Mechanisms of Antibiotic Resistance

Vincent Cattoir, Joseph J. Ferretti, Dennis L. Stevens, Vincent A. Fischetti, Vincent Cattoir, Joseph J. Ferretti, Dennis L. Stevens, Vincent A. Fischetti

Excerpt

Streptococcus pyogenes, or group A streptococcus, is a major human pathogen that causes over 600 million infections annually (Lynskey, Lawrenson, & Sriskandan, 2011). This species is able to colonize the upper respiratory tract and skin of asymptomatic people, but is also responsible for a wide range of diseases, including suppurative infections and non-suppurative complications, which may occur either endemically or as outbreaks (Cunningham, 2000; Efstratiou, 2000). The types of infections can be divided into three groups: superficial infections (such as pharyngotonsillitis, impetigo, erysipelas, vaginitis, or post-partum infections), deep infections (such as bacteremia, cellulitis, myositis, necrotizing fasciitis, puerperal sepsis, pericarditis, meningitis, pneumonia, or septic arthritis), and toxin-mediated diseases (such as scarlet fever or streptococcal toxic shock syndrome [STSS]) (Efstratiou, 2000). These infections also play a significant role in the development of post-infection immune sequelae, including rheumatic fever, acute glomerulonephritis, and reactive arthritis (Cunningham, 2000). Clinical isolates of S. pyogenes were classically differentiated into M serotypes, based on structural differences of the M protein (encoded by the emm gene), which is a fibrillar cell-wall protein involved in adherence to human cells and prevention of opsonophagocytosis (Lynskey, Lawrenson, & Sriskandan, 2011; Cunningham, 2000). This method was replaced in the late 1990s by the typing system based on sequencing of the 5’ end of the emm gene, and is referred to as emm typing (Facklam, et al., 1999). Even though there were significant differences in the emm-type distribution that depended on geographical area or clinical disease state, the most common emm types found in a large systematic review were emm1 (18.3%), emm12 (11.1%), emm28 (8.5%), emm3 (6.9%), and emm4 (6.9%) (Steer, Law, Matatolu, Beall, & Carapetis, 2009). As far as antimicrobial resistance, S. pyogenes has remained highly susceptible to almost all classes of antibiotics [Table 1] (Bourbeau & Campos, 1982; Kayser, 1994; Chin, Gu, Yu, Zhang, & Neu, 1991; Cohen, et al., 1991; Bouanchaud, 1997; Blondeau, Church, Yaschuk, & Bjarnason, 1999). Among S. pyogenes clinical isolates in some geographic regions, only resistance to macrolides (and related compounds) and tetracyclines are commonly found.

© The University of Oklahoma Health Sciences Center.

References

    1. Albertí S., Cortés G., García-Rey C., Rubio C., Baquero F., García-Rodríguez J. A., et al. Streptococcus pyogenes pharyngeal isolates with reduced susceptibility to ciprofloxacin in Spain: mechanisms of resistance and clonal diversity. Antimicrobial Agents and Chemotherapy. 2005;49(1):418–420.
    1. Albrich W. C., Monnet D. L., Harbarth S. Antibiotic selection pressure and resistance in Streptococcus pneumoniae and Streptococcus pyogenes. Emerging Infectious Diseases. 2004;10(3):514–517.
    1. Al-Lahham A., De Souza N. J., Patel M., Reinert R. R. Activity of the new quinolones WCK 771, WCK 1152 and WCK 1153 against clinical isolates of Streptococcus pneumoniae and Streptococcus pyogenes. Journal of Antimicrobial Chemotherapy. 2005;56:1130–1133.
    1. Alonso R., Galimand M., Courvalin P. parC mutation conferring ciprofloxacin resistance in Streptococcus pyogenes BM4513. Antimicrobial Agents and Chemotherapy. 2002;46(11):3686–3687.
    1. Alonso R., Mateo E., Ezpeleta G., Cisterna R. Characterisation of levofloxacin-resistant clinical isolates of Streptococcus pyogenes in Bilbao, Spain. International Journal of Antimicrobial Agents. 2007;30(2):183–185.
    1. Alonso R., Mateo E., Galimand M., Garaizar J., Courvalin P., Cisterna R. Clonal spread of pediatric isolates of ciprofloxacin-resistant, emm type 6 Streptococcus pyogenes. Journal of Clinical Microbiology. 2005;43(5):2492–2493.
    1. Amábile-Cuevas C. F., Hermida-Escobedo C., Vivar R. Comparative in vitro activity of moxifloxacin by E-test against Streptococcus pyogenes. Clinical Infectious Diseases. 2001;32 Suppl 1:S30–S32.
    1. Ambrose K. D., Nisbet R., Stephens D. S. Macrolide efflux in Streptococcus pneumoniae is mediated by a dual efflux pump (mel and mef) and is erythromycin inducible. Antimicrobial Agents and Chemotherapy. 2005;49(10):4203–4209.
    1. Amezaga M. R., Carter P. E., Cash P., McKenzie H. Molecular epidemiology of erythromycin resistance in Streptococcus pneumoniae isolates from blood and noninvasive sites. Journal of Clinical Microbiology. 2002;40(9):3313–3318.
    1. Arai K., Hirakata Y., Yano H., Kanamori H., Endo S., Hirotani A., et al. Emergence of fluoroquinolone-resistant Streptococcus pyogenes in Japan by a point mutation leading to a new amino acid substitution. Journal of Antimicrobial Chemotherapy. 2011;66(3):494–498.
    1. Ardanuy C., Tubau F., Liñares J., Domínguez M. A., Pallarés R., Martín R., et al. Distribution of subclasses mefA and mefE of the mefA gene among clinical isolates of macrolide-resistant (M-phenotype) Streptococcus pneumoniae, viridans group streptococci, and Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy. 2005;49(2):827–829.
    1. Arpin C., Canron M. H., Noury P., Quentin C. Emergence of mefA and mefE genes in beta-haemolytic streptococci and pneumococci in France. Journal of Antimicrobial Chemotherapy. 1999;44(1):133–134.
    1. Aubry-Damon H., Galimand M., Gerbaud G., Courvalin P. rpoB mutation conferring rifampin resistance in Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy. 2002;46(5):1571–1573.
    1. Ayer V., Tewodros W., Manoharan A., Skariah S., Luo F., Bessen D. E. Tetracycline resistance in group a streptococci: emergence on a global scale and influence on multiple-drug resistance. Antimicrobial Agents and Chemotherapy. 2007;51(5):1865–1868.
    1. Baldassarri L., Creti R., Recchia S., Imperi M., Facinelli B., Giovanetti E., et al. Therapeutic failures of antibiotics used to treat macrolide-susceptible Streptococcus pyogenes infections may be due to biofilm formation. Journal of Clinical Microbiology. 2006;44(8):2721–2727.
    1. Banks D. J., Porcella S. F., Barbian K. D., Beres S. B., Philips L. E., Voyich J. M., et al. Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain. The Journal of Infectious Diseases. 2004;190(4):727–738.
    1. Banks D. J., Porcella S. F., Barbian K. D., Martin J. M., Musser J. M. Structure and distribution of an unusual chimeric genetic element encoding macrolide resistance in phylogenetically diverse clones of group A Streptococcus. The Journal of Infectious Diseases. 2003;188(12):1898–1908.
    1. Barnes A. I., Herrero I. L., Albesa I. New aspect of the synergistic antibacterial action of ampicillin and gentamicin. International Journal of Antimicrobial Agents. 2005;26(2):146–151.
    1. Becker B., Cooper M. A. Aminoglycoside antibiotics in the 21st century. ACS Chemical Biology. 2013;8(1):105–115.
    1. Bergman M., Huikko S., Pihlajamäki M., Laippala P., Palva E., Huovinen P., et al. Effect of macrolide consumption on erythromycin resistance in Streptococcus pyogenes in Finland in 1997-2001. Clinical Infectious Diseases. 2004;38(9):1251–1256.
    1. Bergmann R., Sagar V., Nitsche-Schmitz D. P., Chhatwal G. S. first detection of trimethoprim resistance determinant dfrG in Streptococcus pyogenes clinical isolates in India. Antimicrobial Agents and Chemotherapy. 2012;56(10):5424–5425.
    1. Bergmann R., van der Linden M., Chhatwal G. S., Nitsche-Schmitz D. P. Factors that cause trimethoprim resistance in Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy. 2014;58(4):2281–2288.
    1. Betriu C., Culebras E., Redondo M., Rodríguez-Avial I., Gómez M., Boloix A., et al. Prevalence of macrolide and tetracycline resistance mechanisms in Streptococcus pyogenes isolates and in vitro susceptibility to telithromycin. Journal of Antimicrobial Chemotherapy. 2002;50(3):436–438.
    1. Betriu C., Culebras E., Rodríguez-Avial I., Gómez M., Sánchez B. A., Picazo J. J. In vitro activities of tigecycline against erythromycin-resistant Streptococcus pyogenes and Streptococcus agalactiae: mechanisms of macrolide and tetracycline resistance. Antimicrobial Agents and Chemotherapy. 2004;48(1):323–325.
    1. Betriu C., Redondo M., Palau M. L., Sánchez A., Gómez M., Esther C., et al. Comparative in vitro activities of linezolid, quinupristin-dalfopristin, moxifloxacin, and trovafloxacin against erythromycin-susceptible and -resistant streptococci. Antimicrobial Agents and Chemotherapy. 2000;44(7):1838–1841.
    1. Biedenbach D. J., Toleman M. A., Walsh T. R., Jones R. N. Characterization of fluoroquinolone-resistant beta-hemolytic Streptococcus spp. isolated in North America and Europe including the first report of fluoroquinolone-resistant Streptococcus dysgalactiae subspecies equisimilis... Diagnostic Microbiology and Infectious Disease. 2006;55(2):119–127.
    1. Biek D., Critchley I. A., Riccobene T. A., Thye D. A. Ceftaroline fosamil: a novel broad-spectrum cephalosporin with expanded anti-Gram-positive activity. Journal of Antimicrobial Chemotherapy. 2010;65 Suppl 4:iv9–iv16.
    1. Billal D. S., Fedorko D. P., Yan S. S., Hotomi M., Fujihara K., Nelson N., et al. In vitro induction and selection of fluoroquinolone-resistant mutants of Streptococcus pyogenes strains with multiple emm types. Journal of Antimicrobial Chemotherapy. 2007;59:28–34.
    1. Bingen E., Bidet P., Mihaila-Amrouche L., Doit C., Forcet S., Brahimi N., et al. Emergence of macrolide-resistant Streptococcus pyogenes strains in French children. Antimicrobial Agents and Chemotherapy. 2004;48(9):3559–3562.
    1. Bingen E., Leclercq R., Fitoussi F., Brahimi N., Malbruny B., Deforche D., et al. Emergence of group A streptococcus strains with different mechanisms of macrolide resistance. Antimicrobial Agents and Chemotherapy. 2002;46(5):1199–1203.
    1. Bisno A. L., Gerber M. A., Gwaltney J. M., Jr, Kaplan E. L., Schwartz R. H. Practice Guidelines for the Diagnosis and Management of Group A Streptococcal Pharyngitis. Clinical Infectious Diseases. 2002;35(2):113–125.
    1. Bjørkeng E. K., Hjerde E., Pedersen T., Sundsfjord A., Hegstad K. ICESluvan, a 94-kilobase mosaic integrative conjugative element conferring interspecies transfer of VanB-type glycopeptide resistance, a novel bacitracin resistance locus, and a toxin-antitoxin stabilization system. Journal of Bacteriology. 2013;195(23):5381–5390.
    1. Blackman Northwood J., Del Grosso M., Cossins L. R., Coley M. D., Creti R., Pantosti A., et al. Characterization of macrolide efflux pump mef subclasses detected in clinical isolates of Streptococcus pyogenes isolated between 1999 and 2005. Antimicrobial Agents and Chemotherapy. 2009;53(5):1921–1925.
    1. Blondeau J. M., Sanche S. E. Quinupristin/dalfopristin. Expert Opinion on Pharmacotherapy. 2002;3(9):1341–1364.
    1. Blondeau J. M., Church D., Yaschuk Y., Bjarnason J. In vitro activity of several antimicrobial agents against 1003 isolates of Streptococcus pyogenes collected from Western Canada. International Journal of Antimicrobial Agents. 1999;12(1):67–70.
    1. Borbone S., Lupo A., Mezzatesta M. L., Campanile F., Santagati M., Stefani S. Evaluation of the in vitro activity of tigecycline against multiresistant Gram-positive cocci containing tetracycline resistance determinants. International Journal of Antimicrobial Agents. 2008;31(3):209–215.
    1. Bouanchaud D. H. In-vitro and in-vivo antibacterial activity of quinupristin/dalfopristin. Journal of Antimicrobial Chemotherapy. 1997;39 Suppl A:15–21.
    1. Bourbeau P., Campos J. M. Current antibiotic susceptibility of group A beta-hemolytic streptococci. The Journal of Infectious Diseases. 1982;145(6):916.
    1. Bowen A. C., Lilliebridge R. A., Tong S. Y., Baird R. W., Ward P., McDonald M. I., et al. Is Streptococcus pyogenes resistant or susceptible to trimethoprim-sulfamethoxazole? Journal of Clinical Microbiology. 2012;50(12):4067–4072.
    1. Bozdogan B., Appelbaum P. C., Ednie L., Grivea I. N., Syrogiannopoulos G. A. Development of macrolide resistance by ribosomal protein L4 mutation in Streptococcus pyogenes during miocamycin treatment of an eight-year-old Greek child with tonsillopharyngitis. Clinical Microbiology and Infection. 2003;9(9):966–969.
    1. Bradford P. A., Weaver-Sands D. T., Petersen P. J. In vitro activity of tigecycline against isolates from patients enrolled in phase 3 clinical trials of treatment for complicated skin and skin-structure infections and complicated intra-abdominal infections. Clinical Infectious Diseases. 2005;41 Suppl 5:S315–S332.
    1. Brauers J., Kresken M., Hafner D., Shah P. M. German Linezolid Resistance Study G. 2005. Surveillance of linezolid resistance in Germany, 2001-2002. Clinical Microbiology and Infection. 2005;11(1):39–46.
    1. Brenciani A., Bacciaglia A., Vecchi M., Vitali L. A., Varaldo P. E., Giovanetti E. Genetic elements carrying erm(B) in Streptococcus pyogenes and association with tet(M) tetracycline resistance gene. Antimicrobial Agents and Chemotherapy. 2007;51(4):1209–1216.
    1. Brenciani A., Bacciaglia A., Vignaroli C., Pugnaloni A., Varaldo P. E., Giovanetti E. Φm46.1, the Main Streptococcus pyogenes Element Carrying mef(A) and tet(O) Gene. Antimicrobial Agents and Chemotherapy. 2010;54(1):221–229.
    1. Brenciani A., Ojo K. K., Monachetti A., Menzo S., Roberts M. C., Varaldo P. E., et al. Distribution and molecular analysis of mef(A)-containing elements in tetracycline-susceptible and -resistant Streptococcus pyogenes clinical isolates with efflux-mediated erythromycin resistance. Journal of Antimicrobial Chemotherapy. 2004;54(6):991–998.
    1. Brenciani A., Tiberi E., Bacciaglia A., Petrelli D., Varaldo P. E., Giovanetti E. Two distinct genetic elements are responsible for erm(TR)-mediated erythromycin resistance in tetracycline-susceptible and tetracycline-resistant strains of Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy. 2011;55(5):2106–2112.
    1. Brenciani A., Tiberi E., Morici E., Oryasin E., Giovanetti E., Varaldo P. E. ICESp1116, the genetic element responsible for erm(B)-mediated, inducible resistance to erythromycin in Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy. 2012;56(12):6425–6429.
    1. Brenciani A., Tiberi E., Morroni G., Mingoia M., Varaldo P. E., Giovanetti E. ICESp1116, the genetic element responsible for erm(B)-mediated, inducible erythromycin resistance in Streptococcus pyogenes, belongs to the TnGBS family of integrative and conjugative elements. Antimicrobial Agents and Chemotherapy. 2014;58(4):2479–2481.
    1. Brook I. Penicillin failure in the treatment of streptococcal pharyngo-tonsillitis. Current Infectious Disease Reports. 2013;15(3):232–235.
    1. Brown S. D., Rybak M. J. Antimicrobial susceptibility of Streptococcus pneumoniae, Streptococcus pyogenes and Haemophilus influenzae collected from patients across the USA. Journal of Antimicrobial Chemotherapy. 2004;54 Suppl 1:i7–i15.
    1. Burdett V. Nucleotide sequence of the tet(M) gene of Tn916. Nucleic Acids Research. 1990;18(20):6137.
    1. Butaye P., Devriese L. A., Haesebrouck F. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clinical Microbiology Reviews. 2003;16(2):175–188.
    1. Cain B. D., Norton P. J., Eubanks W., Nick H. S., Allen C. M. Amplification of the bacA gene confers bacitracin resistance to Escherichia coli. Journal of Bacteriology. 1993;175(12):3784–3789.
    1. Cantón R., Loza E., Morosini M. I., Baquero F. Antimicrobial resistance amongst isolates of Streptococcus pyogenes and Staphylococcus aureus in the PROTEKT antimicrobial surveillance programme during 1999-2000. Journal of Antimicrobial Chemotherapy. 2002;50 Suppl S1:9–24.
    1. Carpenter C. F., Chambers H. F. Daptomycin: another novel agent for treating infections due to drug-resistant gram-positive pathogens. Clinical Infectious Diseases. 2004;38(7):994–1000.
    1. Casey J. R., Pichichero M. E. Meta-analysis of cephalosporins versus penicillin for treatment of group A streptococcal tonsillopharyngitis in adults. Clinical Infectious Diseases. 2004;38(11):1526–1534.
    1. Cattoir V., Giard J. C. Antibiotic resistance in Enterococcus faecium clinical isolates. Expert Review of Anti-infective Therapy. 2014;12(2):239–248.
    1. Cattoir V., Leclercq R. Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce? Journal of Antimicrobial Chemotherapy. 2013;68(4):731–742.
    1. Cattoir V., Nordmann P. Plasmid-mediated quinolone resistance in gram-negative bacterial species: an update. Current Medicinal Chemistry. 2009;16(8):1028–1046.
    1. Chalker A. F., Ingraham K. A., Lunsford R. D., Bryant A. P., Bryant J., Wallis N. G., et al. The bacA gene, which determines bacitracin susceptibility in Streptococcus pneumoniae and Staphylococcus aureus, is also required for virulence. Microbiology. 2000;146(Pt 7):1547–1553.
    1. Chin N. X., Gu J. W., Yu K. W., Zhang Y. X., Neu H. C. In vitro activity of sparfloxacin. Antimicrobial Agents and Chemotherapy. 1991;35(3):567–571.
    1. Chopra I., Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews. 2001;65(2):232–260. second page, table of contents.
    1. Chow J. W. Aminoglycoside resistance in enterococci. Clinical Infectious Diseases. 2000;31(2):586–589.
    1. Clancy J., Petitpas J., Dib-Haij F., Yuan W., Cronan M., Kamath A. V., et al. Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcus pyogenes. Molecular Microbiology. 1996;22(5):867–879.
    1. Clermont D., Chesneau O., De Cespédès G., Horaud T. New tetracycline resistance determinants coding for ribosomal protection in streptococci and nucleotide sequence of tet(T) isolated from Streptococcus pyogenes A498. Antimicrobial Agents and Chemotherapy. 1997;41(1):112–116.
    1. Cohen M. A., Huband M. D., Mailloux G. B., Yoder S. L., Roland G. E., Heifetz C. L. In vitro activity of sparfloxacin (CI-978, AT-4140, and PD 131501). A quinolone with high activity against gram-positive bacteria. Diagnostic Microbiology and Infectious Disease. 1991;14(5):403–415.
    1. Collignon P., Turnidge J. Fusidic acid in vitro activity. International Journal of Antimicrobial Agents. 1999;12 Suppl 2:S45–S58.
    1. Courvalin P. Vancomycin resistance in gram-positive cocci. Clinical Infectious Diseases. 2006;42 Suppl 1:S25–S34.
    1. Creti R., Imperi M., Baldassarri L., Pataracchia M., Recchia S., Alfarone G., et al. emm types, virulence factors, and antibiotic resistance of invasive Streptococcus pyogenes isolates from Italy: What has changed in 11 years? Journal of Clinical Microbiology. 2007;45(7):2249–2256.
    1. Cunningham M. W. Pathogenesis of group A streptococcal infections. Clinical Microbiology Reviews. 2000;13(3):470–511.
    1. Dahl K. H., Sundsfjord A. Transferable vanB2 Tn5382-containing elements in fecal streptococcal strains from veal calves. . Antimicrobial Agents and Chemotherapy. 2003;47(8):2579–2583.
    1. Daly M. M., Doktor S., Flamm R., Shortridge D. Characterization and prevalence of MefA, MefE, and the associated msr(D) gene in Streptococcus pneumoniae clinical isolates. Journal of Clinical Microbiology. 2004;42(8):3570–3574.
    1. Dang V., Nanda N., Cooper T. W., Greenfield R. A., Bronze M. S. Part VII. Macrolides, azalides, ketolides, lincosamides, and streptogramins. The Journal of the Oklahoma State Medical Association. 2007;100(3):75–81.
    1. Davidson A. L., Dassa E., Orelle C., Chen J. Microbiology and Molecular Biology Reviews. 2008;72(2):317–364. table of contents.
    1. Del Grosso M., Camilli R., Barbabella G., Northwood J. B., Farrell D. J., Pantosti A. Genetic resistance elements carrying mef subclasses other than mef(A) in Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy. 2011;55(7):3226–3230.
    1. Del Grosso M., Iannelli F., Messina C., Santagati M., Petrosillo N., Stefani S., et al. Macrolide efflux genes mef(A) and mef(E) are carried by different genetic elements in Streptococcus pneumoniae. Journal of Clinical Microbiology. 2002;40(3):774–778.
    1. d'Humières C., Cohen R., Levy C., Bidet P., Thollot F., Wollner A., et al. Decline in macrolide-resistant Streptococcus pyogenes isolates from French children. International Journal of Medical Microbiology. 2012;302(7-8):300–303.
    1. DiPersio L. P., DiPersio J. R., Beach J. A., Loudon A. M., Fuchs A. M. Identification and characterization of plasmid-borne erm(T) macrolide resistance in group B and group A Streptococcus. Diagnostic Microbiology and Infectious Disease. 2011;71(3):217–223.
    1. Doktor S. Z., Shortridge V. Differences in the DNA sequences in the upstream attenuator region of erm(A) in clinical isolates of Streptococcus pyogenes and their correlation with macrolide/lincosamide resistance. Antimicrobial Agents and Chemotherapy. 2005;49(7):3070–3072.
    1. Douthwaite S., Jalava J., Jakobsen L. Ketolide resistance in Streptococcus pyogenes correlates with the degree of rRNA dimethylation by Erm. Molecular Microbiology. 2005;58(2):613–622.
    1. Duesberg C. B., Malhotra-Kumar S., Goossens H., McGee L., Klugman K. P., Welte T., et al. Interspecies recombination occurs frequently in quinolone resistance-determining regions of clinical isolates of Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy. 2008;52(11):4191–4193.
    1. Dundar D., Sayan M., Tamer G. S. Macrolide and tetracycline resistance and emm type distribution of Streptococcus pyogenes isolates recovered from Turkish patients. Microbial Drug Resistance. 2010;16(4):279–284.
    1. Efstratiou A. Group A streptococci in the 1990s. Journal of Antimicrobial Chemotherapy. 2000;45 Suppl:3–12.
    1. Eliopoulos G. M., Wennersten C. B. In vitro activity of trimethoprim alone compared with trimethoprim-sulfamethoxazole and other antimicrobials against bacterial species associated with upper respiratory tract infections. Diagnostic Microbiology and Infectious Disease. 1997;29(1):33–38.
    1. Facinelli B., Spinaci C., Magi G., Giovanetti E., Varaldo P. E. Association between erythromycin resistance and ability to enter human respiratory cells in group A streptococci. Lancet. 2001;358(9275):30–33.
    1. Facklam R., Beall B., Efstratiou A., Fischetti V., Johnson D., Kaplan E., et al. emm typing and validation of provisional M types for group A streptococci. Emerging Infectious Diseases. 1999;5(2):247–253.
    1. Falagas M. E., Giannopoulou K. P., Kokolakis G. N., Rafailidis P. I. Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clinical Infectious Diseases. 2008;46(7):1069–1077.
    1. Falagas M. E., Maraki S., Karageorgopoulos D. E., Kastoris A. C., Kapaskelis A., Samonis G. Antimicrobial susceptibility of Gram-positive non-urinary isolates to fosfomycin. International Journal of Antimicrobial Agents. 2010;35(5):497–499.
    1. Farrell D. J., Morrissey I., Bakker S., Felmingham D. Molecular characterization of macrolide resistance mechanisms among Streptococcus pneumoniae and Streptococcus pyogenes isolated from the PROTEKT 1999-2000 study. Journal of Antimicrobial Chemotherapy. 2002;50 Suppl S1:39–47.
    1. Farrell D. J., Shackcloth J., Barbadora K. A., Green M. D. Streptococcus pyogenes isolates with high-level macrolide resistance and reduced susceptibility to telithromycin associated with 23S rRNA mutations. Antimicrobial Agents and Chemotherapy. 2006;50(2):817–818.
    1. Fines M., Gueudin M., Ramon A., Leclercq R. In vitro selection of resistance to clindamycin related to alterations in the attenuator of the erm(TR) gene of Streptococcus pyogenes UCN1 inducibly resistant to erythromycin. Journal of Antimicrobial Chemotherapy. 2001;48(3):411–416.
    1. Gemmell C. G. Susceptibility of a variety of clinical isolates to linezolid: a European inter-country comparison. Journal of Antimicrobial Chemotherapy. 2001;48(1):47–52.
    1. Gillespie S. H. Failure of penicillin in Streptococcus pyogenes pharyngeal infection. Lancet. 1998;352(9145):1954–1956.
    1. Giovanetti E., Brenciani A., Lupidi R., Roberts M. C., Varaldo P. E. Presence of the tet(O) gene in erythromycin- and tetracycline-resistant strains of Streptococcus pyogenes and linkage with either the mef(A) or the erm(A) gene. Antimicrobial Agents and Chemotherapy. 2003;47(9):2844–2849.
    1. Giovanetti E., Brenciani A., Morroni G., Tiberi E., Pasquaroli S., Mingoia M., et al. Transduction of the Streptococcus pyogenes bacteriophage Φm46.1, carrying resistance genes mef(A) and tet(O), to other Streptococcus species. Frontiers in Microbiology. 2014;5:746.
    1. Giovanetti E., Brenciani A., Tiberi E., Bacciaglia A., Varaldo P. E. ICESp2905, the erm(TR)-tet(O) element of Streptococcus pyogenes, is formed by two independent integrative and conjugative elements. Antimicrobial Agents and Chemotherapy. 2012;56(1):591–594.
    1. Giovanetti E., Brenciani A., Vecchi M., Manzin A., Varaldo P. E. Prophage association of mef(A) elements encoding efflux-mediated erythromycin resistance in Streptococcus pyogenes. Journal of Antimicrobial Chemotherapy. 2005;55(4):445–451.
    1. Giovanetti E., Magi G., Brenciani A., Spinaci C., Lupidi R., Facinelli B., et al. Conjugative transfer of the erm(A) gene from erythromycin-resistant Streptococcus pyogenes to macrolide-susceptible S. pyogenes, Enterococcus faecalis and Listeria innocua. Journal of Antimicrobial Chemotherapy. 2002;50(2):249–252.
    1. Giovanetti E., Montanari M. P., Marchetti F., Varaldo P. E. In vitro activity of ketolides telithromycin and HMR 3004 against Italian isolates of Streptococcus pyogenes and Streptococcus pneumoniae with different erythromycin susceptibility. Journal of Antimicrobial Chemotherapy. 2000;46(6):905–908.
    1. Giovanetti E., Montanari M. P., Mingoia M., Varaldo P. E. Phenotypes and genotypes of erythromycin-resistant Streptococcus pyogenes strains in Italy and heterogeneity of inducibly resistant strains. Antimicrobial Agents and Chemotherapy. 1999;43(8):1935–1940.
    1. Gold H. S. Vancomycin-resistant enterococci: mechanisms and clinical observations. Clinical Infectious Diseases. 2001;33(2):210–219.
    1. Granizo J. J., Aguilar L., Casal J., Dal-Ré R., Baguero F. Streptococcus pyogenes resistance to erythromycin in relation to macrolide consumption in Spain (1986-1997). Journal of Antimicrobial Chemotherapy. 2000;46(6):959–964.
    1. Guerin F., Varon E., Hoï A. B., Gutmann L., Podglajen I. Fluoroquinolone resistance associated with target mutations and active efflux in oropharyngeal colonizing isolates of viridans group streptococci. Antimicrobial Agents and Chemotherapy. 2000;44(8):2197–2200.
    1. Gutmann L., Tomasz A. Penicillin-resistant and penicillin-tolerant mutants of group A streptococci. Antimicrobial Agents and Chemotherapy. 1982;22(1):128–136.
    1. Hair P. I., Keam S. J. Daptomycin: a review of its use in the management of complicated skin and soft-tissue infections and Staphylococcus aureus bacteraemia. Drugs. 2007;67(10):1483–1512.
    1. Haller M., Fluegge K., Arri S. J., Adams B., Berner R. Association between resistance to erythromycin and the presence of the fibronectin binding protein F1 gene, prtF1, in Streptococcus pyogenes isolates from German pediatric patients. Antimicrobial Agents and Chemotherapy. 2005;49(7):2990–2993.
    1. Hammerum A. M., Nielsen H. K., Agersø Y., Ekelund K., Frimodt-Moller N. Detection of tet(M), tet(O) and tet(S) in tetracycline/minocycline-resistant Streptococcus pyogenes bacteraemia isolates. Journal of Antimicrobial Chemotherapy. 2004;53:118–119.
    1. Hancock R. E. Mechanisms of action of newer antibiotics for Gram-positive pathogens. The Lancet Infectious Diseases. 2005;5(4):209–218.
    1. Hawkey P. M. Mechanisms of quinolone action and microbial response. Journal of Antimicrobial Chemotherapy. 2003;51 Suppl 1:29–35.
    1. Hegstad K., Mikalsen T., Coque T. M., Werner G., Sundsfjord A. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clinical Microbiology and Infection. 2010;16(6):541–554.
    1. Herrera L., Jiménez S., Valverde A., García-Aranda M. A., Sáez-Nieto J. A. Molecular analysis of rifampicin-resistant Mycobacterium tuberculosis isolated in Spain (1996-2001). Description of new mutations in the rpoB gene and review of the literature. International Journal of Antimicrobial Agents. 2003;21(5):403–408.
    1. Herrera L., Salceda C., Orden B., Herranz B., Martinez R., Efstratiou A., et al. Rifampin resistance in Streptococcus pyogenes. European Journal of Clinical Microbiology & Infectious Diseases. 2002;21(5):411–413.
    1. Hooper D. C. Fluoroquinolone resistance among Gram-positive cocci. The Lancet Infectious Diseases. 2002;2(9):530–538.
    1. Horinouchi S., Weisblum B. Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. Proceedings of the National Academy of Sciences of the United States of America. 1980;77(12):7079–7083.
    1. Horinouchi S., Byeon W. H., Weisblum B. A complex attenuator regulates inducible resistance to macrolides, lincosamides, and streptogramin type B antibiotics in Streptococcus sanguis. Journal of Bacteriology. 1983;154(3):1252–1262.
    1. Horn D. L., Zabriskie J. B., Austrian R., Cleary P. P., Ferretti J. J., Fischetti V. A., et al. Why have group A streptococci remained susceptible to penicillin? Report on a symposium. Clinical Infectious Diseases. 1998;26(6):1341–1345.
    1. Horodniceanu T., Buu-Hoï A., Delbos F., Bieth G. High-level aminoglycoside resistance in group A, B, G, D (Streptococcus bovis), and viridans streptococci. Antimicrobial Agents and Chemotherapy. 1982;21(1):176–179.
    1. Hsueh P.-R., Shyr J.-M., Wu J.-J. Decreased erythromycin use after antimicrobial reimbursement restriction for undocumented bacterial upper respiratory tract infections significantly reduced erythromycin resistance in Streptococcus pyogenes in Taiwan. Clinical Infectious Diseases. 2005;40(6):903–905.
    1. Huovinen P., Sundström L., Swedberg G., Sköld O. Trimethoprim and sulfonamide resistance. Antimicrobial Agents and Chemotherapy. 1995;39(2):279–289.
    1. Iannelli F., Santagati M., Oggioni M. R., Stefani S., Pozzi G. Nucleotide sequence of conjugative prophage Φ1207.3 (formerly Tn1207.3) carrying the mef(A)/msr(D) genes for efflux resistance to macrolides in Streptococcus pyogenes. Frontiers in Microbiology. 2014;5:687.
    1. Jalava J., Vaara M., Huovinen P. Mutation at the position 2058 of the 23S rRNA as a cause of macrolide resistance in Streptococcus pyogenes. Annals of Clinical Microbiology and Antimicrobials. 2004;3:5.
    1. Jana S., Deb J. K. Molecular understanding of aminoglycoside action and resistance. Applied Microbiology and Biotechnology. 2006;70(2):140–150.
    1. Jasir A., Tanna A., Noorani A., Mirsalehian A., Efstratiou A., Schalen C. High rate of tetracycline resistance in Streptococcus pyogenes in Iran: an epidemiological study. Journal of Clinical Microbiology. 2000;38(6):2103–2107.
    1. Jones R. N., Mendes R. E., Sader H. S., Castanheira M. In vitro antimicrobial findings for fusidic acid tested against contemporary (2008-2009) gram-positive organisms collected in the United States. Clinical Infectious Diseases. 2011;52 Suppl 7:S477–S486.
    1. Jones R. N., Sader H. S., Flamm R. K. Update of dalbavancin spectrum and potency in the USA: report from the SENTRY Antimicrobial Surveillance Program (2011). Diagnostic Microbiology and Infectious Disease. 2013;75(3):304–307.
    1. Jönsson M., Ström K., Swedberg G. Mutations and horizontal transmission have contributed to sulfonamide resistance in Streptococcus pyogenes. Microbial Drug Resistance. 2003;9(2):147–153.
    1. Kanafani Z. A., Corey G. R. Daptomycin: a rapidly bactericidal lipopeptide for the treatment of Gram-positive infections. Expert Review of Anti-infective Therapy. 2007;5(2):177–184.
    1. Kaplan E. L., Chhatwal G. S., Rohde M. Reduced ability of penicillin to eradicate ingested group A streptococci from epithelial cells: clinical and pathogenetic implications. Clinical Infectious Diseases. 2006;43(11):1398–1406.
    1. Kayser F. H. In vitro activity of cefpodoxime in comparison with other oral beta-lactam antibiotics. Infection. 1994;22(5):370–375.
    1. Keating G. M., Scott L. J. Moxifloxacin: a review of its use in the management of bacterial infections. Drugs. 2004;64(20):2347–2377.
    1. Kehrenberg C., Schwarz S., Jacobsen L., Hansen L. H., Vester B. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Molecular Microbiology. 2005;57(4):1064–1073.
    1. King A., Phillips I. The in vitro activity of daptomycin against 514 Gram-positive aerobic clinical isolates. Journal of Antimicrobial Chemotherapy. 2001;48(2):219–223.
    1. Klaassen C. H., Mouton J. W. Molecular detection of the macrolide efflux gene: to discriminate or not to discriminate between mef(A) and mef(E). Antimicrobial Agents and Chemotherapy. 2005;49(4):1271–1278.
    1. Kotra L. P., Haddad J., Mobashery S. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrobial Agents and Chemotherapy. 2000;44(12):3249–3256.
    1. Lai C. J., Weisblum B. Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of America. 1971;68(4):856–860.
    1. Lakshmi T. M., Kim K. S. Conjugative co-transfer of penicillin tolerance and high-level resistance to kanamycin in group A streptococci. FEMS Microbiology Letters. 1989;57(3):329–333.
    1. Le Bouguénec C., de Cespédès G., Horaud T. Molecular analysis of a composite chromosomal conjugative element (Tn3701) of Streptococcus pyogenes. Journal of Bacteriology. 1988;170(9):3930–3936.
    1. Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clinical Infectious Diseases. 2002;34(4):482–492.
    1. Leclercq R., Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrobial Agents and Chemotherapy. 1991;35(7):1267–1272.
    1. Lester W. Rifampin: a semisynthetic derivative of rifamycin--a prototype for the future. Annual Review of Microbiology. 1972;26:85–102.
    1. Lovett P. S. Translation attenuation regulation of chloramphenicol resistance in bacteria--a review. Gene. 1996;179(1):157–162.
    1. Lynch J. P., 3rd, File T. M., Jr, Zhanel G. G. Levofloxacin for the treatment of community-acquired pneumonia. Expert Review of Anti-infective Therapy. 2006;4(5):725–742.
    1. Lynskey N. N., Lawrenson R. A., Sriskandan S. New understandings in Streptococcus pyogenes. Current Opinion in Infectious Diseases. 2011;24(3):196–202.
    1. Malbruny B., Nagai K., Coquemont M., Bozdogan B., Andrasevic A. T., Hupkova H., et al. Resistance to macrolides in clinical isolates of Streptococcus pyogenes due to ribosomal mutations. Journal of Antimicrobial Chemotherapy. 2002;49(6):935–939.
    1. Malhotra-Kumar S., Lammens C., Chapelle S., Mallentjer C., Weyler J., Goossens H. Clonal spread of fluoroquinolone non-susceptible Streptococcus pyogenes. Journal of Antimicrobial Chemotherapy. 2005;55:320–325.
    1. Malhotra-Kumar S., Mazzariol A., Van Heirstraeten L., Lammens C., de Rijk P., Cornaglia G., et al. Unusual resistance patterns in macrolide-resistant Streptococcus pyogenes harbouring erm(A). Journal of Antimicrobial Chemotherapy. 2009;63(1):42–46.
    1. Malhotra-Kumar S., Wang S., Lammens C., Chapelle S., Goossens H. Bacitracin-resistant clone of Streptococcus pyogenes isolated from pharyngitis patients in Belgium. Journal of Clinical Microbiology. 2003;41(11):5282–5284.
    1. Manson J. M., Keis S., Smith J. M., Cook G. M. Acquired bacitracin resistance in Enterococcus faecalis is mediated by an ABC transporter and a novel regulatory protein, BcrR. Antimicrobial Agents and Chemotherapy. 2004;48(10):3743–3748.
    1. Markowitz M., Gerber M. A., Kaplan E. L. Treatment of streptococcal pharyngotonsillitis: reports of penicillin's demise are premature. Journal of Pediatrics. 1993;123(5):679–685.
    1. Masters P. A., O'Bryan T. A., Zurlo J., Miller D. Q., Joshi N. Trimethoprim-sulfamethoxazole revisited. Archives of Internal Medicine. 2003;163(4):402–410.
    1. Mazzariol A., Koncan R., Vitali L. A., Cornaglia G. Activities of 16-membered ring macrolides and telithromycin against different genotypes of erythromycin-susceptible and erythromycin-resistant Streptococcus pyogenes and Streptococcus pneumoniae. Journal of Antimicrobial Chemotherapy. 2007;59(6):1171–1176.
    1. Mevius D., Devriese L., Butaye P., Vandamme P., Verschure M., Veldman K. Isolation of glycopeptide resistant Streptococcus gallolyticus strains with vanA, vanB, and both vanA and vanB genotypes from faecal samples of veal calves in The Netherlands. Journal of Antimicrobial Chemotherapy. 1998;42(2):275–276.
    1. Mihaila-Amrouche L., Bouvet A., Loubinoux J. Clonal spread of emm type 28 isolates of Streptococcus pyogenes that are multiresistant to antibiotics. Journal of Clinical Microbiology. 2004;42(8):3844–3846.
    1. Mingoia M., Morici E., Brenciani A., Giovanetti E., Varaldo P. E. Genetic basis of the association of resistance genes mef(I) (macrolides) and catQ (chloramphenicol) in streptococci. Frontiers in Microbiology. 2014;5:747.
    1. Mingoia M., Morici E., Morroni G., Giovanetti E., Del Grosso M., Pantosti A., et al. Tn5253 family integrative and conjugative elements carrying mef(I) and catQ determinants in Streptococcus pneumoniae and Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy. 2014;58(10):5886–5893.
    1. Mingoia M., Vecchi M., Cochetti I., Tili E., Vitali L. A., Manzin A., et al. Composite structure of Streptococcus pneumoniae containing the erythromycin efflux resistance gene mefI and the chloramphenicol resistance gene catQ. Antimicrobial Agents and Chemotherapy. 2007;51(11):3983–3987.
    1. Montes M., Tamayo E., Mojica C., García-Arenzana J. M., Esnal O., Pérez-Trallero E. What causes decreased erythromycin resistance in Streptococcus pyogenes? Dynamics of four clones in a southern European region from 2005 to 2012. Journal of Antimicrobial Chemotherapy. 2014;69(6):1474–1482.
    1. Montes M., Tamayo E., Orden B., Larruskain J., Perez-Trallero E. Prevalence and clonal characterization of Streptococcus pyogenes clinical isolates with reduced fluoroquinolone susceptibility in Spain. Antimicrobial Agents and Chemotherapy. 2010;54(1):93–97.
    1. Morrissey I., Ge Y., Janes R. Activity of the new cephalosporin ceftaroline against bacteraemia isolates from patients with community-acquired pneumonia. International Journal of Antimicrobial Agents. 2009;33(6):515–519.
    1. Murray B. E. Beta-lactamase-producing enterococci. Antimicrobial Agents and Chemotherapy. 1992;36(11):2355–2359.
    1. Nielsen H. U., Hammerum A. M., Ekelund K., Bang D., Pallesen L. V., Frimodt-Møller N. Tetracycline and macrolide co-resistance in Streptococcus pyogenes: co-selection as a reason for increase in macrolide-resistant S. pyogenes? Microbial Drug Resistance. 2004;10(3):231–238.
    1. Noviello S., Ianniello F., Leone S., Esposito S. Comparative activity of garenoxacin and other agents by susceptibility and time-kill testing against Staphylococcus aureus, Streptococcus pyogenes and respiratory pathogens. Journal of Antimicrobial Chemotherapy. 2003;52(5):869–872.
    1. O'Neill A. J., McLaws F., Kahlmeter G., Henriksen A. S., Chopra I. Genetic basis of resistance to fusidic acid in staphylococci. Antimicrobial Agents and Chemotherapy. 2007;51(5):1737–1740.
    1. Orscheln R. C., Johnson D. R., Olson S. M., Presti R. M., Martin J. M., Kaplan E. L., et al. Intrinsic reduced susceptibility of serotype 6 Streptococcus pyogenes to fluoroquinolone antibiotics. The Journal of Infectious Diseases. 2005;191(8):1272–1279.
    1. Pankey G. A. Tigecycline. Journal of Antimicrobial Chemotherapy. 2005;56(3):470–480.
    1. Park C., Nichols M., Schrag S. J. Two cases of invasive vancomycin-resistant group B streptococcus infection. The New England Journal of Medicine. 2014;370:885–886.
    1. Patel S. S., Balfour J. A., Bryson H. M. Fosfomycin tromethamine. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy as a single-dose oral treatment for acute uncomplicated lower urinary tract infections. Drugs. 1997;53(4):637–656.
    1. Perez-Trallero E., Garcia C., Orden B., Marimon J. M., Montes M. Dissemination of emm28 erythromycin, clindamycin- and bacitracin-resistant Streptococcus pyogenes in Spain. European Journal of Clinical Microbiology & Infectious Diseases. 2004;23(2):123–126.
    1. Pérez-Trallero E., Tamayo E., Montes M., Garcia-Arenzana J. M., Iriarte V. In vitro activities of retapamulin and 16 other antimicrobial agents against recently obtained Streptococcus pyogenes isolates. Antimicrobial Agents and Chemotherapy. 2011;55(5):2406–2408.
    1. Perez-Trallero E., Urbieta M., Montes M., Ayestaran I., Marimon J. M. Emergence of Streptococcus pyogenes strains resistant to erythromycin in Gipuzkoa, Spain. European Journal of Clinical Microbiology & Infectious Diseases. 1998;17(1):25–31.
    1. Petrelli D., Di Luca M. C., Prenna M., Bernaschi P., Repetto A., Vitali L. A. Characterization of levofloxacin non-susceptible clinical Streptococcus pyogenes isolated in the central part of Italy. European Journal of Clinical Microbiology & Infectious Diseases. 2014;33(2):241–244.
    1. Pfaller M. A., Castanheira M., Sader H. S., Jones R. N. Evaluation of the activity of fusidic acid tested against contemporary Gram-positive clinical isolates from the USA and Canada. International Journal of Antimicrobial Agents. 2010;35(3):282–287.
    1. Pichichero M. E., Casey J. R. Systematic review of factors contributing to penicillin treatment failure in Streptococcus pyogenes pharyngitis. Otolaryngology -- Head and Neck Surgery. 2007;137(6):851–857.
    1. Pinho M. D., Melo-Cristino J., Ramirez M. Fluoroquinolone resistance in Streptococcus dysgalactiae subsp. equisimilis and evidence for a shared global gene pool with Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy. 2010;54(5):1769–1777.
    1. Pires R., Ardanuy C., Rolo D., Morais A., Brito-Avô A., Gonçalo-Marques J., et al. Emergence of ciprofloxacin-nonsusceptible Streptococcus pyogenes isolates from healthy children and pediatric patients in Portugal. Antimicrobial Agents and Chemotherapy. 2010;54(6):2677–2680.
    1. Pires R., Rolo D., Mato R., Feio de Almeda J., Johansson C., Henriques-Normark B., et al. Resistance to bacitracin in Streptococcus pyogenes from oropharyngeal colonization and noninvasive infections in Portugal was caused by two clones of distinct virulence genotypes. FEMS Microbiology Letters. 2009;296(2):235–240.
    1. Pletz M. W., McGee L., Van Beneden C. A., Petit S., Bardsley M., Barlow M., et al. Fluoroquinolone resistance in invasive Streptococcus pyogenes isolates due to spontaneous mutation and horizontal gene transfer. Antimicrobial Agents and Chemotherapy. 2006;50(3):943–948.
    1. Poole K. Efflux-mediated antimicrobial resistance. Journal of Antimicrobial Chemotherapy. 2005;56(1):20–51.
    1. Poyart C., Pierre C., Quesne G., Pron B., Berche P., Trieu-Cuot P. Emergence of vancomycin resistance in the genus Streptococcus: characterization of a vanB transferable determinant in Streptococcus bovis. Antimicrobial Agents and Chemotherapy. 1997;41(1):24–29.
    1. Reig M., Galan J.-C., Baquero F., Perez-Diaz J. C. Macrolide resistance in Peptostreptococcus spp. mediated by ermTR: possible source of macrolide-lincosamide-streptogramin B resistance in Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy. 2001;45(2):630–632.
    1. Reinert R. R., Lütticken R., Al-Lahham A. High-level fluoroquinolone resistance in a clinical Streptoccoccus pyogenes isolate in Germany. Clinical Microbiology and Infection. 2004;10(7):659–662.
    1. Rice L. B. Mechanisms of resistance and clinical relevance of resistance to beta-lactams, glycopeptides, and fluoroquinolones. Mayo Clinic Proceedings. 2012;87(2):198–208.
    1. Richter S. S., Diekema D. J., Heilmann K. P., Almer L. S., Shortridge V. D., Zeitler R., et al. Fluoroquinolone resistance in Streptococcus pyogenes. Clinical Infectious Diseases. 2003;36(3):380–383.
    1. Richter S. S., Heilmann K. P., Beekmann S. E., Miller N. J., Miller A. L., Rice C. L., et al. Macrolide-resistant Streptococcus pyogenes in the United States, 2002-2003. Clinical Infectious Diseases. 2005;41(5):599–608.
    1. Richter S. S., Heilmann K. P., Dohrn C. L., Beekmann S. E., Riahi F., Garcia-de-Lomas J., et al. Increasing telithromycin resistance among Streptococcus pyogenes in Europe. Journal of Antimicrobial Chemotherapy. 2008;61(3):603–611.
    1. Rivera A., Rebollo M., Sánchez F., Navarro F., Miró E., Mirelis B., et al. Characterisation of fluoroquinolone-resistant clinical isolates of Streptococcus pyogenes in Barcelona, Spain. Clinical Microbiology and Infection. 2005;11(9):759–761.
    1. Roberts M. C., Sutcliffe J., Courvalin P., Jensen L. B., Rood J., Seppala H. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrobial Agents and Chemotherapy. 1999;43(12):2823–2830.
    1. Romero-Hernández B., Tedim A. P., Sánchez-Herrero J. F., Librado P., Rozas J., Muñoz G., et al. Streptococcus gallolyticus subsp. gallolyticus from human and animal origins: genetic diversity, antimicrobial susceptibility, and caracterization of a vancomycin resistant calf isolate carrying a vanA-Tn1546-like element. Antimicrobial Agents and Chemotherapy. 2015;59(4):2006–2015.
    1. Rubinstein E., Vaughan D. Tigecycline: a novel glycylcycline. Drugs. 2005;65(10):1317–1336.
    1. Rubio-López V., Valdezate S., Alvarez D., Villalón P., Medina M. J., Salcedo C., et al. Molecular epidemiology, antimicrobial susceptibilities and resistance mechanisms of Streptococcus pyogenes isolates resistant to erythromycin and tetracycline in Spain (1994-2006). BMC Microbiology. 2012;12:215.
    1. Sanders E., Foster M. T., Scott D. Group A beta-hemolytic streptococci resistant to erythromycin and lincomycin. The New England Journal of Medicine. 1968;278:538–540.
    1. Sangvik M., Littauer P., Simonsen G. S., Sundsfjord A., Dahl K. H. mef(A), mef(E) and a new mef allele in macrolide-resistant Streptococcus spp. isolates from Norway. Journal of Antimicrobial Chemotherapy. 2005;56(5):841–846.
    1. Santagati M., Iannelli F., Cascone C., Campanille F., Oggoni M. R., Stefani S., et al. The novel conjugative transposon Tn1207.3 carries the macrolide efflux gene mef(A) in Streptococcus pyogenes. Microbial Drug Resistance. 2003;9(3):243–247.
    1. Schaar V., Uddbäck I., Nordström T., Riesbeck K. Group A streptococci are protected from amoxicillin-mediated killing by vesicles containing beta-lactamase derived from Haemophilus influenzae. Journal of Antimicrobial Chemotherapy. 2014;69(1):117–120.
    1. Schlünzen F., Zarivach R., Harms J., Bashan A., Tocilj A., Albrecht R., et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature. 2001;413(6858):814–821.
    1. Schwarz S., Kehrenberg C., Doublet B., Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiology Reviews. 2004;28(5):519–542.
    1. Seppälä H., Klaukka T., Lehtonen R., Nenonen E., Huovinen P. Outpatient use of erythromycin: link to increased erythromycin resistance in group A streptococci. Clinical Infectious Diseases. 1995;21(6):1378–1385.
    1. Seppälä H., Klaukka T., Vuopio-Varkila J., Muotiala A., Helenius H., Lager K., et al. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. The New England Journal of Medicine. 1997;337(7):441–446.
    1. Seppälä H., Skurnik M., Soini H., Roberts M. C., Huovinen P. A novel erythromycin resistance methylase gene (ermTR) in Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy. 1998;42(2):257–262.
    1. Silva-Costa C., Friães A., Ramirez M., Melo-Cristino J. Differences between macrolide-resistant and -susceptible Streptococcus pyogenes: importance of clonal properties in addition to antibiotic consumption. Antimicrobial Agents and Chemotherapy. 2012;56(11):5661–5666.
    1. Silva-Costa C., Ramirez M., Melo-Cristino J. Rapid inversion of the prevalences of macrolide resistance phenotypes paralleled by a diversification of T and emm types among Streptococcus pyogenes in Portugal. Antimicrobial Agents and Chemotherapy. 2005;49(5):2109–2111.
    1. Srinivasan V., Metcalf B. J., Knipe K. M., Ouattara M., McGee L., Shewmaker P. L., et al. vanG element insertions within a conserved chromosomal site conferring vancomycin resistance to Streptococcus agalactiae and Streptococcus anginosus. MBio. 2014;5(4):e01386–e14.
    1. Steer A. C., Law I., Matatolu L., Beall B. W., Carapetis J. R. Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. The Lancet Infectious Diseases. 2009;9(10):611–616.
    1. Sutcliffe J., Tait-Kamradt A., Wondrack L. Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrobial Agents and Chemotherapy. 1996;40(8):1817–1824.
    1. Swedberg G., Ringertz S., Sköld O. Sulfonamide resistance in Streptococcus pyogenes is associated with differences in the amino acid sequence of its chromosomal dihydropteroate synthase. Antimicrobial Agents and Chemotherapy. 1998;42(5):1062–1067.
    1. Tait-Kamradt A., Clancy J., Cronan M., Dib-Haij F., Wondrack L., Yuan W., et al. mefE is necessary for the erythromycin-resistant M phenotype in Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy. 1997;41(10):2251–2255.
    1. Tannock G. W., Luchansky J. B., Miller L., Connell H., Thode-Andersen S., Mercer A. A., et al. Molecular characterization of a plasmid-borne (pGT633) erythromycin resistance determinant (ermGT) from Lactobacillus reuteri 100-63. Plasmid. 1994;31(1):60–71.
    1. Tanz R. R., Shulman S. T., Shortridge V. D., Kabat W., Kabat K., Cederlund E., et al. Community-based surveillance in the united states of macrolide-resistant pediatric pharyngeal group A streptococci during 3 respiratory disease seasons. Clinical Infectious Diseases. 2004;39(12):1794–1801.
    1. Tomich P. K., An F. Y., Clewell D. B. Properties of erythromycin-inducible transposon Tn917 in Streptococcus faecalis. Journal of Bacteriology. 1980;141(3):1366–1374.
    1. Trieu-Cuot P., de Cespédès G., Bentorcha F., Delbos F., Gaspar E., Horaud T. Study of heterogeneity of chloramphenicol acetyltransferase (CAT) genes in streptococci and enterococci by polymerase chain reaction: characterization of a new CAT determinant. Antimicrobial Agents and Chemotherapy. 1993;37(12):2593–2598.
    1. Turnidge J., Collignon P. Resistance to fusidic acid. International Journal of Antimicrobial Agents. 1999;12 Suppl 2:S35–S44.
    1. van Asselt G. J., Vliegenthart J. S., Petit P. L., van de Klundert J. A., Mouton R. P. High-level aminoglycoside resistance among enterococci and group A streptococci. Journal of Antimicrobial Chemotherapy. 1992;30(5):651–659.
    1. Varaldo P. E., Montanari M. P., Giovanetti E. Genetic elements responsible for erythromycin resistance in streptococci. Antimicrobial Agents and Chemotherapy. 2009;53(2):343–353.
    1. Wajima T., Morozumi M., Chiba N., Shouji M., Iwata S., Sakata H., et al. Associations of macrolide and fluoroquinolone resistance with molecular typing in Streptococcus pyogenes from invasive infections, 2010-2012. International Journal of Antimicrobial Agents. 2013;42(5):447–449.
    1. Wajima T., Murayama S. Y., Sunaoshi K., Nakayama E., Sunakawa K., Ubukata K. Distribution of emm type and antibiotic susceptibility of group A streptococci causing invasive and noninvasive disease. Journal of Medical Microbiology. 2008;57(Pt 11):1383–1388.
    1. Watanabe S., Kobayashi N., Quiñones D., Hayakawa S., Nagashima S., Uehara N., et al. Genetic diversity of the low-level vancomycin resistance gene vanC-2/vanC-3 and identification of a novel vanC subtype (vanC-4) in Enterococcus casseliflavus. Microbial Drug Resistance. 2009;15(1):1–9.
    1. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrobial Agents and Chemotherapy. 1995a;39(3):577–585.
    1. Weisblum B. Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrobial Agents and Chemotherapy. 1995b;39(4):797–805.
    1. Woodbury R. L., Klammer K. A., Xiong Y., Bailiff T., Glennen A., Bartkus J. M., et al. Plasmid-Borne erm(T) from invasive, macrolide-resistant Streptococcus pyogenes strains. Antimicrobial Agents and Chemotherapy. 2008;52(3):1140–1143.
    1. Yan S. S., Fox M. L., Holland S. M., Stock F., Gill V. J., Fedorko D. P. Resistance to multiple fluoroquinolones in a clinical isolate of Streptococcus pyogenes: identification of gyrA and parC and specification of point mutations associated with resistance. Antimicrobial Agents and Chemotherapy. 2000;44(11):3196–3198.
    1. Yan S. S., Schreckenberger P. C., Zheng X., Nelson N. A., Harrington S. M., Tjhio J., et al. An intrinsic pattern of reduced susceptibility to fluoroquinolones in pediatric isolates of Streptococcus pyogenes. Diagnostic Microbiology and Infectious Disease. 2008;62(2):205–209.
    1. York M. K., Gibbs L., Perdreau-Remington F., Brooks G. F. Characterization of antimicrobial resistance in Streptococcus pyogenes isolates from the San Francisco Bay area of Northern California. Journal of Clinical Microbiology. 1999;37(6):1727–1731.
    1. Yourassowsky E., Vanderlinden M. P., Schoutens E. Sensitivity of Streptococcus pyogenes to sulphamethoxazole, trimethoprim, and cotrimoxazole. Journal of Clinical Pathology. 1974;27(11):897–901.
    1. Zembower T. R., Noskin G. A., Postelnick M. J., Nguyen C., Peterson L. R. The utility of aminoglycosides in an era of emerging drug resistance. International Journal of Antimicrobial Agents. 1998;10(2):95–105.
    1. Zhanel G. G., Wiebe R., Dilay L., Thomson K., Rubinstein E., Hoban D. J., et al. Comparative review of the carbapenems. Drugs. 2007;67(7):1027–1052.
    1. Ziglam H. Daptomycin and tigecycline: a review of clinical efficacy in the antimicrobial era. Expert Opinion on Pharmacotherapy. 2007;8(14):2279–2292.

Source: PubMed

Подписаться