-4388
    1. Billerbeck E, Barry WT, Mu K, et al. . Development of human CD4+Foxp3+ regulatory T cells in human stem cell factor–, granulocyte-macrophage colony-stimulating factor–, and interleukin-3–expressing NOD-SCID IL2Rγnull humanized mice. Blood 2011;117:3076–86. 10.1182/blood-2010-08-301507
    1. Ito R, Takahashi T, Katano I, et al. . Establishment of a human allergy model using human IL-3/GM-CSF–Transgenic NOG mice. J.i. 2013;191:2890–9.
    1. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018;359:1350–5. 10.1126/science.aar4060
    1. Zappasodi R, Merghoub T, Wolchok JD. Emerging concepts for immune checkpoint Blockade-Based combination therapies. Cancer Cell 2018;33:581–98. 10.1016/j.ccell.2018.03.005
    1. Postow MA, Callahan MK, Barker CA, et al. . Immunologic correlates of the Abscopal effect in a patient with melanoma. N Engl J Med 2012;366:925–31. 10.1056/NEJMoa1112824
    1. Grimaldi AM, Simeone E, Giannarelli D, et al. . Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 2014;3:e28780 10.4161/onci.28780
    1. Cekic C, Linden J. Purinergic regulation of the immune system. Nat Rev Immunol 2016;16:177–92. 10.1038/nri.2016.4
    1. Hangai S, Ao T, Kimura Y, et al. . Pge2 induced in and released by dying cells functions as an inhibitory dAMP. Proc Natl Acad Sci U S A 2016;113:3844–9. 10.1073/pnas.1602023113
    1. Bondanza A, Zimmermann Valérie S., Rovere-Querini P, et al. . Inhibition of phosphatidylserine recognition heightens the immunogenicity of irradiated lymphoma cells in vivo. J Exp Med 2004;200:1157–65. 10.1084/jem.20040327
    1. Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol 2013;14:668–75. 10.1038/ni.2635
    1. Green DR, Galluzzi L, Kroemer G. Cell biology. metabolic control of cell death. Science 2014;345:1250256.
    1. Gopalakrishnan V, Helmink BA, Spencer CN, et al. . The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 2018;33:570–80. 10.1016/j.ccell.2018.03.015
    1. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 2017;20:145–55. 10.1038/nn.4476
    1. Formenti SC, Rudqvist N-P, Golden E, et al. . Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat Med 2018;24:1845–51. 10.1038/s41591-018-0232-2

Source: PubMed

Подписаться