Review of Two Popular Eating Plans within the Multiple Sclerosis Community: Low Saturated Fat and Modified Paleolithic

Terry L Wahls, Catherine A Chenard, Linda G Snetselaar, Terry L Wahls, Catherine A Chenard, Linda G Snetselaar

Abstract

The precise etiology of multiple sclerosis (MS) is unknown but epidemiologic evidence suggests this immune-mediated, neurodegenerative condition is the result of a complex interaction between genes and lifetime environmental exposures. Diet choices are modifiable environmental factors that may influence MS disease activity. Two diets promoted for MS, low saturated fat Swank and modified Paleolithic Wahls Elimination (WahlsElim), are currently being investigated for their effect on MS-related fatigue and quality of life (NCT02914964). Dr. Swank theorized restriction of saturated fat would reduce vascular dysfunction in the central nervous system (CNS). Dr. Wahls initially theorized that detailed guidance to increase intake of specific foodstuffs would facilitate increased intake of nutrients key to neuronal health (Wahls™ diet). Dr. Wahls further theorized restriction of lectins would reduce intestinal permeability and CNS inflammation (WahlsElim version). The purpose of this paper is to review the published research of the low saturated fat (Swank) and the modified Paleolithic (Wahls™) diets and the rationale for the structure of the Swank diet and low lectin version of the Wahls™ diet (WahlsElim) being investigated in the clinical trial.

Keywords: Paleolithic diet; Swank diet; Wahls Elimination diet; Wahls diet; low saturated fat diet; modified Paleolithic diet; multiple sclerosis.

Conflict of interest statement

T.W. strongly advocates for a modified Paleolithic style diet in academic and business settings and follows variations of the Wahls Elimination diet and the various diet plans described in the Wahls Protocol® books and programs. She has copyrights for The Wahls Protocol Cooking for Life, The Wahls Protocol and Minding My Mitochondria, 2nd Edition and has trademarked Wahls™ Diet, Wahls Paleo™ Diet and Wahls Paleo Plus™ Diet. She has not trademarked Wahls Elimination Diet. T.W. has financial relationships with BioCeuticals; Genova Diagnostics; Institute for Health and Healing; Integrative Medicine for Mental Health; MCG Health Inc.; NCURA; Penguin Random House Inc.; Suttler Pacific and an equity interest in Terry Wahls, LLC; TZ Press, LLC; The Wahls Institute, PLC; and www.terrywahls.com. T.W. received funding from the National Multiple Sclerosis Society to conduct a randomized clinical trial comparing the effect of the Wahls Elimination and Swank diets on multiple sclerosis-related fatigue. The University of Iowa prepared a conflict of interest management plan for this clinical trial that TW follows to mitigate conflicts of interest. L.S. is a co-investigator on the clinical trial comparing Swank and Wahls Elimination diets and reports no other conflicts of interest; she does not follow a special diet. C.A.C. has been employed by T.W. since 2013, was paid to calculate the nutrient composition of the menus in The Wahls Protocol and was paid for the preparation of this manuscript; she does not follow any special diet. The funding sponsors had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript and in the decision to publish the results.

References

    1. Compston A., Coles A. Multiple sclerosis. Lancet. 2008;372:1502–1517. doi: 10.1016/S0140-6736(08)61620-7.
    1. Olsson T., Barcellos L.F., Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 2017;13:25–36. doi: 10.1038/nrneurol.2016.187.
    1. Roman C., Menning K. Treatment and disease management of multiple sclerosis patients: A review for nurse practitioners. J. Am. Assoc. Nurse Pract. 2017;29:629–638. doi: 10.1002/2327-6924.12514.
    1. Bishop M., Rumrill P.D. Multiple sclerosis: Etiology, symptoms, incidence and prevalence, and implications for community living and employment. Work (Read. Mass.) 2015;52:725–734. doi: 10.3233/WOR-152200.
    1. Cunningham E. Are there evidence-based dietary interventions for multiple sclerosis? J. Acad. Nutr. Diet. 2013;113:1004. doi: 10.1016/j.jand.2013.05.010.
    1. Ma V.Y., Chan L., Carruthers K.J. Incidence, Prevalence, Costs, and Impact on Disability of Common Conditions Requiring Rehabilitation in the United States: Stroke, Spinal Cord Injury, Traumatic Brain Injury, Multiple Sclerosis, Osteoarthritis, Rheumatoid Arthritis, Limb Loss, and Back Pain. Arch. Phys. Med. Rehabil. 2014;95:986–995.e981.
    1. Hadgkiss E.J., Jelinek G.A., Weiland T.J., Pereira N.G., Marck C.H., van der Meer D.M. The association of diet with quality of life, disability, and relapse rate in an international sample of people with multiple sclerosis. Nutr. Neurosci. 2015;18:125–136. doi: 10.1179/1476830514Y.0000000117.
    1. D’hooghe M.B., Nagels G., De Keyser J., Haentjens P. Self-reported health promotion and disability progression in multiple sclerosis. J. Neurol. Sci. 2013;325:120–126. doi: 10.1016/j.jns.2012.12.018.
    1. Marck C.H., De Livera A.M., Brown C.R., Neate S.L., Taylor K.L., Weiland T.J., Hadgkiss E.J., Jelinek G.A. Health outcomes and adherence to a healthy lifestyle after a multimodal intervention in people with multiple sclerosis: Three year follow-up. PLoS ONE. 2018;13:e0197759. doi: 10.1371/journal.pone.0197759.
    1. Esposito S., Bonavita S., Sparaco M., Gallo A., Tedeschi G. The role of diet in multiple sclerosis: A review. Nutr. Neurosci. 2018;21:377–390. doi: 10.1080/1028415X.2017.1303016.
    1. Katz Sand I. The Role of Diet in Multiple Sclerosis: Mechanistic Connections and Current Evidence. Curr. Nutr. Rep. 2018;7:150–160. doi: 10.1007/s13668-018-0236-z.
    1. Rito Y., Torre-Villalvazo I., Flores J., Rivas V., Corona T. Epigenetics in Multiple Sclerosis: Molecular Mechanisms and Dietary Intervention. Cent. Nerv. Syst. Agents Med. Chem. 2018;18:8–15. doi: 10.2174/1871524916666160226131842.
    1. Saresella M., Mendozzi L., Rossi V., Mazzali F., Piancone F., LaRosa F., Marventano I., Caputo D., Felis G.E., Clerici M. Immunological and Clinical Effect of Diet Modulation of the Gut Microbiome in Multiple Sclerosis Patients: A Pilot Study. Front. Immunol. 2017;8:1391. doi: 10.3389/fimmu.2017.01391.
    1. Bourre J.M. Effects of nutrients (in food) on the structure and function of the nervous system: Update on dietary requirements for brain. Part 1: Micronutrients. J. Nutr. Health Aging. 2006;10:377–385.
    1. Bourre J.M. Effects of nutrients (in food) on the structure and function of the nervous system: Update on dietary requirements for brain. Part 2: Macronutrients. J. Nutr. Health Aging. 2006;10:386–399.
    1. Yadav V., Shinto L., Morris C., Senders A., Baldauf-Wagner S., Bourdette D. Use and Self-Reported Benefit of Complementary and Alternative Medicine Among Multiple Sclerosis Patients. Int. J. Ms Care. 2006;8:5–10. doi: 10.7224/1537-2073-8.1.5.
    1. Brenton J.N., Goldman M.D. A study of dietary modification: Perceptions and attitudes of patients with multiple sclerosis. Mult. Scler. Relat. Disord. 2016;8:54–57. doi: 10.1016/j.msard.2016.04.009.
    1. Riemann-Lorenz K., Eilers M., von Geldern G., Schulz K.H., Kopke S., Heesen C. Dietary Interventions in Multiple Sclerosis: Development and Pilot-Testing of an Evidence Based Patient Education Program. PLoS ONE. 2016;11:e0165246. doi: 10.1371/journal.pone.0165246.
    1. Swank R.L. Multiple sclerosis; a correlation of its incidence with dietary fat. Am. J. Med. Sci. 1950;220:421–430. doi: 10.1097/00000441-195022040-00011.
    1. Swank R.L. Treatment of multiple sclerosis with low-fat diet. AMA Arch. Neurol. Psychiatry. 1953;69:91–103. doi: 10.1001/archneurpsyc.1953.02320250097011.
    1. Swank R.L. Treatment of multiple sclerosis with low-fat diet; results of five and one-half years’ experience. AMA Arch. Neurol. Psychiatry. 1955;73:631–644. doi: 10.1001/archneurpsyc.1955.02330120035004.
    1. Swank R.L. Treatment of multiple sclerosis with low-fat diet: Result of seven years’ experience. Ann. Intern. Med. 1956;45:812–824.
    1. Swank R.L. Multiple sclerosis: Twenty years on low fat diet. Arch. Neurol. 1970;23:460–474. doi: 10.1001/archneur.1970.00480290080009.
    1. Swank R.L., Dugan B.B. Effect of low satured fat diet in early and late cases of multiple sclerosis. Lancet. 1990;336:37–39. doi: 10.1016/0140-6736(90)91533-G.
    1. Swank R.L., Goodwin J.W. How saturated fats may be a causative factor in multiple sclerosis and other diseases. Nutrition. 2003;19:478. doi: 10.1016/S0899-9007(02)01099-7.
    1. Swank R.L., Goodwin J. Review of MS patient survival on a Swank low saturated fat diet. Nutrition. 2003;19:161–162. doi: 10.1016/S0899-9007(02)00851-1.
    1. Yadav V., Marracci G., Kim E., Spain R., Cameron M., Overs S., Riddehough A., Li D.K.B., McDougall J., Lovera J., et al. Low-fat, plant-based diet in multiple sclerosis: A randomized controlled trial. Mult. Scler. Relat. Disord. 2016;9:80–90. doi: 10.1016/j.msard.2016.07.001.
    1. Sedaghat F., Jessri M., Behrooz M., Mirghotbi M., Rashidkhani B. Mediterranean diet adherence and risk of multiple sclerosis: A case-control study. Asia Pac. J. Clin. Nutr. 2016;25:377–384.
    1. Storoni M., Plant G.T. The Therapeutic Potential of the Ketogenic Diet in Treating Progressive Multiple Sclerosis. Mult. Scler. Int. 2015;2015:681289. doi: 10.1155/2015/681289.
    1. Fitzgerald K.C., Vizthum D., Henry-Barron B., Schweitzer A., Cassard S.D., Kossoff E., Hartman A.L., Kapogiannis D., Sullivan P., Baer D.J., et al. Effect of intermittent vs. daily calorie restriction on changes in weight and patient-reported outcomes in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2018;23:33–39. doi: 10.1016/j.msard.2018.05.002.
    1. Cignarella F., Cantoni C., Ghezzi L., Salter A., Dorsett Y., Chen L., Phillips D., Weinstock G.M., Fontana L., Cross A.H., et al. Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metab. 2018;27:1222–1235.e1226. doi: 10.1016/j.cmet.2018.05.006.
    1. Saadatnia M., Etemadifar M., Fatehi F., Ashtari F., Shaygannejad V., Chitsaz A., Maghzi A.H. Short-term effects of prolonged fasting on multiple sclerosis. Eur. Neurol. 2009;61:230. doi: 10.1159/000197108.
    1. Bisht B., Darling W.G., Grossmann R.E., Shivapour E.T., Lutgendorf S.K., Snetselaar L.G., Hall M.J., Zimmerman M.B., Wahls T.L. A multimodal intervention for patients with secondary progressive multiple sclerosis: Feasibility and effect on fatigue. J. Altern. Complement. Med. 2014;20:347–355. doi: 10.1089/acm.2013.0188.
    1. Bisht B., Darling W.G., Shivapour E.T., Lutgendorf S.K., Snetselaar L.G., Chenard C.A., Wahls T.L. Multimodal intervention improves fatigue and quality of life in subjects with progressive multiple sclerosis: A pilot study. Degener. Neurol. Neuromuscul. Dis. 2015;5:19–35.
    1. Irish A.K., Erickson C.M., Wahls T.L., Snetselaar L.G., Darling W.G. Randomized control trial evaluation of a modified Paleolithic dietary intervention in the treatment of relapsing-remitting multiple sclerosis: A pilot study. Degener. Neurol. Neuromuscul. Dis. 2017;7:1–18. doi: 10.2147/DNND.S116949.
    1. Lee J.E., Bisht B., Hall M.J., Rubenstein L.M., Louison R., Klein D.T., Wahls T.L. A Multimodal, Nonpharmacologic Intervention Improves Mood and Cognitive Function in People with Multiple Sclerosis. J. Am. Coll. Nutr. 2017;36:150–168. doi: 10.1080/07315724.2016.1255160.
    1. Bisht B., Darling W.G., White E.C., White K.A., Shivapour E.T., Zimmerman M.B., Wahls T.L. Effects of a multimodal intervention on gait and balance of subjects with progressive multiple sclerosis: A prospective longitudinal pilot study. Degener. Neurol. Neuromuscul. Dis. 2017;7:79–93. doi: 10.2147/DNND.S128872.
    1. Farinotti M., Vacchi L., Simi S., Di Pietrantonj C., Brait L., Filippini G. Dietary interventions for multiple sclerosis. Cochrane Database Syst. Rev. 2012;12:Cd004192. doi: 10.1002/14651858.CD004192.pub3.
    1. Venasse M., Edwards T., Pilutti L.A. Exploring Wellness Interventions in Progressive Multiple Sclerosis: An Evidence-Based Review. Curr. Treat. Options Neurol. 2018;20:13. doi: 10.1007/s11940-018-0497-2.
    1. Bhargava P. Diet and Multiple Sclerosis. [(accessed on 25 June 2015)]; Available online: .
    1. Diet & Nutrition. [(accessed on 16 October 2017)]; Available online: .
    1. U.S. Department of Health and Human Services and U.S. Department of Agriculture . 2015-2020 Dietary Guidelines for Americans. Skyhorse Publishing Inc.; Washington, DC, USA: 2015.
    1. Eckel R.H., Jakicic J.M., Ard J.D., de Jesus J.M., Miller N.H., Hubbard V.S., Lee I.-M., Lichtenstein A.H., Loria C.M., Millen B.E., et al. 2013 AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S76–S99. doi: 10.1161/01.cir.0000437740.48606.d1.
    1. Kushi L.H., Doyle C., McCullough M., Rock C.L., Demark-Wahnefried W., Bandera E.V., Gapstur S., Patel A.V., Andrews K., Gansler T. American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: Reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J. Clin. 2012;62:30–67. doi: 10.3322/caac.20140.
    1. Wahls T.L. Dietary Approaches to Treat Multiple Sclerosis-Related Fatigue Study. [(accessed on 15 June 2018)]; Available online: .
    1. Wahls T., Scott M.O., Alshare Z., Rubenstein L., Darling W., Carr L., Smith K., Chenard C.A., LaRocca N., Snetselaar L. Dietary approaches to treat MS-related fatigue: Comparing the modified Paleolithic (Wahls Elimination) and low saturated fat (Swank) diets on perceived fatigue in persons with relapsing-remitting multiple sclerosis: Study protocol for a randomized controlled trial. Trials. 2018;19:309.
    1. Penner I.K., Paul F. Fatigue as a symptom or comorbidity of neurological diseases. Nat. Rev. Neurol. 2017;13:662–675. doi: 10.1038/nrneurol.2017.117.
    1. Swank R.L., Dugan B.B. The Multiple Sclerosis Diet Book. A Low-Fat Diet for the Treatment of M.S. Doubleday; New York, NY, USA: 1987.
    1. Swank MS Foundation The Swank Low-Fat Diet for the Treatment of MS. [(accessed on 17 October 2017)]; Available online:
    1. Bourdette D. Roy Laver Swank, MD, PhD (1909–2008) Neurology. 2009;72:1120. doi: 10.1212/01.wnl.0000345371.55418.d1.
    1. Blankespoor R.J., Schellekens M.P.J., Vos S.H., Speckens A.E.M., de Jong B.A. The Effectiveness of Mindfulness-Based Stress Reduction on Psychological Distress and Cognitive Functioning in Patients with Multiple Sclerosis: A Pilot Study. Mindfulness. 2017;8:1251–1258. doi: 10.1007/s12671-017-0701-6.
    1. Nejati S., Rajezi Esfahani S., Rahmani S., Afrookhteh G., Hoveida S. The Effect of Group Mindfulness-based Stress Reduction and Consciousness Yoga Program on Quality of Life and Fatigue Severity in Patients with MS. J. Caring Sci. 2016;5:325–335. doi: 10.15171/jcs.2016.034.
    1. Senders A., Hanes D., Bourdette D., Carson K., Marshall L.M., Shinto L. Impact of mindfulness-based stress reduction for people with multiple sclerosis at 8 weeks and 12 months: A randomized clinical trial. Mult. Scler. 2018 doi: 10.1177/1352458518786650.
    1. Simpson R., Mair F.S., Mercer S.W. Mindfulness-based stress reduction for people with multiple sclerosis—A feasibility randomised controlled trial. BMC Neurol. 2017;17:94. doi: 10.1186/s12883-017-0880-8.
    1. Swank R.L. Treatment of multiple sclerosis with a low-fat diet. J. Am. Diet. Assoc. 1960;36:322–325.
    1. Keys A., Menotti A., Karvonen M.J., Aravanis C., Blackburn H., Buzina R., Djordjevic B.S., Dontas A.S., Fidanza F., Keys M.H., et al. The diet and 15-year death rate in the seven countries study. Am. J. Epidemiol. 1986;124:903–915. doi: 10.1093/oxfordjournals.aje.a114480.
    1. Kromhout D., Menotti A., Bloemberg B., Aravanis C., Blackburn H., Buzina R., Dontas A.S., Fidanza F., Giampaoli S., Jansen A., et al. Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: The Seven Countries Study. Prev. Med. 1995;24:308–315. doi: 10.1006/pmed.1995.1049.
    1. Weinstock-Guttman B., Zivadinov R., Mahfooz N., Carl E., Drake A., Schneider J., Teter B., Hussein S., Mehta B., Weiskopf M., et al. Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. J. Neuroinflammation. 2011;8:127. doi: 10.1186/1742-2094-8-127.
    1. Zhornitsky S., McKay K.A., Metz L.M., Teunissen C.E., Rangachari M. Cholesterol and markers of cholesterol turnover in multiple sclerosis: Relationship with disease outcomes. Mult. Scler. Relat. Disord. 2016;5:53–65. doi: 10.1016/j.msard.2015.10.005.
    1. Marrie R.A., Rudick R., Horwitz R., Cutter G., Tyry T., Campagnolo D., Vollmer T. Vascular comorbidity is associated with more rapid disability progression in multiple sclerosis. Neurology. 2010;74:1041–1047. doi: 10.1212/WNL.0b013e3181d6b125.
    1. Fitzgerald K. Diet and disease modification in multiple sclerosis: A nutritional epidemiology perspective. J. Neurol. Neurosurg. Psychiatry. 2018;89:3. doi: 10.1136/jnnp-2017-316375.
    1. Azary S., Schreiner T., Graves J., Waldman A., Belman A., Guttman B.W., Aaen G., Tillema J.M., Mar S., Hart J., et al. Contribution of dietary intake to relapse rate in early paediatric multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2018;89:28–33. doi: 10.1136/jnnp-2017-315936.
    1. [Editorial] Lipids and multiple sclerosis. Lancet. 1990;336:25–26. doi: 10.1016/0140-6736(90)91527-H.
    1. Ganesh A., Stahnisch F.W. On the historical succession of vessel-based therapies in the treatment of multiple sclerosis. Eur. Neurol. 2013;70:48–58. doi: 10.1159/000348780.
    1. Ben-Shlomo Y., Smith G.D., Marmot M.G. Dietary fat in the epidemiology of multiple sclerosis: Has the situation been adequately assessed? Neuroepidemiology. 1992;11:214–225. doi: 10.1159/000110934.
    1. Nayak S., Matheis R.J., Schoenberger N.E., Shiflett S.C. Use of unconventional therapies by individuals with multiple sclerosis. Clin. Rehabil. 2003;17:181–191. doi: 10.1191/0269215503cr604oa.
    1. Masullo L., Papas M.A., Cotugna N., Baker S., Mahoney L., Trabulsi J. Complementary and alternative medicine use and nutrient intake among individuals with multiple sclerosis in the United States. J. Community Health. 2015;40:153–160. doi: 10.1007/s10900-014-9913-z.
    1. Fitzgerald K.C., Tyry T., Salter A., Cofield S.S., Cutter G., Fox R., Marrie R.A. Diet quality is associated with disability and symptom severity in multiple sclerosis. Neurology. 2018;90:e1–e11. doi: 10.1212/WNL.0000000000004768.
    1. Eaton S., Cordain L. Evolutionary aspects of diet: Old genes, new fuels. Nutritional changes since agriculture. World Rev. Nutr. Diet. 1997;81:26–37.
    1. Cordain L. The Nutritional Characteristics of a Contemporary Diet Based Upon Paleolithic Food Groups. J. Am. Neutraceut. Assoc. 2002;5:15–24.
    1. Cordain L., Eaton S.B., Sebastian A., Mann N., Lindeberg S., Watkins B.A., O’Keefe J.H., Brand-Miller J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005;81:341–354. doi: 10.1093/ajcn.81.2.341.
    1. Wahls T.L. The Seventy Percent Solution. J. Gen. Intern. Med. 2011;26:1215–1216. doi: 10.1007/s11606-010-1631-3.
    1. Reese D., Shivapour E.T., Wahls T.L., Dudley-Javoroski S.D., Shields R. Neuromuscular electrical stimulation and dietary interventions to reduce oxidative stress in a secondary progressive multiple sclerosis patient leads to marked gains in function: A case report. Cases J. 2009;2:7601. doi: 10.4076/1757-1626-2-7601.
    1. Marinangeli C.P.F., Jones P.J.H. Deconstructing the Paleolithic Diet: Components that Reduce Cardiovascular Disease Risk. Curr. Nutr. Rep. 2014;3:149–161. doi: 10.1007/s13668-014-0077-3.
    1. Lindeberg S., Jonsson T., Granfeldt Y., Borgstrand E., Soffman J., Sjostrom K., Ahren B. A Palaeolithic diet improves glucose tolerance more than a Mediterranean-like diet in individuals with ischaemic heart disease. Diabetologia. 2007;50:1795–1807. doi: 10.1007/s00125-007-0716-y.
    1. Osterdahl M., Kocturk T., Koochek A., Wandell P. Effects of a short-term intervention with a paleolithic diet in healthy volunteers. Eur. J. Clin. Nutr. 2008;62:682–685. doi: 10.1038/sj.ejcn.1602790.
    1. Jonsson T., Granfeldt Y., Ahren B., Branell U., Palsson G., Hansson A., Soderstrom M., Lindeberg S. Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: A randomized cross-over pilot study. Cardiovasc. Diabetol. 2009;8:35. doi: 10.1186/1475-2840-8-35.
    1. Frassetto L.A., Schloetter M., Mietus-Synder M., Morris R.C., Jr., Sebastian A. Metabolic and physiologic improvements from consuming a paleolithic, hunter-gatherer type diet. Eur. J. Clin. Nutr. 2009;63:947–955. doi: 10.1038/ejcn.2009.4.
    1. Ryberg M., Sandberg S., Mellberg C., Stegle O., Lindahl B., Larsson C., Hauksson J., Olsson T. A Palaeolithic-type diet causes strong tissue-specific effects on ectopic fat deposition in obese postmenopausal women. J. Intern. Med. 2013;274:67–76. doi: 10.1111/joim.12048.
    1. Otten J., Stomby A., Waling M., Isaksson A., Tellstrom A., Lundin-Olsson L., Brage S., Ryberg M., Svensson M., Olsson T. Benefits of a Paleolithic diet with and without supervised exercise on fat mass, insulin sensitivity, and glycemic control: A randomized controlled trial in individuals with type 2 diabetes. Diabetes Metab. Res. Rev. 2017;33:e2828. doi: 10.1002/dmrr.2828.
    1. Spreadbury I. Comparison with ancestral diets suggests dense acellular carbohydrates promote an inflammatory microbiota, and may be the primary dietary cause of leptin resistance and obesity. Diabetes Metab. Syndr. Obes. 2012;5:175–189. doi: 10.2147/DMSO.S33473.
    1. Eaton S.B., Konner M.J., Cordain L. Diet-dependent acid load, Paleolithic nutrition, and evolutionary health promotion. Am. J. Clin. Nutr. 2010;91:295–297. doi: 10.3945/ajcn.2009.29058.
    1. Afifi L., Danesh M.J., Lee K.M., Beroukhim K., Farahnik B., Ahn R.S., Yan D., Singh R.K., Nakamura M., Koo J., et al. Dietary Behaviors in Psoriasis: Patient-Reported Outcomes from a U.S. National Survey. Dermatol. Ther. 2017;7:227–242. doi: 10.1007/s13555-017-0183-4.
    1. Fellows K., Wahls T., Browne R.W., Rubenstein L., Bisht B., Chenard C.A., Snetselaar L., Weinstock-Guttman B., Ramanathan M.M. Lipid Profile is Associated with Decreased Fatigue in Individuals with Progressive Multiple Sclerosis Following a Diet-Based Intervention: Results from a Pilot Study. PLoS ONE. (under review)
    1. Wahls T., Adamson E. The Wahls Protocol: How I Beat Progressive MS Using Paleo Principles and Functional Medicine. Avery; New York, NY, USA: 2014.
    1. Cordain L., Toohey L., Smith M.J., Hickey M.S. Modulation of immune function by dietary lectins in rheumatoid arthritis. Br. J. Nutr. 2000;83:207–217. doi: 10.1017/S0007114500000271.
    1. Vojdani A. Lectins, agglutinins, and their roles in autoimmune reactivities. Altern. Ther. Health Med. 2015;21:46–51.
    1. de Punder K., Pruimboom L. The dietary intake of wheat and other cereal grains and their role in inflammation. Nutrients. 2013;5:771–787. doi: 10.3390/nu5030771.
    1. Konijeti G.G., Kim N., Lewis J.D., Groven S., Chandrasekaran A., Grandhe S., Diamant C., Singh E., Oliveira G., Wang X., et al. Efficacy of the Autoimmune Protocol Diet for Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017;23:2054–2060. doi: 10.1097/MIB.0000000000001221.
    1. Gianfrancesco M.A., Barcellos L.F. Obesity and Multiple Sclerosis Susceptibility: A Review. J. Neurol. Neuromed. 2016;1:1–5.
    1. Liu Z., Zhang T.T., Yu J., Liu Y.L., Qi S.F., Zhao J.J., Liu D.W., Tian Q.B. Excess Body Weight during Childhood and Adolescence Is Associated with the Risk of Multiple Sclerosis: A Meta-Analysis. Neuroepidemiology. 2016;47:103–108. doi: 10.1159/000450854.
    1. Burgos R., Breton I., Cereda E., Desport J.C., Dziewas R., Genton L., Gomes F., Jesus P., Leischker A., Muscaritoli M., et al. ESPEN guideline clinical nutrition in neurology. Clin. Nutr. 2018;37:354–396. doi: 10.1016/j.clnu.2017.09.003.
    1. Tettey P., Simpson S., Taylor B., Ponsonby A.L., Lucas R.M., Dwyer T., Kostner K., van der Mei I.A. An adverse lipid profile and increased levels of adiposity significantly predict clinical course after a first demyelinating event. J. Neurol. Neurosurg. Psychiatry. 2017;88:395–401. doi: 10.1136/jnnp-2016-315037.
    1. Mowry E.M., Azevedo C.J., McCulloch C.E., Okuda D.T., Lincoln R.R., Waubant E., Hauser S.L., Pelletier D. Body mass index, but not vitamin D status, is associated with brain volume change in MS. Neurology. 2018;91:e2256–e2264. doi: 10.1212/WNL.0000000000006644.
    1. Wang X., Ouyang Y., Liu J., Zhu M., Zhao G., Bao W., Hu F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. 2014;349:g4490. doi: 10.1136/bmj.g4490.
    1. Ames B.N. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proc. Natl. Acad. Sci. USA. 2006;103:17589–17594. doi: 10.1073/pnas.0608757103.
    1. U.S. Department of Agriculture, H.N.I.S. Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans. [(accessed on 17 January 2019)]; Available online: .
    1. Kunnumakkara A.B., Sailo B.L., Banik K., Harsha C., Prasad S., Gupta S.C., Bharti A.C., Aggarwal B.B. Chronic diseases, inflammation, and spices: How are they linked? J. Transl. Med. 2018;16:14. doi: 10.1186/s12967-018-1381-2.
    1. Corbi G., Conti V., Davinelli S., Scapagnini G., Filippelli A., Ferrara N. Dietary Phytochemicals in Neuroimmunoaging: A New Therapeutic Possibility for Humans? Front. Pharmacol. 2016;7:364. doi: 10.3389/fphar.2016.00364.
    1. Coggrave M., Norton C. Management of faecal incontinence and constipation in adults with central neurological diseases. Cochrane Database Syst. Rev. 2013;12:CD002115.
    1. Popescu D.C., Huang H., Singhal N.K., Shriver L., McDonough J., Clements R.J., Freeman E.J. Vitamin K enhances the production of brain sulfatides during remyelination. PLoS ONE. 2018;13:e0203057. doi: 10.1371/journal.pone.0203057.
    1. Ferland G. Vitamin K and brain function. Semin. Thromb. Hemost. 2013;39:849–855. doi: 10.1055/s-0033-1357481.
    1. Goudarzi S., Rivera A., Butt A.M., Hafizi S. Gas6 Promotes Oligodendrogenesis and Myelination in the Adult Central Nervous System and After Lysolecithin-Induced Demyelination. ASN Neuro. 2016;8 doi: 10.1177/1759091416668430.
    1. Ferland G. Vitamin K and the nervous system: An overview of its actions. Adv. Nutr. 2012;3:204–212. doi: 10.3945/an.111.001784.
    1. Akbari S., Rasouli-Ghahroudi A.A. Vitamin K and Bone Metabolism: A Review of the Latest Evidence in Preclinical Studies. Biomed. Res. Int. 2018;2018:4629383. doi: 10.1155/2018/4629383.
    1. Huang Z.B., Wan S.L., Lu Y.J., Ning L., Liu C., Fan S.W. Does vitamin K2 play a role in the prevention and treatment of osteoporosis for postmenopausal women: A meta-analysis of randomized controlled trials. Osteoporos. Int. 2015;26:1175–1186. doi: 10.1007/s00198-014-2989-6.
    1. Abdolahi M., Yavari P., Honarvar N.M., Bitarafan S., Mahmoudi M., Saboor-Yaraghi A.A. Molecular Mechanisms of the Action of Vitamin A in Th17/Treg Axis in Multiple Sclerosis. J. Mol. Neurosci. 2015;57:605–613. doi: 10.1007/s12031-015-0643-1.
    1. Raverdeau M., Breen C.J., Misiak A., Mills K.H. Retinoic acid suppresses IL-17 production and pathogenic activity of gammadelta T cells in CNS autoimmunity. Immunol. Cell Biol. 2016;94:763–773. doi: 10.1038/icb.2016.39.
    1. Lobo G.P., Amengual J., Baus D., Shivdasani R.A., Taylor D., von Lintig J. Genetics and diet regulate vitamin A production via the homeobox transcription factor ISX. J. Biol. Chem. 2013;288:9017–9027. doi: 10.1074/jbc.M112.444240.
    1. Leung W.C., Hessel S., Meplan C., Flint J., Oberhauser V., Tourniaire F., Hesketh J.E., von Lintig J., Lietz G. Two common single nucleotide polymorphisms in the gene encoding beta-carotene 15,15’-monoxygenase alter beta-carotene metabolism in female volunteers. FASEB J. 2009;23:1041–1053. doi: 10.1096/fj.08-121962.
    1. Masci A., Mattioli R., Costantino P., Baima S., Morelli G., Punzi P., Giordano C., Pinto A., Donini L.M., d’Erme M., et al. Neuroprotective Effect of Brassica oleracea Sprouts Crude Juice in a Cellular Model of Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2015;2015:17. doi: 10.1155/2015/781938.
    1. Mukherjee D., Banerjee S. Learning and memory promoting effects of crude garlic extract. Indian J. Exp. Biol. 2013;51:1094–1100.
    1. Kim M.K., Choi W.Y., Lee H.Y. Enhancement of the neuroprotective activity of Hericium erinaceus mycelium co-cultivated with Allium sativum extract. Arch. Physiol. Biochem. 2015;121:19–25. doi: 10.3109/13813455.2014.974618.
    1. Sears M.E. Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review. Sci. World J. 2013;2013:13. doi: 10.1155/2013/219840.
    1. Mori K., Obara Y., Hirota M., Azumi Y., Kinugasa S., Inatomi S., Nakahata N. Nerve growth factor-inducing activity of Hericium erinaceus in 1321N1 human astrocytoma cells. Biol. Pharm. Bull. 2008;31:1727–1732. doi: 10.1248/bpb.31.1727.
    1. Lee D.H., Kim H.W. Innate immunity induced by fungal beta-glucans via dectin-1 signaling pathway. Int. J. Med. Mushrooms. 2014;16:1–16. doi: 10.1615/IntJMedMushr.v16.i1.10.
    1. Akramiene D., Kondrotas A., Didziapetriene J., Kevelaitis E. Effects of beta-glucans on the immune system. Medicina (Kaunas) 2007;43:597–606.
    1. Phan C.W., David P., Naidu M., Wong K.H., Sabaratnam V. Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: Diversity, metabolite, and mechanism. Crit. Rev. Biotechnol. 2015;35:355–368. doi: 10.3109/07388551.2014.887649.
    1. Lai P.L., Naidu M., Sabaratnam V., Wong K.H., David R.P., Kuppusamy U.R., Abdullah N., Malek S.N. Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. Int. J. Med. Mushrooms. 2013;15:539–554. doi: 10.1615/IntJMedMushr.v15.i6.30.
    1. Joseph J.A., Shukitt-Hale B., Casadesus G. Reversing the deleterious effects of aging on neuronal communication and behavior: Beneficial properties of fruit polyphenolic compounds. Am. J. Clin. Nutr. 2005;81:313s–316s. doi: 10.1093/ajcn/81.1.313S.
    1. Joseph J.A., Shukitt-Hale B., Willis L.M. Grape juice, berries, and walnuts affect brain aging and behavior. J. Nutr. 2009;139:1813s–1817s. doi: 10.3945/jn.109.108266.
    1. Keservani R.K., Sharma A.K., Kesharwani R.K. Medicinal Effect of Nutraceutical Fruits for the Cognition and Brain Health. Scientifica. 2016;2016:3109254. doi: 10.1155/2016/3109254.
    1. Manganaris G.A., Goulas V., Vicente A.R., Terry L.A. Berry antioxidants: Small fruits providing large benefits. J. Sci. Food Agric. 2014;94:825–833. doi: 10.1002/jsfa.6432.
    1. Spencer J.P. The impact of fruit flavonoids on memory and cognition. Br. J. Nutr. 2010;104(Suppl. 3):S40–47. doi: 10.1017/S0007114510003934.
    1. Krikorian R., Shidler M.D., Nash T.A., Kalt W., Vinqvist-Tymchuk M.R., Shukitt-Hale B., Joseph J.A. Blueberry supplementation improves memory in older adults. J. Agric. Food Chem. 2010;58:3996–4000. doi: 10.1021/jf9029332.
    1. Galli R.L., Shukitt-Hale B., Youdim K.A., Joseph J.A. Fruit polyphenolics and brain aging: Nutritional interventions targeting age-related neuronal and behavioral deficits. Ann. N. Y. Acad. Sci. 2002;959:128–132. doi: 10.1111/j.1749-6632.2002.tb02089.x.
    1. Panickar K.S., Jang S. Dietary and plant polyphenols exert neuroprotective effects and improve cognitive function in cerebral ischemia. Recent Pat. Food Nutr. Agric. 2013;5:128–143. doi: 10.2174/1876142911305020003.
    1. Islam M.A., Khandker S.S., Alam F., Khalil M.I., Kamal M.A., Gan S.H. Alzheimer’s Disease and Natural Products: Future Regimens Emerging from Nature. Curr. Top. Med. Chem. 2017;17:1408–1428. doi: 10.2174/1568026617666170103163054.
    1. Essa M.M., Vijayan R.K., Castellano-Gonzalez G., Memon M.A., Braidy N., Guillemin G.J. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem. Res. 2012;37:1829–1842. doi: 10.1007/s11064-012-0799-9.
    1. King J.C., Slavin J.L. White potatoes, human health, and dietary guidance. Adv. Nutr. 2013;4:393s–401s. doi: 10.3945/an.112.003525.
    1. Koutsos A., Tuohy K.M., Lovegrove J.A. Apples and Cardiovascular Health-Is the Gut Microbiota a Core Consideration? Nutrients. 2015;7:3959–3998. doi: 10.3390/nu7063959.
    1. Denis M.C., Roy D., Yeganeh P.R., Desjardins Y., Varin T., Haddad N., Amre D., Sane A.T., Garofalo C., Furtos A., et al. Apple peel polyphenols: A key player in the prevention and treatment of experimental inflammatory bowel disease. Clin. Sci. (Lond.) 2016;130:2217–2237. doi: 10.1042/CS20160524.
    1. Wang J., Huang J.H., Cheng Y.F., Yang G.M. Banana resistant starch and its effects on constipation model mice. J. Med. Food. 2014;17:902–907. doi: 10.1089/jmf.2013.3016.
    1. Buscarinu M.C., Romano S., Mechelli R., Pizzolato Umeton R., Ferraldeschi M., Fornasiero A., Renie R., Cerasoli B., Morena E., Romano C., et al. Intestinal Permeability in Relapsing-Remitting Multiple Sclerosis. Neurotherapeutics. 2018;15:68–74. doi: 10.1007/s13311-017-0582-3.
    1. Buscarinu M.C., Cerasoli B., Annibali V., Policano C., Lionetto L., Capi M., Mechelli R., Romano S., Fornasiero A., Mattei G., et al. Altered intestinal permeability in patients with relapsing-remitting multiple sclerosis: A pilot study. Mult. Scler. 2017;23:442–446. doi: 10.1177/1352458516652498.
    1. Fallon S., Enig M.G. Nourishing Traditions: The Cookbook that Challenges Politically Correct Nutrition and Diet Dictocrats. 2nd Revised ed. NewTrends Publishing, Inc.; Washington, DC, USA: 2001.
    1. Hajos G., Burbano C., Pedrosa M.M., Ayet G., Muzquiz M., Pusztai A., Gelencser E. Effect of Natural Fermentation on the Lectin of Lentils Measured by Immunological Methods AU—Cuadrado, Carmen. Food Agric. Immunol. 2002;14:41–49.
    1. Center for Nutrition Policy and Promotion Healthy US-Style Pattern: Recommended Intake Amounts. [(accessed on 19 September 2017)]; Available online: .
    1. Center for Nutrition Policy and Promotion Healthy Vegetarian Pattern: Recommended Intake Amounts. [(accessed on 19 January 2019)]; Available online: .
    1. Grimstad T., Berge R.K., Bohov P., Skorve J., Goransson L., Omdal R., Aasprong O.G., Haugen M., Meltzer H.M., Hausken T. Salmon diet in patients with active ulcerative colitis reduced the simple clinical colitis activity index and increased the anti-inflammatory fatty acid index-A pilot study. Scand. J. Clin. Lab. Investig. 2011;71:68–73. doi: 10.3109/00365513.2010.542484.
    1. Hoare S., Lithander F., van der Mei I., Ponsonby A.L., Lucas R. Higher intake of omega-3 polyunsaturated fatty acids is associated with a decreased risk of a first clinical diagnosis of central nervous system demyelination: Results from the Ausimmune Study. Mult. Scler. 2016;22:884–892. doi: 10.1177/1352458515604380.
    1. McDougall J., Thomas L.E., McDougall C., Moloney G., Saul B., Finnell J.S., Richardson K., Petersen K.M. Effects of 7 days on an ad libitum low-fat vegan diet: The McDougall Program cohort. Nutr. J. 2014;13:99. doi: 10.1186/1475-2891-13-99.
    1. Yin J., Ren W., Huang X., Li T., Yin Y. Protein restriction and cancer. Biochim. Biophys. Acta. 2018;1869:256–262. doi: 10.1016/j.bbcan.2018.03.004.
    1. Pi-Sunyer X. Changes in body composition and metabolic disease risk. Eur. J. Clin. Nutr. 2018 doi: 10.1038/s41430-018-0320-x.
    1. Liu Y., Zhang D.T., Liu X.G. mTOR signaling in T cell immunity and autoimmunity. Int. Rev. Immunol. 2015;34:50–66. doi: 10.3109/08830185.2014.933957.
    1. Suzuki S., Morimoto S., Fujishiro M., Kawasaki M., Hayakawa K., Miyashita T., Ikeda K., Miyazawa K., Yanagida M., Takamori K., et al. Inhibition of the insulin-like growth factor system is a potential therapy for rheumatoid arthritis. Autoimmunity. 2015;48:251–258. doi: 10.3109/08916934.2014.976631.
    1. Wood J.D., Enser M., Fisher A.V., Nute G.R., Sheard P.R., Richardson R.I., Hughes S.I., Whittington F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008;78:343–358. doi: 10.1016/j.meatsci.2007.07.019.
    1. Ercan P., El S.N. Changes in content of coenzyme Q10 in beef muscle, beef liver and beef heart with cooking and in vitro digestion. J. Food Compos. Anal. 2011;24:1136–1140. doi: 10.1016/j.jfca.2011.05.002.
    1. Cordain L. The Paleo Diet. [(accessed on 1 September 2018)]; Available online:
    1. Dhanapala P., De Silva C., Doran T., Suphioglu C. Cracking the egg: An insight into egg hypersensitivity. Mol. Immunol. 2015;66:375–383. doi: 10.1016/j.molimm.2015.04.016.
    1. Wang G., Ren J., Li G., Hu Q., Gu G., Ren H., Hong Z., Li J. The utility of food antigen test in the diagnosis of Crohn’s disease and remission maintenance after exclusive enteral nutrition. Clin. Res. Hepatol. Gastroenterol. 2018;42:145–152. doi: 10.1016/j.clinre.2017.09.002.
    1. Shakoor Z., AlFaifi A., AlAmro B., AlTawil L.N., AlOhaly R.Y. Prevalence of IgG-mediated food intolerance among patients with allergic symptoms. Ann. Saudi Med. 2016;36:386–390. doi: 10.5144/0256-4947.2016.386.
    1. Pang K.A., Pang K.P., Pang E.B., Tan Y.N., Chan Y.H., Siow J.K. Food allergy and allergic rhinitis in 435 asian patients—A descriptive review. Med. J. Malays. 2017;72:215–220.
    1. Philpott H., Nandurkar S., Royce S.G., Thien F., Gibson P.R. Allergy tests do not predict food triggers in adult patients with eosinophilic oesophagitis. A comprehensive prospective study using five modalities. Aliment. Pharmacol. Ther. 2016;44:223–233. doi: 10.1111/apt.13676.
    1. Simopoulos A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. (Maywood) 2008;233:674–688. doi: 10.3181/0711-MR-311.
    1. Li Y., Sun X., Ma Z., Cui Y., Du C., Xia X., Qian H. Beneficial Influence of Short-Term Germination on Decreasing Allergenicity of Peanut Proteins. J. Food Sci. 2016;81:T255–T261. doi: 10.1111/1750-3841.13161.
    1. Tighe P., Duthie G., Vaughan N., Brittenden J., Simpson W.G., Duthie S., Mutch W., Wahle K., Horgan G., Thies F. Effect of increased consumption of whole-grain foods on blood pressure and other cardiovascular risk markers in healthy middle-aged persons: A randomized controlled trial. Am. J. Clin. Nutr. 2010;92:733–740. doi: 10.3945/ajcn.2010.29417.
    1. Katcher H.I., Legro R.S., Kunselman A.R., Gillies P.J., Demers L.M., Bagshaw D.M., Kris-Etherton P.M. The effects of a whole grain-enriched hypocaloric diet on cardiovascular disease risk factors in men and women with metabolic syndrome. Am. J. Clin. Nutr. 2008;87:79–90. doi: 10.1093/ajcn/87.1.79.
    1. Fisher E., Boeing H., Fritsche A., Doering F., Joost H.G., Schulze M.B. Whole-grain consumption and transcription factor-7-like 2 (TCF7L2) rs7903146: Gene-diet interaction in modulating type 2 diabetes risk. Br. J. Nutr. 2009;101:478–481. doi: 10.1017/S0007114508020369.
    1. Jonsson T., Granfeldt Y., Erlanson-Albertsson C., Ahren B., Lindeberg S. A paleolithic diet is more satiating per calorie than a mediterranean-like diet in individuals with ischemic heart disease. Nutr. Metab. 2010;7:85. doi: 10.1186/1743-7075-7-85.
    1. Thomsen H.L., Jessen E.B., Passali M., Frederiksen J.L. The role of gluten in multiple sclerosis: A systematic review. Mult. Scler. Relat. Disord. 2019;27:156–163. doi: 10.1016/j.msard.2018.10.019.
    1. Berer K., Martinez I., Walker A., Kunkel B., Schmitt-Kopplin P., Walter J., Krishnamoorthy G. Dietary non-fermentable fiber prevents autoimmune neurological disease by changing gut metabolic and immune status. Sci. Rep. 2018;8:10431. doi: 10.1038/s41598-018-28839-3.
    1. Kuo S.M. The interplay between fiber and the intestinal microbiome in the inflammatory response. Adv. Nutr. 2013;4:16–28. doi: 10.3945/an.112.003046.
    1. Pruimboom L., de Punder K. The opioid effects of gluten exorphins: Asymptomatic celiac disease. J. Health Popul. Nutr. 2015;33:24. doi: 10.1186/s41043-015-0032-y.
    1. Dietary Guidelines Advisory Committee Scientific Report of the 2015 Dietary Guidelines Advisory Committee Appendix E-3.6: Dairy Group and Alternatives. [(accessed on 5 July 2018)]; Available online: .
    1. Lordan R., Tsoupras A., Mitra B., Zabetakis I. Dairy Fats and Cardiovascular Disease: Do We Really Need to be Concerned? Foods. 2018;7:29. doi: 10.3390/foods7030029.
    1. Comerford K.B., Pasin G. Gene-Dairy Food Interactions and Health Outcomes: A Review of Nutrigenetic Studies. Nutrients. 2017;9:710. doi: 10.3390/nu9070710.
    1. Guo J., Astrup A., Lovegrove J.A., Gijsbers L., Givens D.I., Soedamah-Muthu S.S. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: Dose-response meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2017;32:269–287. doi: 10.1007/s10654-017-0243-1.
    1. Bordoni A., Danesi F., Dardevet D., Dupont D., Fernandez A.S., Gille D., Nunes Dos Santos C., Pinto P., Re R., Remond D., et al. Dairy products and inflammation: A review of the clinical evidence. Crit. Rev. Food Sci. Nutr. 2017;57:2497–2525. doi: 10.1080/10408398.2014.967385.
    1. Thorning T.K., Raben A., Tholstrup T., Soedamah-Muthu S.S., Givens I., Astrup A. Milk and dairy products: Good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr. Res. 2016;60:32527. doi: 10.3402/fnr.v60.32527.
    1. Malosse D., Perron H., Sasco A., Seigneurin J.M. Correlation between milk and dairy product consumption and multiple sclerosis prevalence: A worldwide study. Neuroepidemiology. 1992;11:304–312. doi: 10.1159/000110946.
    1. Bagheri M., Maghsoudi Z., Fayazi S., Elahi N., Tabesh H., Majdinasab N. Several food items and multiple sclerosis: A case-control study in Ahvaz (Iran) Iran. J. Nurs. Midwifery Res. 2014;19:659–665.
    1. Harirchian M.H., Bitarafan S. Dairy Products Consumption in Multiple Sclerosis Patients: Useful or Harmful. Int. J. Neurorehabilit. 2016;3:e126. doi: 10.4172/2376-0281.1000e126.
    1. Tsabouri S., Douros K., Priftis K.N. Cow’s milk allergenicity. Endocr. Metab. Immune Disord. Drug Targets. 2014;14:16–26. doi: 10.2174/1871530314666140121144224.
    1. Vaarala O., Knip M., Paronen J., Hamalainen A.M., Muona P., Vaatainen M., Ilonen J., Simell O., Akerblom H.K. Cow’s milk formula feeding induces primary immunization to insulin in infants at genetic risk for type 1 diabetes. Diabetes. 1999;48:1389–1394. doi: 10.2337/diabetes.48.7.1389.
    1. Teschemacher H. Opioid receptor ligands derived from food proteins. Curr. Pharm. Des. 2003;9:1331–1344. doi: 10.2174/1381612033454856.
    1. Fiedorowicz E., Kaczmarski M., Cieslinska A., Sienkiewicz-Szlapka E., Jarmolowska B., Chwala B., Kostyra E. Beta-casomorphin-7 alters mu-opioid receptor and dipeptidyl peptidase IV genes expression in children with atopic dermatitis. Peptides. 2014;62:144–149. doi: 10.1016/j.peptides.2014.09.020.
    1. Jianqin S., Leiming X., Lu X., Yelland G.W., Ni J., Clarke A.J. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutr. J. 2016;15:35. doi: 10.1186/s12937-016-0147-z.
    1. Severance E.G., Alaedini A., Yang S., Halling M., Gressitt K.L., Stallings C.R., Origoni A.E., Vaughan C., Khushalani S., Leweke F.M., et al. Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophr. Res. 2012;138:48–53. doi: 10.1016/j.schres.2012.02.025.
    1. Guggenmos J., Schubart A.S., Ogg S., Andersson M., Olsson T., Mather I.H., Linington C. Antibody cross-reactivity between myelin oligodendrocyte glycoprotein and the milk protein butyrophilin in multiple sclerosis. J. Immunol. 2004;172:661–668. doi: 10.4049/jimmunol.172.1.661.
    1. Ashtari F., Jamshidi F., Shoormasti R.S., Pourpak Z., Akbari M. Cow’s milk allergy in multiple sclerosis patients. J. Res. Med. Sci. 2013;18:S62–S65.
    1. Institute of Medicine Dietary Reference Intakes: Macronutrients. [(accessed on 16 June 2018)]; Available online: .
    1. Estadella D., da Penha Oller do Nascimento C.M., Oyama L.M., Ribeiro E.B., Damaso A.R., de Piano A. Lipotoxicity: Effects of dietary saturated and transfatty acids. Mediat. Inflamm. 2013;2013:137579. doi: 10.1155/2013/137579.
    1. Mische L.J., Mowry E.M. The Evidence for Dietary Interventions and Nutritional Supplements as Treatment Options in Multiple Sclerosis: A Review. Curr. Treat. Options Neurol. 2018;20:8. doi: 10.1007/s11940-018-0494-5.
    1. von Geldern G., Mowry E.M. The influence of nutritional factors on the prognosis of multiple sclerosis. Nat. Rev. Neurol. 2012;8:678–689. doi: 10.1038/nrneurol.2012.194.
    1. Riccio P., Rossano R. Diet, Gut Microbiota, and Vitamins D + A in Multiple Sclerosis. Neurotherapeutics. 2018;15:75–91. doi: 10.1007/s13311-017-0581-4.
    1. Caesar R., Tremaroli V., Kovatcheva-Datchary P., Cani P.D., Backhed F. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metab. 2015;22:658–668. doi: 10.1016/j.cmet.2015.07.026.
    1. Khalatbary A.R. Olive oil phenols and neuroprotection. Nutr. Neurosci. 2013;16:243–249. doi: 10.1179/1476830513Y.0000000052.
    1. Kotronoulas A., Pizarro N., Serra A., Robledo P., Joglar J., Rubió L., Hernaéz A., Tormos C., Motilva M.J., Fitó M., et al. Dose-dependent metabolic disposition of hydroxytyrosol and formation of mercapturates in rats. Pharmacol. Res. 2013;77:47–56. doi: 10.1016/j.phrs.2013.09.001.
    1. Zhu L., Liu Z., Feng Z., Hao J., Shen W., Li X., Sun L., Sharman E., Wang Y., Wertz K., et al. Hydroxytyrosol protects against oxidative damage by simultaneous activation of mitochondrial biogenesis and phase II detoxifying enzyme systems in retinal pigment epithelial cells. J. Nutr. Biochem. 2010;21:1089–1098. doi: 10.1016/j.jnutbio.2009.09.006.
    1. Swank R.L., Grimsgaard A. Multiple sclerosis: The lipid relationship. Am. J. Clin. Nutr. 1988;48:1387–1393. doi: 10.1093/ajcn/48.6.1387.
    1. Bjornevik K., Chitnis T., Ascherio A., Munger K.L. Polyunsaturated fatty acids and the risk of multiple sclerosis. Mult. Scler. 2017;23:1830–1838. doi: 10.1177/1352458517691150.
    1. Brenes M., Garcia A., Dobarganes M.C., Velasco J., Romero C. Influence of thermal treatments simulating cooking processes on the polyphenol content in virgin olive oil. J. Agric. Food Chem. 2002;50:5962–5967. doi: 10.1021/jf020506w.
    1. Gomez-Alonso S., Fregapane G., Salvador M.D., Gordon M.H. Changes in phenolic composition and antioxidant activity of virgin olive oil during frying. J. Agric. Food Chem. 2003;51:667–672. doi: 10.1021/jf025932w.
    1. Yehuda S., Rabinovitz S., Mostofsky D.I. Essential fatty acids are mediators of brain biochemistry and cognitive functions. J. Neurosci. Res. 1999;56:565–570. doi: 10.1002/(SICI)1097-4547(19990615)56:6<565::AID-JNR2>;2-H.
    1. Yehuda S. Essential Fatty Acids May Improve the Neuronal Membrane Functions of the Aging Brain. [(accessed on 12 September 2018)]; Available online:
    1. Canola Council of Canada Steps in Oil and Meal Processing. [(accessed on 10 January 2018)]; Available online: .
    1. Welsh J.A., Sharma A., Abramson J.L., Vaccarino V., Gillespie C., Vos M.B. Caloric sweetener consumption and dyslipidemia among US adults. JAMA. 2010;303:1490–1497. doi: 10.1001/jama.2010.449.
    1. Johnson R.K., Appel L.J., Brands M., Howard B.V., Lefevre M., Lustig R.H., Sacks F., Steffen L.M., Wylie-Rosett J. Dietary sugars intake and cardiovascular health: A scientific statement from the American Heart Association. Circulation. 2009;120:1011–1020. doi: 10.1161/CIRCULATIONAHA.109.192627.
    1. Pearlman M., Obert J., Casey L. The Association Between Artificial Sweeteners and Obesity. Curr. Gastroenterol. Rep. 2017;19:64. doi: 10.1007/s11894-017-0602-9.
    1. Farez M.F., Correale J. People with MS should consume a low-salt diet—YES. Mult. Scler. 2016;22:1777–1779. doi: 10.1177/1352458516660389.
    1. Ascherio A., Munger K.L. People with MS should consume a low-salt diet—NO. Mult. Scler. 2016;22:1779–1781. doi: 10.1177/1352458516661241.
    1. Pugliatti M. People with MS should consume a low-salt diet—Commentary. Mult. Scler. 2016;22:1781–1782. doi: 10.1177/1352458516669003.
    1. Sharif K., Amital H., Shoenfeld Y. The role of dietary sodium in autoimmune diseases: The salty truth. Autoimmun. Rev. 2018;17:1069–1073. doi: 10.1016/j.autrev.2018.05.007.
    1. Jörg S., Kissel J., Manzel A., Kleinewietfeld M., Haghikia A., Gold R., Müller D.N., Linker R.A. High salt drives Th17 responses in experimental autoimmune encephalomyelitis without impacting myeloid dendritic cells. Exp. Neurol. 2016;279:212–222. doi: 10.1016/j.expneurol.2016.03.010.
    1. Zhou X., Packialakshmi B., Xiao Y., Nurmukhambetova S., Lees J.R. Progression of experimental autoimmune encephalomyelitis is associated with up-regulation of major sodium transporters in the mouse kidney cortex under a normal salt diet. Cell. Immunol. 2017;317:18–25. doi: 10.1016/j.cellimm.2017.04.006.
    1. Zostawa J., Adamczyk J., Sowa P., Adamczyk-Sowa M. The influence of sodium on pathophysiology of multiple sclerosis. Neurol. Sci. 2017;38:389–398. doi: 10.1007/s10072-016-2802-8.
    1. Fitzgerald K.C., Munger K.L., Hartung H.P., Freedman M.S., Montalban X., Edan G., Wicklein E.M., Radue E.W., Kappos L., Pohl C., et al. Sodium intake and multiple sclerosis activity and progression in BENEFIT. Ann. Neurol. 2017;82:20–29. doi: 10.1002/ana.24965.
    1. Wen W., Wan Z., Ren K., Zhou D., Gao Q., Wu Y., Wang L., Yuan Z., Zhou J. Potassium supplementation inhibits IL-17A production induced by salt loading in human T lymphocytes via p38/MAPK-SGK1 pathway. Exp. Mol. Pathol. 2016;100:370–377. doi: 10.1016/j.yexmp.2016.03.009.
    1. Gijsbers L., Dower J.I., Schalkwijk C.G., Kusters Y.H., Bakker S.J., Hollman P.C., Geleijnse J.M. Effects of sodium and potassium supplementation on endothelial function: A fully controlled dietary intervention study. Br. J. Nutr. 2015;114:1419–1426. doi: 10.1017/S0007114515002986.
    1. Khalili H., Malik S., Ananthakrishnan A.N., Garber J.J., Higuchi L.M., Joshi A., Peloquin J., Richter J.M., Stewart K.O., Curhan G.C., et al. Identification and Characterization of a Novel Association between Dietary Potassium and Risk of Crohn’s Disease and Ulcerative Colitis. Front. Immunol. 2016;7:554. doi: 10.3389/fimmu.2016.00554.
    1. Brück J., Holstein J., Glocova I., Seidel U., Geisel J., Kanno T., Kumagai J., Mato N., Sudowe S., Widmaier K., et al. Nutritional control of IL-23/Th17-mediated autoimmune disease through HO-1/STAT3 activation. Sci. Rep. 2017;7:44482. doi: 10.1038/srep44482.
    1. Zhao G., Liu Y., Yi X., Wang Y., Qiao S., Li Z., Ni J., Song Z. Curcumin inhibiting Th17 cell differentiation by regulating the metabotropic glutamate receptor-4 expression on dendritic cells. Int. Immunopharmacol. 2017;46:80–86. doi: 10.1016/j.intimp.2017.02.017.
    1. Lee G., Chung H.S., Lee K., Lee H., Kim M., Bae H. Curcumin attenuates the scurfy-induced immune disorder, a model of IPEX syndrome, with inhibiting Th1/Th2/Th17 responses in mice. Phytomedicine. 2017;33:1–6. doi: 10.1016/j.phymed.2017.01.008.
    1. Wang S., Li H., Zhang M., Yue L.T., Wang C.C., Zhang P., Liu Y., Duan R.S. Curcumin ameliorates experimental autoimmune myasthenia gravis by diverse immune cells. Neurosci. Lett. 2016;626:25–34. doi: 10.1016/j.neulet.2016.05.020.
    1. Xie L., Li X.K., Funeshima-Fuji N., Kimura H., Matsumoto Y., Isaka Y., Takahara S. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int. Immunopharmacol. 2009;9:575–581. doi: 10.1016/j.intimp.2009.01.025.
    1. da Costa D.S., Hygino J., Ferreira T.B., Kasahara T.M., Barros P.O., Monteiro C., Oliveira A., Tavares F., Vasconcelos C.C., Alvarenga R., et al. Vitamin D modulates different IL-17-secreting T cell subsets in multiple sclerosis patients. J. Neuroimmunol. 2016;299:8–18. doi: 10.1016/j.jneuroim.2016.08.005.
    1. Li B., Cui W., Liu J., Li R., Liu Q., Xie X.H., Ge X.L., Zhang J., Song X.J., Wang Y., et al. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp. Neurol. 2013;250:239–249. doi: 10.1016/j.expneurol.2013.10.002.
    1. Henriques J.F., Portugal C.C., Canedo T., Relvas J.B., Summavielle T., Socodato R. Microglia and alcohol meet at the crossroads: Microglia as critical modulators of alcohol neurotoxicity. Toxicol. Lett. 2018;283:21–31. doi: 10.1016/j.toxlet.2017.11.002.
    1. Diaz-Cruz C., Chua A.S., Malik M.T., Kaplan T., Glanz B.I., Egorova S., Guttmann C.R.G., Bakshi R., Weiner H.L., Healy B.C., et al. The effect of alcohol and red wine consumption on clinical and MRI outcomes in multiple sclerosis. Mult. Scler. Relat. Disord. 2017;17:47–53. doi: 10.1016/j.msard.2017.06.011.
    1. D’Hooghe M.B., Haentjens P., Nagels G., De Keyser J. Alcohol, coffee, fish, smoking and disease progression in multiple sclerosis. Eur. J. Neurol. 2012;19:616–624. doi: 10.1111/j.1468-1331.2011.03596.x.
    1. Rodriguez-Artalejo F., Lopez-Garcia E. Coffee Consumption and Cardiovascular Disease: A Condensed Review of Epidemiological Evidence and Mechanisms. J. Agric. Food Chem. 2018;66:5257–5263. doi: 10.1021/acs.jafc.7b04506.
    1. Massa J., O’Reilly E.J., Munger K.L., Ascherio A. Caffeine and alcohol intakes have no association with risk of multiple sclerosis. Mult. Scler. 2013;19:53–58. doi: 10.1177/1352458512448108.
    1. Hedstrom A.K., Mowry E.M., Gianfrancesco M.A., Shao X., Schaefer C.A., Shen L., Olsson T., Barcellos L.F., Alfredsson L. High consumption of coffee is associated with decreased multiple sclerosis risk; results from two independent studies. J. Neurol. Neurosurg. Psychiatry. 2016;87:454–460. doi: 10.1136/jnnp-2015-312176.
    1. Oleschowska A. Multiple Sclerosis Disability, Ratigue Reduced with Caffeine Intake. [(accessed on 3 December 2018)]; Available online:
    1. Tellone E., Galtieri A., Russo A., Ficarra S. Protective effects of the caffeine against neurodegenerative diseases. Curr. Med. Chem. 2017;24 doi: 10.2174/0929867324666171009104040.
    1. Weaver C.M., Dwyer J., Fulgoni V.L., 3rd, King J.C., Leveille G.A., MacDonald R.S., Ordovas J., Schnakenberg D. Processed foods: Contributions to nutrition. Am. J. Clin. Nutr. 2014;99:1525–1542. doi: 10.3945/ajcn.114.089284.
    1. Christaki E., Bonos E., Giannenas I., Florou-Paneri P. Functional properties of carotenoids originating from algae. J. Sci. Food Agric. 2013;93:5–11. doi: 10.1002/jsfa.5902.
    1. Gammone M.A., Riccioni G., D’Orazio N. Marine Carotenoids against Oxidative Stress: Effects on Human Health. Mar. Drugs. 2015;13:6226–6246. doi: 10.3390/md13106226.
    1. Pereira L. A review of the nutrient composition of selected edible seaweeds. In: Pomin V.H., editor. Seaweed. Nova Science Publishers, Inc.; Hauppauge, NY, USA: 2011. pp. 15–47.
    1. MacArtain P., Gill C.I., Brooks M., Campbell R., Rowland I.R. Nutritional value of edible seaweeds. Nutr. Rev. 2007;65:535–543. doi: 10.1111/j.1753-4887.2007.tb00278.x.
    1. Manousou S., Stal M., Larsson C., Mellberg C., Lindahl B., Eggertsen R., Hulthen L., Olsson T., Ryberg M., Sandberg S., et al. A Paleolithic-type diet results in iodine deficiency: A 2-year randomized trial in postmenopausal obese women. Eur. J. Clin. Nutr. 2018;72:124–129. doi: 10.1038/ejcn.2017.134.
    1. Ershow A.G., Skeaff S.A., Merkel J.M., Pehrsson P.R. Development of Databases on Iodine in Foods and Dietary Supplements. Nutrients. 2018;10:100. doi: 10.3390/nu10010100.
    1. Singh N., Verma K.G., Verma P., Sidhu G.K., Sachdeva S. A comparative study of fluoride ingestion levels, serum thyroid hormone & TSH level derangements, dental fluorosis status among school children from endemic and non-endemic fluorosis areas. SpringerPlus. 2014;3:7.
    1. Meletis C.D. Iodine: Health Implications of Deficiency. J. Evid. Based Complement. Altern. Med. 2011;16:190–194. doi: 10.1177/2156587211414424.
    1. Zhai Q., Narbad A., Chen W. Dietary strategies for the treatment of cadmium and lead toxicity. Nutrients. 2015;7:552–571. doi: 10.3390/nu7010552.
    1. National Multiple Sclerosis Society Disproved Theories. [(accessed on 18 January 2019)]; Available online: .
    1. Fulgenzi A., Zanella S.G., Mariani M.M., Vietti D., Ferrero M.E. A case of multiple sclerosis improvement following removal of heavy metal intoxication: Lessons learnt from Matteo’s case. Biometals. 2012;25:569–576. doi: 10.1007/s10534-012-9537-7.
    1. Motts J.A., Shirley D.L., Silbergeld E.K., Nyland J.F. Novel biomarkers of mercury-induced autoimmune dysfunction: A cross-sectional study in Amazonian Brazil. Environ. Res. 2014;132:12–18. doi: 10.1016/j.envres.2014.03.024.
    1. Farina M., Avila D.S., da Rocha J.B., Aschner M. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochem. Int. 2013;62:575–594. doi: 10.1016/j.neuint.2012.12.006.
    1. Roy-Lachapelle A., Solliec M., Bouchard M.F., Sauve S. Detection of Cyanotoxins in Algae Dietary Supplements. Toxins. 2017;9:76. doi: 10.3390/toxins9030076.
    1. Backer L.C., Manassaram-Baptiste D., LePrell R., Bolton B. Cyanobacteria and algae blooms: Review of health and environmental data from the Harmful Algal Bloom-Related Illness Surveillance System (HABISS) 2007–2011. Toxins. 2015;7:1048–1064. doi: 10.3390/toxins7041048.
    1. Nutrition Coordinating Center (NCC) Nutrition Data System for Research (NDSR) software. University of Minnesota; Minneapolis, MN, USA: 2017.
    1. Altun I., Kurutas E.B. Vitamin B complex and vitamin B12 levels after peripheral nerve injury. Neural Regen. Res. 2016;11:842–845. doi: 10.4103/1673-5374.177150.
    1. Marco M.L., Heeney D., Binda S., Cifelli C.J., Cotter P.D., Foligne B., Ganzle M., Kort R., Pasin G., Pihlanto A., et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017;44:94–102. doi: 10.1016/j.copbio.2016.11.010.
    1. van den Hoogen W.J., Laman J.D., t Hart B.A. Modulation of Multiple Sclerosis and Its Animal Model Experimental Autoimmune Encephalomyelitis by Food and Gut Microbiota. Front. Immunol. 2017;8:1081. doi: 10.3389/fimmu.2017.01081.
    1. Miyake S., Yamamura T. Gut environmental factors and multiple sclerosis. J. Neuroimmunol. 2018;24 doi: 10.1016/j.jneuroim.2018.07.015.
    1. Chu F., Shi M., Lang Y., Shen D., Jin T., Zhu J., Cui L. Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives. Mediat. Inflamm. 2018;2018:8168717. doi: 10.1155/2018/8168717.
    1. Freedman S.N., Shahi S.K., Mangalam A.K. The “Gut Feeling”: Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics. 2018;15:109–125. doi: 10.1007/s13311-017-0588-x.
    1. Libbey J.E., Sanchez J.M., Doty D.J., Sim J.T., Cusick M.F., Cox J.E., Fischer K.F., Round J.L., Fujinami R.S. Variations in diet cause alterations in microbiota and metabolites that follow changes in disease severity in a multiple sclerosis model. Benef. Microbes. 2018;9:495–513. doi: 10.3920/BM2017.0116.
    1. Rezac S., Kok C.R., Heermann M., Hutkins R. Fermented Foods as a Dietary Source of Live Organisms. Front. Microbiol. 2018;9:1785. doi: 10.3389/fmicb.2018.01785.
    1. Septembre-Malaterre A., Remize F., Poucheret P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018;104:86–99. doi: 10.1016/j.foodres.2017.09.031.
    1. Brown C.C., Noelle R.J. Seeing through the dark: New insights into the immune regulatory functions of vitamin A. Eur. J. Immunol. 2015;45:1287–1295. doi: 10.1002/eji.201344398.
    1. Chiabrando D., Fiorito V., Petrillo S., Tolosano E. Unraveling the Role of Heme in Neurodegeneration. Front. Neurosci. 2018;12:712. doi: 10.3389/fnins.2018.00712.
    1. Obeid R., McCaddon A., Herrmann W. The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases. Clin. Chem. Lab. Med. 2007;45:1590–1606. doi: 10.1515/CCLM.2007.356.
    1. Institute of Medicine . Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. National Academies Press (US); Washington, DC, USA: 1998.
    1. Fitzgerald K.C., Munger K.L., Kochert K., Arnason B.G., Comi G., Cook S., Goodin D.S., Filippi M., Hartung H.P., Jeffery D.R., et al. Association of Vitamin D Levels with Multiple Sclerosis Activity and Progression in Patients Receiving Interferon Beta-1b. Jama Neurol. 2015;72:1458–1465. doi: 10.1001/jamaneurol.2015.2742.
    1. Institute of Medicine Dietary Reference Intakes: EAR, RDA, AI, Acceptable Macronutrient Distribution Ranges, and UL. [(accessed on 16 June 2018)]; Available online: .
    1. Holick M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017;18:153–165. doi: 10.1007/s11154-017-9424-1.
    1. Weiland T.J., Jelinek G.A., Marck C.H., Hadgkiss E.J., van der Meer D.M., Pereira N.G., Taylor K.L. Clinically significant fatigue: Prevalence and associated factors in an international sample of adults with multiple sclerosis recruited via the internet. PLoS ONE. 2015;10:e0115541. doi: 10.1371/journal.pone.0115541.
    1. Pommerich U.M., Brincks J., Christensen M.E. Is there an effect of dietary intake on MS-related fatigue? A systematic literature review. Mult. Scler. Relat. Disord. 2018;25:282–291. doi: 10.1016/j.msard.2018.08.017.

Source: PubMed

Подписаться