Systemic immune response induced by oxaliplatin-based neoadjuvant therapy favours survival without metastatic progression in high-risk rectal cancer

Erta Kalanxhi, Sebastian Meltzer, Jakob Vasehus Schou, Finn Ole Larsen, Svein Dueland, Kjersti Flatmark, Benny Vittrup Jensen, Knut Håkon Hole, Therese Seierstad, Kathrine Røe Redalen, Dorte Lisbet Nielsen, Anne Hansen Ree, Erta Kalanxhi, Sebastian Meltzer, Jakob Vasehus Schou, Finn Ole Larsen, Svein Dueland, Kjersti Flatmark, Benny Vittrup Jensen, Knut Håkon Hole, Therese Seierstad, Kathrine Røe Redalen, Dorte Lisbet Nielsen, Anne Hansen Ree

Abstract

Background: Systemic failure remains a challenge in rectal cancer. We investigated the possible systemic anti-tumour immune activity invoked within oxaliplatin-based neoadjuvant therapy.

Methods: In two high-risk patient cohorts, we assessed the circulating levels of the fms-like tyrosine kinase 3 ligand (Flt3L), a factor reflecting both therapy-induced myelosuppression and activation of tumour antigen-presenting dendritic cells, at baseline and following induction chemotherapy and sequential chemoradiotherapy, both modalities containing oxaliplatin. The primary end point was progression-free survival (PFS).

Results: In both cohorts, the median Flt3L level was significantly higher at completion of each sequential modality than at baseline. The 5-year PFS (most events being metastatic progression) was 68% and 71% in the two cohorts consisting of 33% and 52% T4 cases. In the principal cohort, a high Flt3L level following the induction chemotherapy was associated with low risk for a PFS event (HR: 0.15; P < 0.01). These patients also had available dose scheduling and toxicity data, revealing that oxaliplatin dose reduction during chemoradiotherapy, undertaken to maintain compliance to the radiotherapy protocol, was associated with advantageous PFS (HR: 0.47; P = 0.046).

Conclusion: In high-risk rectal cancer, oxaliplatin-containing neoadjuvant therapy may promote an immune response that favours survival without metastatic progression.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Serum Flt3L levels during the neoadjuvant treatment course in the Oslo and Copenhagen patient cohorts. The horizontal line in each data cluster represents the median value. CRT chemoradiotherapy, Flt3L fms-like tyrosine kinase 3 ligand, NACT neoadjuvant chemotherapy

References

    1. Aklilu M, Eng C. The current landscape of locally advanced rectal cancer. Nat. Rev. Clin. Oncol. 2011;8:649–659. doi: 10.1038/nrclinonc.2011.118.
    1. Bosset JF, et al. Fluorouracil-based adjuvant chemotherapy after preoperative chemoradiotherapy in rectal cancer: long-term results of the EORTC 22921 randomised study. Lancet Oncol. 2014;15:184–190. doi: 10.1016/S1470-2045(13)70599-0.
    1. Rödel C, et al. Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2015;16:979–989. doi: 10.1016/S1470-2045(15)00159-X.
    1. Petersen S. H., Harling H., Kirkeby L. T., Wille-Jørgensen P., & Mocellin S. Postoperative adjuvant chemotherapy in rectal cancer operated for cure. Cochrane Database Syst Rev 2012; CD004078.
    1. Breugom AJ, et al. Adjuvant chemotherapy after preoperative (chemo)radiotherapy and surgery for patients with rectal cancer: a systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015;16:200–207. doi: 10.1016/S1470-2045(14)71199-4.
    1. Calvo FA, et al. Improved incidence of pT0 downstaged surgical specimens in locally advanced rectal cancer (LARC) treated with induction oxaliplatin plus 5-fluorouracil and preoperative chemoradiation. Ann. Oncol. 2006;17:1103–1110. doi: 10.1093/annonc/mdl085.
    1. Chau I, et al. Neoadjuvant capecitabine and oxaliplatin followed by synchronous chemoradiation and total mesorectal excision in magnetic resonance imaging-defined poor-risk rectal cancer. J. Clin. Oncol. 2006;24:668–674. doi: 10.1200/JCO.2005.04.4875.
    1. Koeberle D, et al. Phase II study of capecitabine and oxaliplatin given prior to and concurrently with preoperative pelvic radiotherapy in patients with locally advanced rectal cancer. Br. J. Cancer. 2008;98:1204–1209. doi: 10.1038/sj.bjc.6604297.
    1. Gunnlaugsson A, et al. Multicentre phase II trial of capecitabine and oxaliplatin in combination with radiotherapy for unresectable colorectal cancer: the CORGI-L Study. Eur. J. Cancer. 2009;45:807–813. doi: 10.1016/j.ejca.2008.11.017.
    1. Chua YJ, et al. Neoadjuvant capecitabine and oxaliplatin before chemoradiotherapy and total mesorectal excision in MRI-defined poor-risk rectal cancer: a phase 2 trial. Lancet Oncol. 2010;11:241–248. doi: 10.1016/S1470-2045(09)70381-X.
    1. Dewdney A, et al. Multicenter randomized phase II clinical trial comparing neoadjuvant oxaliplatin, capecitabine, and preoperative radiotherapy with or without cetuximab followed by total mesorectal excision in patients with high-risk rectal cancer (EXPERT-C) J. Clin. Oncol. 2012;30:1620–1627. doi: 10.1200/JCO.2011.39.6036.
    1. Schou JV, et al. Induction chemotherapy with capecitabine and oxaliplatin followed by chemoradiotherapy before total mesorectal excision in patients with locally advanced rectal cancer. Ann. Oncol. 2012;23:2627–2633. doi: 10.1093/annonc/mds056.
    1. Nilsson PJ, et al. Short-course radiotherapy followed by neo-adjuvant chemotherapy in locally advanced rectal cancer--the RAPIDO trial. Bmc. Cancer. 2013;13:279. doi: 10.1186/1471-2407-13-279.
    1. Dueland S, et al. Oxaliplatin-containing preoperative therapy in locally advanced rectal cancer: local response, toxicity and long-term outcome. Clin. Oncol. (R. Coll. Radiol.). 2016;28:532–539. doi: 10.1016/j.clon.2016.01.014.
    1. Tveit KM, et al. Phase III trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (Nordic FLOX) versus FLOX alone in first-line treatment of metastatic colorectal cancer: the NORDIC-VII study. J. Clin. Oncol. 2012;30:1755–1762. doi: 10.1200/JCO.2011.38.0915.
    1. Flatmark K, et al. Individual tumor volume responses to short-course oxaliplatin-containing induction chemotherapy in locally advanced rectal cancer - targeting the tumor for radiation sensitivity? Radiother. Oncol. 2016;119:505–511. doi: 10.1016/j.radonc.2016.02.020.
    1. Tesniere A, et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010;29:482–491. doi: 10.1038/onc.2009.356.
    1. Zitvogel L, et al. Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin. Cancer Res. 2010;16:3100–3104. doi: 10.1158/1078-0432.CCR-09-2891.
    1. Gou HF, Huang J, Shi HS, Chen XC, Wang YS. Chemo-immunotherapy with oxaliplatin and interleukin-7 inhibits colon cancer metastasis in mice. PLoS ONE. 2014;9:e85789. doi: 10.1371/journal.pone.0085789.
    1. Pfirschke C, et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity. 2016;44:343–354. doi: 10.1016/j.immuni.2015.11.024.
    1. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015;28:690–714. doi: 10.1016/j.ccell.2015.10.012.
    1. Golden EB, Apetoh L. Radiotherapy and immunogenic cell death. Semin. Radiat. Oncol. 2015;25:11–17. doi: 10.1016/j.semradonc.2014.07.005.
    1. Demaria S, Pilones KA, Vanpouille-Box C, Golden EB, Formenti SC. The optimal partnership of radiation and immunotherapy: from preclinical studies to clinical translation. Radiat. Res. 2014;182:170–181. doi: 10.1667/RR13500.1.
    1. Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet Oncol. 2009;10:718–726. doi: 10.1016/S1470-2045(09)70082-8.
    1. Postow MA, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 2012;366:925–931. doi: 10.1056/NEJMoa1112824.
    1. Whiteside TL, Demaria S, Rodriguez-Ruiz ME, Zarour HM, Melero I. Emerging opportunities and challenges in cancer immunotherapy. Clin. Cancer Res. 2016;22:1845–1855. doi: 10.1158/1078-0432.CCR-16-0049.
    1. Antonysamy MA, Thomson AW. Flt3 ligand (FL) and its influence on immune reactivity. Cytokine. 2000;12:87–100. doi: 10.1006/cyto.1999.0540.
    1. Greystoke A, et al. Assessment of circulating biomarkers for potential pharmacodynamic utility in patients with lymphoma. Br. J. Cancer. 2011;104:719–725. doi: 10.1038/sj.bjc.6606082.
    1. Wodnar-Filipowicz A, et al. Flt3 ligand level reflects hematopoietic progenitor cell function in aplastic anemia and chemotherapy-induced bone marrow aplasia. Blood. 1996;88:4493–4499.
    1. Maraskovsky E, et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 1996;184:1953–1962. doi: 10.1084/jem.184.5.1953.
    1. Demaria S, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 2004;58:862–870. doi: 10.1016/j.ijrobp.2003.09.012.
    1. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 2013;31:563–604. doi: 10.1146/annurev-immunol-020711-074950.
    1. Broz ML, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell. 2014;26:638–652. doi: 10.1016/j.ccell.2014.09.007.
    1. Morse MA, et al. Preoperative mobilization of circulating dendritic cells by Flt3 ligand administration to patients with metastatic colon cancer. J. Clin. Oncol. 2000;18:3883–3893. doi: 10.1200/JCO.2000.18.23.3883.
    1. Larsen FO, et al. Capecitabine and oxaliplatin before, during, and after radiotherapy for high-risk rectal cancer. Clin. Colorectal Cancer. 2017;16:e7–e14. doi: 10.1016/j.clcc.2016.07.020.
    1. Hektoen HH, et al. Early increase in circulating carbonic anhydrase IX during neoadjuvant treatment predicts favourable outcome in locally advanced rectal cancer. BMC Cancer. 2015;15:543. doi: 10.1186/s12885-015-1557-6.
    1. Meltzer S, et al. Systemic release of osteoprotegerin during oxaliplatincontaining induction chemotherapy and favorable systemic outcome of sequential radiotherapy in rectal cancer. Oncotarget. 2016;7:34907–34917. doi: 10.18632/oncotarget.8995.
    1. Kalanxhi E, et al. Circulating proteins in response to combined-modality therapy in rectal cancer identified by antibody array screening. BMC Cancer. 2016;16:536. doi: 10.1186/s12885-016-2601-x.
    1. Seierstad T, et al. MRI volumetry for prediction of tumour response to neoadjuvant chemotherapy followed by chemoradiotherapy in locally advanced rectal cancer. Br. J. Radiol. 2015;88:20150097. doi: 10.1259/bjr.20150097.
    1. Wolthuis AM, et al. Impact of interval between neoadjuvant chemoradiotherapy and TME for locally advanced rectal cancer on pathologic response and oncologic outcome. Ann. Surg. Oncol. 2012;19:2833–2841. doi: 10.1245/s10434-012-2327-1.
    1. Seiwert TY, Salama JK, Vokes EE. The concurrent chemoradiation paradigm--general principles. Nat. Clin. Pract. Oncol. 2007;4:86–100. doi: 10.1038/ncponc0714.
    1. Bese NS, Hendry J, Jeremic B. Effects of prolongation of overall treatment time due to unplanned interruptions during radiotherapy of different tumor sites and practical methods for compensation. Int. J. Radiat. Oncol. Biol. Phys. 2007;68:654–661. doi: 10.1016/j.ijrobp.2007.03.010.
    1. Lawrence TS, Haffty BG, Harris JR. Milestones in the use of combined-modality radiation therapy and chemotherapy. J. Clin. Oncol. 2014;32:1173–1179. doi: 10.1200/JCO.2014.55.2281.
    1. Aschele C, et al. Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized phase III trial. J. Clin. Oncol. 2011;29:2773–2780. doi: 10.1200/JCO.2010.34.4911.
    1. Deng Y, et al. Modified FOLFOX6 with or without radiation versus fluorouracil and leucovorin with radiation in neoadjuvant treatment of locally advanced rectal cancer: initial results of the Chinese FOWARC multicenter, open-label, randomized three-arm phase III trial. J. Clin. Oncol. 2016;34:3300–3307. doi: 10.1200/JCO.2016.66.6198.
    1. Gerard JP, et al. Clinical complete response (cCR) after neoadjuvant chemoradiotherapy and conservative treatment in rectal cancer. Findings from the ACCORD 12/PRODIGE 2 randomized trial. Radiother. Oncol. 2015;115:246–252. doi: 10.1016/j.radonc.2015.04.003.
    1. Jiao D, et al. Fluorouracil-based preoperative chemoradiotherapy with or without oxaliplatin for stage II/III rectal cancer: a 3-year follow-up study. Chin. J. Cancer Res. 2015;27:588–596.
    1. O’Connell MJ, et al. Capecitabine and oxaliplatin in the preoperative multimodality treatment of rectal cancer: surgical end points from National Surgical Adjuvant Breast and Bowel Project trial R-04. J. Clin. Oncol. 2014;32:1927–1934. doi: 10.1200/JCO.2013.53.7753.
    1. Schmoll HJ, et al. Preoperative chemoradiotherapy and postoperative chemotherapy with capecitabine and oxaliplatin versus capecitabine alone in locally advanced rectal cancer: disease-free survival results at interim analysis. J. Clin. Oncol. 2014;S32:3501. doi: 10.1200/jco.2014.32.15_suppl.3501.
    1. Radojcic V, et al. Cyclophosphamide resets dendritic cell homeostasis and enhances antitumor immunity through effects that extend beyond regulatory T cell elimination. Cancer Immunol. Immunother. 2010;59:137–148. doi: 10.1007/s00262-009-0734-3.
    1. Di Maio M, et al. Chemotherapy-induced neutropenia and treatment efficacy in advanced non-small-cell lung cancer: a pooled analysis of three randomised trials. Lancet Oncol. 2005;6:669–677. doi: 10.1016/S1470-2045(05)70255-2.

Source: PubMed

Подписаться