The glycemic, insulinemic and plasma amino acid responses to equi-carbohydrate milk meals, a pilot- study of bovine and human milk

Ulrika Gunnerud, Jens J Holst, Elin Östman, Inger Björck, Ulrika Gunnerud, Jens J Holst, Elin Östman, Inger Björck

Abstract

Background: Dairy proteins, in particular the whey fraction, exert insulinogenic properties and facilitate glycemic regulation through a mechanism involving elevation of certain plasma amino acids, and stimulation of incretins. Human milk is rich in whey protein and has not been investigated in this respect.

Method: Nine healthy volunteers were served test meals consisting of human milk, bovine milk, reconstituted bovine whey- or casein protein in random order. All test meals contributed with 25 g intrinsic or added lactose, and a white wheat bread (WWB) meal was used as reference, providing 25 g starch. Post-prandial levels in plasma of glucose, insulin, incretins and amino acids were investigated at time intervals for up to 2 h.

Results: All test meals elicited lower postprandial blood glucose responses, expressed as iAUC 0-120 min compared with the WWB (P < 0.05). The insulin response was increased following all test meals, although only significantly higher after whey. Plasma amino acids were correlated to insulin and incretin secretion (iAUC 0-60 min) (P ≤ 0.05). The lowered glycemia with the test meals (iAUC 0-90 min) was inversely correlated to GLP-1 (iAUC 0-30 min) (P ≤ 0.05).

Conclusion: This study shows that the glycemic response was significantly lower following all milk/milk protein based test meals, in comparison with WWB. The effect appears to originate from the protein fraction and early phase plasma amino acids and incretins were involved in the insulin secretion. Despite its lower protein content, the human milk was a potent GLP-1 secretagogue and showed insulinogenic properties similar to that seen with reconstituted bovine whey-protein, possibly due to the comparatively high proportion of whey in human milk.

Figures

Figure 1
Figure 1
Incremental changes in plasma glucose and serum insulin. Mean incremental changes (Δ) in plasma glucose (A) and serum insulin (B) in response to equal amounts of carbohydrate. In (C) the GI and II (iAUC) are displayed. For plasma glucose a significant treatment effect (p < 0.0002) and time × treatment interaction (p < 0.0265) were found at a given time. Values with different lowercase letters are significantly different, p ≤ 0.05 (Tukey’s test). n = 9 healthy subject.
Figure 2
Figure 2
Incremental changes in plasma GIP and GLP-1. Mean incremental changes (Δ) in plasma GLP-1 (A) and GIP (B) in response to equal amounts of carbohydrate. Significant treatment effects (p < 0.001) as well as time × treatment interactions (p < 0.001) were found for both GLP-1 and GIP. Values with different letters are significantly different, p < 0.05 (Tukey’s test). n = 8 (WWB, whey) and n = 7 (human milk, casein).

References

    1. Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA. 1997;277:472–477. doi: 10.1001/jama.1997.03540300040031.
    1. Ostman EM, Elmstahl HGML, Bjorck IME. Inconsistency between glycemic and insulinemic responses to regular and fermented milk products. Am J Clin Nutr. 2001;74:96–100.
    1. Warensjo E, Nolan D, Tapsell L. In: Adv Food Nutr Res. Volume Volume 59. Steve LT, editor. Academic Press; 2010. Dairy Food Consumption and Obesity-Related Chronic Disease; pp. 1–41.
    1. Malik VS, Sun Q, van Dam RM, Rimm EB, Willett WC, Rosner B, Hu FB. Adolescent dairy product consumption and risk of type 2 diabetes in middle-aged women. Am J Clin Nutr. 2011;94:854–861. doi: 10.3945/ajcn.110.009621.
    1. Frid AH, Nilsson M, Holst JJ, Bjorck IM. Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects. Am J Clin Nutr. 2005;82:69–75.
    1. Nilsson M, Stenberg M, Frid AH, Holst JJ, Bjorck IM. Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am J Clin Nutr. 2004;80:1246–1253.
    1. Tessari P, Kiwanuka E, Cristini M, Zaramella M, Enslen M, Zurlo C, Garcia-Rodenas C. Slow versus fast proteins in the stimulation of beta-cell response and the activation of the entero-insular axis in type 2 diabetes. Diabetes Metab Res Rev. 2007;23:378–385. doi: 10.1002/dmrr.698.
    1. Mortensen LS, Holmer-Jensen J, Hartvigsen ML, Jensen VK, Astrup A, de Vrese M, Holst JJ, Thomsen C, Hermansen K. Effects of different fractions of whey protein on postprandial lipid and hormone responses in type 2 diabetes. Eur J Clin Nutr. 2012;66:799–805. doi: 10.1038/ejcn.2012.48.
    1. Newsholme P, Bender K, Kiely A, Brennan L. Amino acid metabolism, insulin secretion and diabetes. Biochem Soc Trans. 2007;35:1180–1186. doi: 10.1042/BST0351180.
    1. van Loon LJC. Leucine as a pharmaconutrient in health and disease. Curr Opin Clin Nutr Metab Care. 2012;15:71–77. doi: 10.1097/MCO.0b013e32834d617a.
    1. Nilsson M, Holst JJ, Bjorck IME. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr. 2007;85:996–1004.
    1. Diepvens K, Haberer D, Westerterp-Plantenga M. Different proteins and biopeptides differently affect satiety and anorexigenic//orexigenic hormones in healthy humans. Int J Obes. 2007;32:510–518.
    1. Asmar M, Holst JJ. Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: new advances. Curr Opin Endocrinol Diabetes Obes. 2010;17:57–62.
    1. Chen Q, Reimer RA. Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro. Nutrition. 2009;25:340–349. doi: 10.1016/j.nut.2008.08.012.
    1. Heine WE, Klein PD, Reeds PJ. The importance of alpha-lactalbumin in infant nutrition. J Nutr. 1991;121:277–283.
    1. Rudloff S, Kunz C. Protein and nonprotein nitrogen components in human milk, bovine milk, and infant formula: quantitative and qualitative aspects in infant nutrition. J Pediatr Gastroenterol Nutr. 1997;24:328–344. doi: 10.1097/00005176-199703000-00017.
    1. Lonnerdal B. Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr. 2003;77:1537S–1543S.
    1. Liljeberg H, Bjorck I. Bioavailability of starch in bread products. Postprandial glucose and insulin responses in healthy subjects and in vitro resistant starch content. Eur J Clin Nutr. 1994;48:151–163.
    1. Stenberg M, Marko-Varga G, Oste R. Racemization of amino acids during classical and microwave oven hydrolysis - application to aspartame and a Maillard reaction system. Food Chem. 2001;74:217–224. doi: 10.1016/S0308-8146(01)00141-8.
    1. Stenberg M, Marko-Varga G, Oste R. Enantioseparation of d- and l-amino acids by a coupled system consisting of an ion-exchange column and a chiral column and determination of d-aspartic acid and d-glutamic acid in soy products. Food Chem. 2002;79:507–512. doi: 10.1016/S0308-8146(02)00215-7.
    1. Holm J, Bjorck I, Drews A, Asp NG. A Rapid Method for the Analysis of Starch. Starch-Starke. 1986;38:224–226. doi: 10.1002/star.19860380704.
    1. Krarup T, Madsbad S, Moody AJ, Regeur L, Faber OK, Holst JJ, Sestoft L. Diminished immunoreactive gastric inhibitory polypeptide response to a meal in newly diagnosed type I (insulin-dependent) diabetics. J Clin Endocrinol Metab. 1983;56:1306–1312. doi: 10.1210/jcem-56-6-1306.
    1. Orskov C, Rabenhoj L, Wettergren A, Kofod H, Holst JJ. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes. 1994;43:535–539. doi: 10.2337/diabetes.43.4.535.
    1. Salehi AS, Gunnerud UJ, MS J, Östman EM, Holst JJ, Björck IME, Rorsman P. The insulinogenic effect of whey protein is partiallt mediated by a direct effect of amino acids and GIP on beta-cells. Nutr Metab (Lond) 2012. in press.
    1. van Loon LJ, Saris WH, Verhagen H, Wagenmakers AJ. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr. 2000;72:96–105.
    1. Sener A, Malaisse WJ. The stimulus-secretion coupling of amino acid-induced insulin release: insulinotropic action of branched-chain amino acids at physiological concentrations of glucose and glutamine. Eur J Clin Invest. 1981;11:455–460. doi: 10.1111/j.1365-2362.1981.tb02013.x.
    1. Agostoni C, Carratu B, Boniglia C, Riva E, Sanzini E. Free amino acid content in standard infant formulas: comparison with human milk. J Am Coll Nutr. 2000;19:434–438.
    1. Sarwar G, Botting HG, Davis TA, Darling P, Pencharz PB. Free amino acids in milks of human subjects, other primates and non-primates. Br J Nutr. 1998;79:129–131. doi: 10.1079/BJN19980023.
    1. L'Amoreaux WJ, Cuttitta C, Santora A, Blaize JF, Tachjadi J, El Idrissi A. Taurine regulates insulin release from pancreatic beta cell lines. J Biomed Sci. 2010;17 Suppl 1:S11.
    1. Carneiro EM, Latorraca MQ, Araujo E, Beltra M, Oliveras MJ, Navarro M, Berna G, Bedoya FJ, Velloso LA, Soria B, Martin F. Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem. 2009;20:503–511. doi: 10.1016/j.jnutbio.2008.05.008.
    1. Gunnerud UJ, Heinzle C, Holst JJ, Östman EM, Björck IME. Effects of pre-meal drinks with protein and amino acids on glycemic and metabolic responses at a subsequent composite meal. PLoS One. In press.
    1. Berseth CL, Michener SR, Nordyke CK, Go VL. Postpartum changes in pattern of gastrointestinal regulatory peptides in human milk. Am J Clin Nutr. 1990;51:985–990.
    1. Hall WL, Millward DJ, Long SJ, Morgan LM. Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br J Nutr. 2003;89:239–248. doi: 10.1079/BJN2002760.
    1. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132:2131–2157. doi: 10.1053/j.gastro.2007.03.054.
    1. Gunnarsson PT, Winzell MS, Deacon CF, Larsen MO, Jelic K, Carr RD, Ahren B. Glucose-induced incretin hormone release and inactivation are differently modulated by oral fat and protein in mice. Endocrinology. 2006;147:3173–3180. doi: 10.1210/en.2005-1442.
    1. Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, Wolever TM. Glycaemic index methodology. Nutr Res Rev. 2005;18:145–171. doi: 10.1079/NRR2005100.

Source: PubMed

Подписаться