Hundred Days of Cognitive Training Enhance Broad Cognitive Abilities in Adulthood: Findings from the COGITO Study

Florian Schmiedek, Martin Lövdén, Ulman Lindenberger, Florian Schmiedek, Martin Lövdén, Ulman Lindenberger

Abstract

We examined whether positive transfer of cognitive training, which so far has been observed for individual tests only, also generalizes to cognitive abilities, thereby carrying greater promise for improving everyday intellectual competence in adulthood and old age. In the COGITO Study, 101 younger and 103 older adults practiced six tests of perceptual speed (PS), three tests of working memory (WM), and three tests of episodic memory (EM) for over 100 daily 1-h sessions. Transfer assessment included multiple tests of PS, WM, EM, and reasoning. In both age groups, reliable positive transfer was found not only for individual tests but also for cognitive abilities, represented as latent factors. Furthermore, the pattern of correlations between latent change factors of practiced and latent change factors of transfer tasks indicates systematic relations at the level of broad abilities, making the interpretation of effects as resulting from unspecific increases in motivation or self-concept less likely.

Keywords: cognitive abilities; cognitive training; latent factors; transfer; working memory.

Figures

Figure 1
Figure 1
Performance scores on Digit-Symbol Substitution Test as a function of age for Berlin Aging Study Participants (black circles), COGITO study intervention group participants (blue circles), COGITO study control group participants (green circles). “+” signs denote means for these groups and for meta-analytic results from Hoyer et al. (; in red).
Figure 2
Figure 2
Latent difference score model for modeling training-induced changes at the latent factor level. Squares represent observed variables, circles represent latent factors and the triangle serves to represent information regarding means and intercepts. Free parameters are indicated by asterisks. Parameters with equal sign and the same subscript are constrained to be equal to each other (i.e., strong measurement invariance with equal factor loadings and intercepts across occasions and across experimental and control groups). T1: Pre-test occasion; T2: Post-test occasion; V1–V3: observed variables (i.e., tasks of one ability); F: latent factor of ability; LC: Latent change factor; α: latent mean of ability factor at pre-test; β: mean difference between latent ability factors at pre- and post-test (=latent change, or latent difference score); γ: variance (individual differences) in latent ability at pre-test; δ: variance (individual differences) in latent ability changes between pre- and post-test; ε: covariance between individual differences in latent ability at pre-test and latent changes. For further information on two-occasion latent difference modeling in general, see McArdle and Nesselroade (1994).
Figure 3
Figure 3
Observed and latent net effect sizes of performance gains from pre-test to post-test for WM, Gf/reasoning, and EM. Bars show net effect sizes (standardized changes in the experimental group minus standardized changes in the control group), separately for younger (gray bars) and older (black bars) adults. Statistically significant net effect sizes correspond to reliable interactions (*P < 0.05) between group (experimental vs. control) and occasion (pre-test vs. post-test).

References

    1. Ball K. K., Edwards J. D., Ross L. A. (2007). The impact of speed of processing training on cognitive and everyday functions. J. Gerontol. B 62, 19–31
    1. Baltes M. M., Maas I., Wilms H.-U., Borchelt M., Little T. D. (1999). Everyday competence in old and very old age: theoretical considerations and empirical findings. In The Berlin Aging Study: Aging from 70 to 100, Baltes P. B., Mayer K. U. eds. (New York, NY: Cambridge University Press; ), pp. 384–402
    1. Baltes P. B., Lindenberger U. (1988). On the range of cognitive plasticity in old-age as a function of experience - 15 years of intervention research. Behav. Ther. 19, 283–30010.1016/S0005-7894(88)80003-0
    1. Bollen K. A. (1989). Structural Equations with Latent Variables New York, NY: Wiley
    1. Brehmer Y., Li S.-C., Müller V., von Oertzen T., Lindenberger U. (2007). Memory plasticity across the lifespan: uncovering children's latent potential. Dev. Psychol. 43, 465–47810.1037/0012-1649.43.2.465
    1. Carroll J. B. (1993). Human Cognitive Abilities Cambridge: Cambridge University Press
    1. Clancy S. M., Hoyer W. J. (1994). Age and skill in visual search. Dev. Psychol. 30, 545–55210.1037/0012-1649.30.4.545
    1. Cohen J. D., Perlstein W. M., Braver T. S., Nystrom L. E., Noll D. C., Jonides J., Smith E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature 386, 604–60810.1038/386604a0
    1. Craik F. I. M. (1983). On the transfer of information from temporary to permanent memory. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 302, 341–35910.1098/rstb.1983.0059
    1. Craik F. I. M. (1986). “A functional account of age differences in memory,” in Human Memory and Cognitive Capabilities eds Klix F., Hagendorf H. (North-Holland: Elsevier; ), 409–422
    1. Dahlin E., Stigsdotter Neely A. S., Larsson A., Bäckman L., Nyberg L. (2008). Transfer of learning after updating training mediated by the striatum. Science 320, 1510–151210.1126/science.1155466
    1. Diamond A., Barnett W. S., Thomas J., Munro S. (2007). Preschool program improves cognitive control. Science 318, 1387–138810.1126/science.1151148
    1. Fields R. D. (2008). White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 31, 361–37010.1016/j.tins.2008.04.001
    1. Hair J. F., Anderson R. E., Tatham R. L., Black W. C. (1998). Multivariate Data Analysis, 5th Edn.Upper Saddle River, NJ: Prentice Hall
    1. Hazy T. E., Frank M. J., O'Reilly R. C. (2006). Banishing the homunculus: making working memory work. Neuroscience 139, 105–11810.1016/j.neuroscience.2005.04.067
    1. Hertzog C., Kramer A. F., Wilson R. S., Lindenberger U. (2009). Enrichment effects on adult cognitive development: can the functional capacity of older adults be preserved and enhanced? Psychol. Sci. Public Interest 9, 1–65
    1. Hoyer W. J., Stawski R. S., Wasylyshyn C., Verhaeghen P. (2004). Adult age and Digit Symbol Substitution performance: a meta-analysis. Psychol. Aging 19, 211–21410.1037/0882-7974.19.1.211
    1. Jaeggi S. M., Buschkuehl M., Jonides J., Perrig W. J. (2008). Improving fluid intelligence with training on working memory. Proc. Natl. Acad. Sci. U.S.A. 105, 6829–683310.1073/pnas.0801268105
    1. Jäger A. O., Süß H.-M., Beauducel A. (1997). Berliner Intelligenzstruktur-Test, BIS-Test. Form 4. Handanweisung Göttingen: Hogrefe
    1. Kane M. J., Hambrick D. Z., Tuholski S. W., Wilhelm O., Payne T. W., Engle R. E. (2004). The generality of working-memory capacity: a latent-variable approach to verbal and visuo-spatial memory span and reasoning. J. Exp. Psychol. Gen. 133, 189–21710.1037/0096-3445.133.2.189
    1. Karbach J., Kray J. (2009). How useful is executive control training? Age differences in near and far transfer of task switching training. Dev. Sci. 12, 978–99010.1111/j.1467-7687.2009.00846.x
    1. Kempermann G. (2008). The neurogenic reserve hypothesis: what is adult hippocampal neurogenisis good for? Trends Neurosci. 31, 163–16910.1016/j.tins.2008.01.002
    1. Klingberg T., Fernell E., Olesen P. J., Johnson M., Gustafsson P., Dahlstrom K., Gillberg C. G., Forssberg H., Westerberg H. (2005). Computerized training of working memory in children with ADHD – A randomized, controlled trial. J. Am. Acad. Child. Psychiatry 44, 177–18610.1097/00004583-200502000-00010
    1. Kramer A. F., Willis S. L. (2002). Enhancing the cognitive vitality of older adults. Curr. Dir. Psychol. Sci. 11, 173–17710.1111/1467-8721.00194
    1. Lehrl S. (1991). Manual zum MWT-A [Manual for MWT-A] Erlangen: Perimed
    1. Li S.-C., Schmiedek F., Huxhold O., Röcke C., Smith J., Lindenberger U. (2008). Working memory plasticity in old age: practice gain, transfer, and maintenance. Psychol. Aging 23, 731–74210.1037/a0014343
    1. Lindenberger U., Baltes P. B. (1997). Intellectual functioning in old and very old age: cross-sectional results from the Berlin Aging Study. Psychol. Aging 12, 410–43210.1037/0882-7974.12.3.410
    1. Little T. D., Lindenberger U., Nesselroade J. R. (1999). On selecting indicators for multivariate measurement and modeling with latent variables: when “good” indicators are bad and “bad” indicators are good. Psychol. Methods 4, 192–21110.1037/1082-989X.4.2.192
    1. Lövdén M., Lindenberger U., Bäckman L., Schaefer S., Schmiedek F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychol. Bull. 136, 659–67610.1037/a0020080
    1. Lustig C., Shah P., Seidler R., Reuter-Lorenz P. A. (2009). Aging, training, and the brain: a review and future directions. Neuropsychol. Rev. 19, 504–52210.1007/s11065-009-9119-9
    1. Mahncke H. W., Connor B. B., Appelman J., Ahsanuddin O. N., Hardy J. L., Wood R. A., Joyce N. M., Boniske T., Atkins S. M., Merzenich M. M. (2006). Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc. Natl. Acad. Sci. U.S.A. 103, 12523–1252810.1073/pnas.0605194103
    1. McArdle J. J., Nesselroade J. R. (1994). “Using multivariate data to structure developmental change,” in Life-span Developmental Psychology: Methodological Contributions, eds Cohen S. H., Reese H. W. (Hillsdale, NJ: Erlbaum; ), 223–267
    1. McArdle J. J., Prindle J. J. (2008). A latent change score analysis of a randomized clinical trial in reasoning training. Psychol. Aging 23, 702–71910.1037/a0014349
    1. McNab F., Varrone A., Farde L., Jucaite A., Bystritsky P., Forssberg H., Klingberg T. (2009), Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 323, 800–80210.1126/science.1166102
    1. Moody D. E. (2009). Can intelligence be increased by training on a task of working memory? Intelligence 37, 327–32810.1016/j.intell.2009.04.005
    1. Noack H., Lövdén M., Schmiedek F., Lindenberger U. (2009). Cognitive plasticity in adulthood and old age: gauging the generality of cognitive intervention effects. Restor. Neurol. Neurosci. 27, 435–453
    1. Owen A. M., Hampshire A., Grahn J. A., Stenton R., Dajani S., Burns A. S., Howard R. J., Ballard C. G. (2010). Putting brain training to the test. Nature 465, 775–77810.1038/nature09042
    1. Park D. C., Smith A. D., Lautenschlager G., Earles J. L., Frieske D., Zwahr M., Gaines C. L. (1996). Mediators of long-term memory performance across the life span. Psychol. Aging 11, 621–63710.1037/0882-7974.11.4.621
    1. Rebok G. W., Carlson M. C., Langbaum J. B. S. (2007). Training and maintaining memory abilities in healthy older adults: traditional and novel approaches. J. Gerontol. B Psychol. Sci. Soc. Sci. 62B, 53–61
    1. Salthouse T. A., Babcock R. L., Shaw R. J. (1991). Effects of adult age on structural and operational capacities in working memory. Psychol. Aging 6, 118–12710.1037/0882-7974.6.1.118
    1. Schmiedek F., Bauer C., Lövdén M., Brose A., Lindenberger U. (2010). Cognitive enrichment in old age: web-based training programs. GeroPsych.
    1. Scholz J., Klein M. C., Behrens T. E., Johansen-Berg H. (2009). Training induces changes in white-matter architecture. Nat. Neurosci. 12, 1370–137110.1038/nn.2412
    1. Schott B. H., Minuzzi L., Krebs R. M., Elmenhorst D., Lang M., Winz O. H., Seidenbecher C. I., Coenen H. H., Heinze H. J., Zilles K., Duzel E., Bauer A. (2008). Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. J. Neurosci. 28, 14311–1431910.1523/JNEUROSCI.2058-08.2008
    1. Shing Y. L., Werkle-Bergner M., Li S.-C., Lindenberger U. (2008). Associative and strategic components of episodic memory: a life-span dissociation. J. Exp. Psychol. Gen. 137, 495–51310.1037/0096-3445.137.3.495
    1. Sternberg R. J. (2008). Increasing fluid intelligence is possible after all. Proc. Natl. Acad. Sci. U.S.A. 105, 6791–679210.1073/pnas.0803396105
    1. Thorndike E. L. (1906). Principles of Teaching New York: Seiler
    1. Verhaeghen P., Marcoen A., Goossens L. (1992). Improving memory performance in the aged through mnemonic training: a meta-analytic study. Psychol. Aging 7, 242–25110.1037/0882-7974.7.2.242
    1. Wilhelm O., Oberauer K. (2006). Why are reasoning ability and working memory capacity related to mental speed? An investigation of stimulus-response compatibility in choice reaction time tasks. Eur. J. Cogn. Psychol. 18, 18–5010.1080/09541440500215921

Source: PubMed

Подписаться