Clinical examination, critical care ultrasonography and outcomes in the critically ill: cohort profile of the Simple Intensive Care Studies-I

Bart Hiemstra, Ruben J Eck, Geert Koster, Jørn Wetterslev, Anders Perner, Ville Pettilä, Harold Snieder, Yoran M Hummel, Renske Wiersema, Anne Marie G A de Smet, Frederik Keus, Iwan C C van der Horst, SICS Study Group, Bart Hiemstra, Ruben J Eck, Geert Koster, Jørn Wetterslev, Anders Perner, Ville Pettilä, Harold Snieder, Yoran M Hummel, Renske Wiersema, Anne Marie G A de Smet, Frederik Keus, Iwan C C van der Horst, SICS Study Group

Abstract

Purpose: In the Simple Intensive Care Studies-I (SICS-I), we aim to unravel the value of clinical and haemodynamic variables obtained by physical examination and critical care ultrasound (CCUS) that currently guide daily practice in critically ill patients. We intend to (1) measure all available clinical and haemodynamic variables, (2) train novices in obtaining values for advanced variables based on CCUS in the intensive care unit (ICU) and (3) create an infrastructure for a registry with the flexibility of temporarily incorporating specific (haemodynamic) research questions and variables. The overall purpose is to investigate the diagnostic and prognostic value of clinical and haemodynamic variables.

Participants: The SICS-I includes all patients acutely admitted to the ICU of a tertiary teaching hospital in the Netherlands with an ICU stay expected to last beyond 24 hours. Inclusion started on 27 March 2015.

Findings to date: On 31 December 2016, 791 eligible patients fulfilled our inclusion criteria of whom 704 were included. So far 11 substudies with additional variables have been designed, of which six were feasible to implement in the basic study, and two are planned and awaiting initiation. All researchers received focused training for obtaining specific CCUS images. An independent Core laboratory judged that 632 patients had CCUS images of sufficient quality.

Future plans: We intend to optimise the set of variables for assessment of the haemodynamic status of the critically ill patient used for guiding diagnostics, prognosis and interventions. Repeated evaluations of these sets of variables are needed for continuous improvement of the diagnostic and prognostic models. Future plans include: (1) more advanced imaging; (2) repeated clinical and haemodynamic measurements; (3) expansion of the registry to other departments or centres; and (4) exploring possibilities of integration of a randomised clinical trial superimposed on the registry.

Study registration number: NCT02912624; Pre-results.

Keywords: Accident & emergency medicine; Adult intensive & critical care; Cardiology; Echocardiography; Epidemiology; Ultrasonography.

Conflict of interest statement

Competing interests: None declared.

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

Figures

Figure 1
Figure 1
Timeline of basic study line and substudies. The substudies are explained in table 1. AKI, acute kidney injury; ARDS, acute respiratory distress syndrome; NIRS, near-infrared spectroscopy; PEEP, positive end-expiratory pressure; RV, right ventricular; SICS, Simple Intensive Care Studies.
Figure 2
Figure 2
Flow diagram of the Simple Intensive Care Studies-I (SICS-I) cohort. CCUS, critical care ultrasonography

References

    1. Sakr Y, Reinhart K, Vincent JL, et al. . Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely Ill Patients (SOAP) Study. Crit Care Med 2006;34:589–97. 10.1097/01.CCM.0000201896.45809.E3
    1. De Backer D, Biston P, Devriendt J, et al. . Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 2010;362:779–89. 10.1056/NEJMoa0907118
    1. Vincent JL, Marshall JC, Namendys-Silva SA, et al. . Assessment of the worldwide burden of critical illness: the intensive care over nations (ICON) audit. Lancet Respir Med 2014;2:380–6. 10.1016/S2213-2600(14)70061-X
    1. Cecconi M, De Backer D, Antonelli M, et al. . Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 2014;40:1795–815. 10.1007/s00134-014-3525-z
    1. Cholley BP, Vieillard-Baron A, Mebazaa A. Echocardiography in the ICU: time for widespread use!. Intensive Care Med 2006;32:9–10. 10.1007/s00134-005-2833-8
    1. Salem R, Vallee F, Rusca M, et al. . Hemodynamic monitoring by echocardiography in the ICU: the role of the new echo techniques. Curr Opin Crit Care 2008;14:561–8. 10.1097/MCC.0b013e32830e6d81
    1. Vincent JL, De Backer D. Circulatory shock. N Engl J Med 2013;369:1726–34. 10.1056/NEJMra1208943
    1. Bernardin G, Pradier C, Tiger F, et al. . Blood pressure and arterial lactate level are early indicators of short-term survival in human septic shock. Intensive Care Med 1996;22:17–25. 10.1007/BF01728326
    1. Varpula M, Tallgren M, Saukkonen K, et al. . Hemodynamic variables related to outcome in septic shock. Intensive Care Med 2005;31:1066–71. 10.1007/s00134-005-2688-z
    1. Dünser MW, Takala J, Ulmer H, et al. . Arterial blood pressure during early sepsis and outcome. Intensive Care Med 2009;35:1225–33. 10.1007/s00134-009-1427-2
    1. Houwink AP, Rijkenberg S, Bosman RJ, et al. . The association between lactate, mean arterial pressure, central venous oxygen saturation and peripheral temperature and mortality in severe sepsis: a retrospective cohort analysis. Crit Care 2016;20:1243–3. 10.1186/s13054-016-1243-3
    1. Tuchschmidt J, Fried J, Swinney R, et al. . Early hemodynamic correlates of survival in patients with septic shock. Crit Care Med 1989;17:719–23. 10.1097/00003246-198908000-00001
    1. De Backer D, Donadello K, Sakr Y, et al. . Microcirculatory alterations in patients with severe Sepsis: impact of time of assessment and relationship with outcome. Crit Care Med 2013;41:791–9. 10.1097/CCM.0b013e3182742e8b
    1. Varis E, Pettilä V, Poukkanen M, et al. . Evolution of blood lactate and 90-Day mortality in septic shock. A Post Hoc analysis of the FINNAKI Study. Shock 2017;47:574–81. 10.1097/SHK.0000000000000772
    1. Champion HR, Sacco WJ, Hannan DS, et al. . Assessment of injury severity: the triage index. Crit Care Med 1980;8:201–8.
    1. van Genderen ME, Lima A, Akkerhuis M, et al. . Persistent peripheral and microcirculatory perfusion alterations after out-of-hospital cardiac arrest are associated with poor survival. Crit Care Med 2012;40:2287–94. 10.1097/CCM.0b013e31825333b2
    1. Ait-Oufella H, Bige N, Boelle PY, et al. . Capillary refill time exploration during septic shock. Intensive Care Med 2014;40:958–64. 10.1007/s00134-014-3326-4
    1. Ait-Oufella H, Lemoinne S, Boelle PY, et al. . Mottling score predicts survival in septic shock. Intensive Care Med 2011;37:801–7. 10.1007/s00134-011-2163-y
    1. Coudroy R, Jamet A, Frat JP, et al. . Incidence and impact of skin mottling over the knee and its duration on outcome in critically ill patients. Intensive Care Med 2015;41:452–9. 10.1007/s00134-014-3600-5
    1. de Moura EB, Amorim FF, da Cruz Santana AN, et al. . Skin mottling score as a predictor of 28-day mortality in patients with septic shock. Intensive Care Med 2016;42:479–80. 10.1007/s00134-015-4184-4
    1. Macedo E, Malhotra R, Bouchard J, et al. . Oliguria is an early predictor of higher mortality in critically ill patients. Kidney Int 2011;80:760–7. 10.1038/ki.2011.150
    1. Vaara ST, Parviainen I, Pettilä V, et al. . Association of oliguria with the development of acute kidney injury in the critically ill. Kidney Int 2016;89:200–8. 10.1038/ki.2015.269
    1. Forrester JS, Diamond GA, Swan HJ. Correlative classification of clinical and hemodynamic function after acute myocardial infarction. Am J Cardiol 1977;39:137–45. 10.1016/S0002-9149(77)80182-3
    1. Parker MM, Shelhamer JH, Natanson C, et al. . Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med 1987;15:923–9.
    1. Joly HR, Weil MH. Temperature of the great toe as an indication of the severity of shock. Circulation 1969;39:131–8. 10.1161/01.CIR.39.1.131
    1. Woods I, Wilkins RG, Edwards JD, et al. . Danger of using core/peripheral temperature gradient as a guide to therapy in shock. Crit Care Med 1987;15:850–2. 10.1097/00003246-198709000-00010
    1. Tuchschmidt J, Sharma OP. Impact of hemodynamic monitoring in a medical intensive care unit. Crit Care Med 1987;15:840–3. 10.1097/00003246-198709000-00008
    1. Vincent JL, Moraine JJ, van der Linden P. Toe temperature versus transcutaneous oxygen tension monitoring during acute circulatory failure. Intensive Care Med 1988;14:64–8. 10.1007/BF00254125
    1. Connors AF, Dawson NV, Shaw PK, et al. . Hemodynamic status in critically ill patients with and without acute heart disease. Chest 1990;98:1200–6. 10.1378/chest.98.5.1200
    1. Wo CC, Shoemaker WC, Appel PL, et al. . Unreliability of blood pressure and heart rate to evaluate cardiac output in emergency resuscitation and critical illness. Crit Care Med 1993;21:218–23.
    1. Kaplan LJ, McPartland K, Santora TA, et al. . Start with a subjective assessment of skin temperature to identify hypoperfusion in intensive care unit patients. J Trauma 2001;50:620–8. 10.1097/00005373-200104000-00005
    1. Boerma EC, Kuiper MA, Kingma WP, et al. . Disparity between skin perfusion and sublingual microcirculatory alterations in severe Sepsis and septic shock: a prospective observational study. Intensive Care Med 2008;34:1294–8. 10.1007/s00134-008-1007-x
    1. Bourcier S, Pichereau C, Boelle PY, et al. . Toe-to-room temperature gradient correlates with tissue perfusion and predicts outcome in selected critically ill patients with severe infections. Ann Intensive Care 2016;6:016–164. 10.1186/s13613-016-0164-2
    1. Hiemstra B, Eck RJ, Keus F, et al. . Clinical examination for diagnosing circulatory shock. Curr Opin Crit Care 2017;23:293–301. 10.1097/MCC.0000000000000420
    1. Rhodes A, Evans LE, Alhazzani W, et al. . Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 2017;43:304–77. 10.1007/s00134-017-4683-6
    1. Teboul JL, Saugel B, Cecconi M, et al. . Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med 2016;42:1350–9. 10.1007/s00134-016-4375-7
    1. Anonymous JL. ICH harmonised tripartite guideline: guideline for good clinical practice. J Postgrad Med 2001;47:199–203.
    1. Zimmerman JE, Kramer AA, McNair DS, et al. . Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med 2006;34:1297–310. 10.1097/01.CCM.0000215112.84523.F0
    1. Guyatt GH, Oxman AD, Kunz R, et al. . What is "quality of evidence" and why is it important to clinicians? BMJ 2008;336:995–8. 10.1136/
    1. Beraud AS, Rizk NW, Pearl RG, et al. . Focused transthoracic echocardiography during critical care medicine training: curriculum implementation and evaluation of proficiency*. Crit Care Med 2013;41:e179–81. 10.1097/CCM.0b013e31828e9240
    1. Díaz-Gómez JL, Perez-Protto S, Hargrave J, et al. . Impact of a focused transthoracic echocardiography training course for rescue applications among anesthesiology and critical care medicine practitioners: a prospective study. J Cardiothorac Vasc Anesth 2015;29:576–81. 10.1053/j.jvca.2014.10.013
    1. Bøtker MT, Vang ML, Grøfte T, et al. . Implementing point-of-care ultrasonography of the heart and lungs in an anesthesia department. Acta Anaesthesiol Scand 2017;61:156–65. 10.1111/aas.12847
    1. Jensen MB, Sloth E, Larsen KM, et al. . Transthoracic echocardiography for cardiopulmonary monitoring in intensive care. Eur J Anaesthesiol 2004;21:700–7. 10.1097/00003643-200409000-00006
    1. Moore CL, Copel JA. Point-of-care ultrasonography. N Engl J Med 2011;364:749–57. 10.1056/NEJMra0909487
    1. Rudolph SS, Sørensen MK, Svane C, et al. . Effect of prehospital ultrasound on clinical outcomes of non-trauma patients--a systematic review. Resuscitation 2014;85:21–30. 10.1016/j.resuscitation.2013.09.012
    1. Zanobetti M, Scorpiniti M, Gigli C, et al. . Point-of-Care Ultrasonography for evaluation of acute dyspnea in the ED. Chest 2017;151:1295–301. 10.1016/j.chest.2017.02.003
    1. Harrell FE, Lee KL, Matchar DB, et al. . Regression models for prognostic prediction: advantages, problems, and suggested solutions. Cancer Treat Rep 1985;69:1071–7.
    1. Concato J, Feinstein AR, Holford TR. The risk of determining risk with multivariable models. Ann Intern Med 1993;118:201–10. 10.7326/0003-4819-118-3-199302010-00009
    1. Sasse SA, Chen PA, Berry RB, et al. . Variability of cardiac output over time in medical intensive care unit patients. Crit Care Med 1994;22:225–32. 10.1097/00003246-199402000-00012
    1. Jozwiak M, Monnet X, Teboul JL. Monitoring: from cardiac output monitoring to echocardiography. Curr Opin Crit Care 2015;21:395–401. 10.1097/MCC.0000000000000236
    1. Shah MR, Hasselblad V, Stevenson LW, et al. . Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA 2005;294:1664–70. 10.1001/jama.294.13.1664
    1. Rajaram SS, Desai NK, Kalra A, et al. . Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev 2013;2:CD003408.
    1. Koster G, van der Horst ICC. Critical care ultrasonography in circulatory shock. Curr Opin Crit Care 2017;23:326–33. 10.1097/MCC.0000000000000428
    1. Lichtenstein DA, Mezière GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest 2008;134:117–25. 10.1378/chest.07-2800
    1. Opdam HI, Wan L, Bellomo R. A pilot assessment of the FloTrac cardiac output monitoring system. Intensive Care Med 2007;33:344–9. 10.1007/s00134-006-0410-4

Source: PubMed

Подписаться