Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn's disease patients

Gareth Marlow, Stephanie Ellett, Isobel R Ferguson, Shuotun Zhu, Nishi Karunasinghe, Amalini C Jesuthasan, Dug Yeo Han, Alan G Fraser, Lynnette R Ferguson, Gareth Marlow, Stephanie Ellett, Isobel R Ferguson, Shuotun Zhu, Nishi Karunasinghe, Amalini C Jesuthasan, Dug Yeo Han, Alan G Fraser, Lynnette R Ferguson

Abstract

Background: Inflammation is an essential immune response; however, chronic inflammation results in disease including Crohn's disease. Therefore, reducing the inflammation can yield a significant health benefit, and one way to achieve this is through diet. We developed a Mediterranean-inspired anti-inflammatory diet and used this diet in a 6-week intervention in a Crohn's disease population. We examined changes in inflammation and also in the gut microbiota. We compared the results of established biomarkers, C-reactive protein and the micronuclei assay, of inflammation with results from a transcriptomic approach.

Results: Data showed that being on our diet for 6 weeks was able to reduce the established biomarkers of inflammation. However, using transcriptomics, we observed significant changes in gene expression. Although no single gene stood out, the cumulative effect of small changes in many genes combined to have a beneficial effect. Data also showed that our diet resulted in a trend of normalising the microbiota.

Conclusions: This study showed that our Mediterranean-inspired diet appeared to benefit the health of people with Crohn's disease. Our participants showed a trend for reduced markers of inflammation and normalising of the microbiota. The significant changes in gene expression after 6 weeks highlighted the increased sensitivity of using transcriptomics when compared to the established biomarkers and open up a new era of dietary intervention studies.

Figures

Figure 1
Figure 1
Mean (±SE) levels of C-reactive protein pre- and post-dietary intervention for each participant.
Figure 2
Figure 2
Mean (±SE) micronuclei scored in 1,100 cytokinesis-blocked cells for each participant pre- and post-dietary intervention.
Figure 3
Figure 3
Differential expression of top 100 genes (p< 0.002) pre- and post-dietary intervention. Based on analysis of the top differentially expressed transcripts, it is clear that transcription expression is changed over time, with expression being both increased (red) and decreased (green) significantly in just 6 weeks.
Figure 4
Figure 4
Generation of a biological network of genes related to the upstream regulator IRF2. Network was generated by IPA. Connections were applied based on known interactions within the Ingenuity Pathway Knowledge Base. Solid lines between genes represent direct interactions and the dashed lines indirect. Genes are represented by nodes, with the red and green colours indicating up- or down-regulated expression; the greater the colour intensity, the higher the level of differential expression.
Figure 5
Figure 5
Relative abundance of microbiota pre- and post-dietary intervention. Healthy samples (n = 2), CD pre-diet (n = 8) and CD post-diet (n = 8).

References

    1. Ferguson LR. Potential value of nutrigenomics in Crohn's disease. Nat Rev Gastroenterol Hepatol. 2012;9(5):260–270. doi: 10.1038/nrgastro.2012.41.
    1. Calder PC. Fatty acids and inflammation: the cutting edge between food and pharma. Eur J Pharmacol. 2011;668(Suppl 1):S50–58.
    1. Corfield AP, Wallace HM, Probert CS. The molecular biology of inflammatory bowel diseases. Biochem Soc Trans. 2011;39(4):1057–1060. doi: 10.1042/BST0391057.
    1. Serhan CN. The resolution of inflammation: the devil in the flask and in the details. FASEB J. 2011;25(5):1441–1448. doi: 10.1096/fj.11-0502ufm.
    1. Bakker GC, van Erk MJ, Pellis L, Wopereis S, Rubingh CM, Cnubben NH, Kooistra T, van Ommen B, Hendriks HF. An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: a nutrigenomics approach. Am J Clin Nutr. 2010;91(4):1044–1059. doi: 10.3945/ajcn.2009.28822.
    1. Bannenberg G, Serhan CN. Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochim Biophys Acta. 2010;1801(12):1260–1273. doi: 10.1016/j.bbalip.2010.08.002.
    1. Gentschew L, Ferguson LR. Role of nutrition and microbiota in susceptibility to inflammatory bowel diseases. Mol Nutr Food Res. 2012;56(4):524–535. doi: 10.1002/mnfr.201100630.
    1. Amre DK, D'Souza S, Morgan K, Seidman G, Lambrette P, Grimard G, Israel D, Mack D, Ghadirian P, Deslandres C, Chotard V, Budai B, Law L, Levy E, Seidman EG. Imbalances in dietary consumption of fatty acids, vegetables, and fruits are associated with risk for Crohn's disease in children. Am J Gastroenterol. 2007;102(9):2016–2025. doi: 10.1111/j.1572-0241.2007.01411.x.
    1. D'Souza S, Levy E, Mack D, Israel D, Lambrette P, Ghadirian P, Deslandres C, Morgan K, Seidman EG, Amre DK. Dietary patterns and risk for Crohn's disease in children. Inflamm Bowel Dis. 2008;14(3):367–373. doi: 10.1002/ibd.20333.
    1. Issa M, Saeian K. Diet in inflammatory bowel disease. Nutr Clin Pract. 2011;26(2):151–154. doi: 10.1177/0884533611400233.
    1. Brown K, DeCoffe D, Molcan E, Gibson DL. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients. 2012;4(8):1095–1119.
    1. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–13785. doi: 10.1073/pnas.0706625104.
    1. Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A. 2012;109(2):594–599. doi: 10.1073/pnas.1116053109.
    1. Albenberg LG, Lewis JD, Wu GD. Food and the gut microbiota in inflammatory bowel diseases: a critical connection. Curr Opin Gastroenterol. 2012;28(4):314–320. doi: 10.1097/MOG.0b013e328354586f.
    1. Candela M, Rampelli S, Turroni S, Severgnini M, Consolandi C, De Bellis G, Masetti R, Ricci G, Pession A, Brigidi P. Unbalance of intestinal microbiota in atopic children. BMC Microbiol. 2012;12:95. doi: 10.1186/1471-2180-12-95.
    1. Hattori M, Taylor TD. The human intestinal microbiome: a new frontier of human biology. DNA Res. 2009;16(1):1–12. doi: 10.1093/dnares/dsn033.
    1. Candela M, Biagi E, Maccaferri S, Turroni S, Brigidi P. Intestinal microbiota is a plastic factor responding to environmental changes. Trends Microbiol. 2012;20(8):385–391. doi: 10.1016/j.tim.2012.05.003.
    1. Candela M, Consolandi C, Severgnini M, Biagi E, Castiglioni B, Vitali B, De Bellis G, Brigidi P. High taxonomic level fingerprint of the human intestinal microbiota by Ligase Detection Reaction - Universal Array approach. BMC Microbiol. 2010;10:116. doi: 10.1186/1471-2180-10-116.
    1. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut. 2006;55(2):205–211. doi: 10.1136/gut.2005.073817.
    1. Sokol H, Lay C, Seksik P, Tannock GW. Analysis of bacterial bowel communities of IBD patients: what has it revealed? Inflamm Bowel Dis. 2008;14(6):858–867. doi: 10.1002/ibd.20392.
    1. Rajilic-Stojanovic M, Heilig HG, Molenaar D, Kajander K, Surakka A, Smidt H, de Vos WM. Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol. 2009;11(7):1736–1751. doi: 10.1111/j.1462-2920.2009.01900.x.
    1. Bouwens M, van de Rest O, Dellschaft N, Bromhaar MG, de Groot LC, Geleijnse JM, Muller M, Afman LA. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am J Clin Nutr. 2009;90(2):415–424. doi: 10.3945/ajcn.2009.27680.
    1. Esposito K, Di Palo C, Maiorino MI, Petrizzo M, Bellastella G, Siniscalchi I, Giugliano D. Long-term effect of mediterranean-style diet and calorie restriction on biomarkers of longevity and oxidative stress in overweight men. Cardiol Res Pract. 2011;2011:293916.
    1. Esposito K, Kastorini CM, Panagiotakos DB, Giugliano D. Mediterranean diet and weight loss: meta-analysis of randomized controlled trials. Metab Syndr Relat Disord. 2011;9(1):1–12. doi: 10.1089/met.2010.0031.
    1. Kastorini CM, Milionis HJ, Esposito K, Giugliano D, Goudevenos JA, Panagiotakos DB. The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol. 2011;57(11):1299–1313. doi: 10.1016/j.jacc.2010.09.073.
    1. Sola R, Fito M, Estruch R, Salas-Salvado J, Corella D, de La Torre R, Munoz MA, Lopez-Sabater Mdel C, Martinez-Gonzalez MA, Aros F, Ruiz-Gutierrez V, Fiol M, Casals E, Wärnberg J, Buil-Cosiales P, Ros E, Konstantinidou V, Lapetra J, Serra-Majem L, Covas MI. Effect of a traditional Mediterranean diet on apolipoproteins B, A-I, and their ratio: a randomized, controlled trial. Atherosclerosis. 2011;218(1):174–180. doi: 10.1016/j.atherosclerosis.2011.04.026.
    1. Nanau R, Neuman M. Nutritional and probiotic supplementation in colitis models. Dig Dis Sci. 2012;57(11):2786–2810. doi: 10.1007/s10620-012-2284-3.
    1. Triggs CM, Munday K, Hu R, Fraser AG, Gearry RB, Barclay ML, Ferguson LR. Dietary factors in chronic inflammation: food tolerances and intolerances of a New Zealand Caucasian Crohn's disease population. Mutat Res. 2010;690(1–2):123–138.
    1. Ellett S, Ferguson IR, Zhu S, Karunasinghe N, Marlow G, Hurley D, Lam WJ, Han DY, Ferguson LR. Foodomics to study efficacy of human dietary interventions: proof of principle study. In Nutrigenomics and Nutrigenetics in Functional Foods and Personalized Nutrition. Edited by Ferguson LR. Boca Raton, FL: CRC Press; 2013.
    1. Bisoendial RJ, Boekholdt SM, Vergeer M, Stroes ES, Kastelein JJ. C-reactive protein is a mediator of cardiovascular disease. Eur Heart J. 2010;31(17):2087–2091. doi: 10.1093/eurheartj/ehq238.
    1. Karadag F, Kirdar S, Karul AB, Ceylan E. The value of C-reactive protein as a marker of systemic inflammation in stable chronic obstructive pulmonary disease. Eur J Intern Med. 2008;19(2):104–108. doi: 10.1016/j.ejim.2007.04.026.
    1. Thomas P, Fenech M. Cytokinesis-block micronucleus cytome assay in lymphocytes. Methods Mol Biol. 2011;682:217–234. doi: 10.1007/978-1-60327-409-8_16.
    1. de Graaf AA, Freidig AP, De Roos B, Jamshidi N, Heinemann M, Rullmann JA, Hall KD, Adiels M, van Ommen B. Nutritional systems biology modeling: from molecular mechanisms to physiology. PLoS Comput Biol. 2009;5(11):e1000554. doi: 10.1371/journal.pcbi.1000554.
    1. Puiggros F, Sola R, Blade C, Salvado MJ, Arola L. Nutritional biomarkers and foodomic methodologies for qualitative and quantitative analysis of bioactive ingredients in dietary intervention studies. J Chromatogr A. 2011;1218(42):7399–7414. doi: 10.1016/j.chroma.2011.08.051.
    1. Chae M, Kim K, Park S-M, Jang I-S, Seo T, Kim D-M, Kim I-C, Lee J-H, Park J. IRF-2 regulates NF-κB activity by modulating the subcellular localization of NF-κB. Biochem Biophys Res Commun. 2008;370(3):519–524. doi: 10.1016/j.bbrc.2008.03.136.
    1. Sugimoto K. Role of STAT3 in inflammatory bowel disease. World J Gastroenterol. 2008;14(33):5110–5114. doi: 10.3748/wjg.14.5110.
    1. Li Y, de Haar C, Peppelenbosch MP, van der Woude CJ. New insights into the role of STAT3 in IBD. Inflamm Bowel Dis. 2012;18(6):1177–1183. doi: 10.1002/ibd.21884.
    1. de Mello VD, Kolehmanien M, Schwab U, Pulkkinen L, Uusitupa M. Gene expression of peripheral blood mononuclear cells as a tool in dietary intervention studies: what do we know so far? Mol Nutr Food Res. 2012;56(7):1160–1172. doi: 10.1002/mnfr.201100685.
    1. Rudkowska I, Ponton A, Jacques H, Lavigne C, Holub BJ, Marette A, Vohl MC. Effects of a supplementation of n-3 polyunsaturated fatty acids with or without fish gelatin on gene expression in peripheral blood mononuclear cells in obese, insulin-resistant subjects. J Nutrigenet Nutrigenomics. 2011;4(4):192–202. doi: 10.1159/000330226.
    1. Rudkowska I, Raymond C, Ponton A, Jacques H, Lavigne C, Holub BJ, Marette A, Vohl MC. Validation of the use of peripheral blood mononuclear cells as surrogate model for skeletal muscle tissue in nutrigenomic studies. OMICS. 2011;15(1–2):1–7.
    1. Bomprezzi R, Ringner M, Kim S, Bittner ML, Khan J, Chen Y, Elkahloun A, Yu A, Bielekova B, Meltzer PS, Martin R, McFarland HF, Trent JM. Gene expression profile in multiple sclerosis patients and healthy controls: identifying pathways relevant to disease. Hum Mol Genet. 2003;12(17):2191–2199. doi: 10.1093/hmg/ddg221.
    1. Connolly PH, Caiozzo VJ, Zaldivar F, Nemet D, Larson J, Hung SP, Heck JD, Hatfield GW, Cooper DM. Effects of exercise on gene expression in human peripheral blood mononuclear cells. J Appl Physiol. 2004;97(4):1461–1469. doi: 10.1152/japplphysiol.00316.2004.
    1. Dabek J, Kulach A, Wilczok T, Mazurek U, Jakubowski D, Gasior Z. Transcriptional activity of genes encoding interferon gamma (IFNgamma) and its receptor assessed in peripheral blood mononuclear cells in patients with cardiac syndrome X. Inflammation. 2007;30(3–4):125–129.
    1. Rokutan K, Morita K, Masuda K, Tominaga K, Shikishima M, Teshima-Kondo S, Omori T, Sekiyama A. Gene expression profiling in peripheral blood leukocytes as a new approach for assessment of human stress response. J Med Invest. 2005;52(3–4):137–144.
    1. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009. doi: 10.1056/NEJMoa021967.
    1. Di Paolo S, Schena A, Stallone G, Grandaliano G, Soccio M, Cerullo G, Gesualdo L, Paolo Schena F. Captopril enhances transforming growth factor (TGF)-beta1 expression in peripheral blood mononuclear cells: a mechanism independent from angiotensin converting enzyme inhibition? A study in cyclosporine-treated kidney-transplanted patients. Transplantation. 2002;74(12):1710–1715.
    1. Fuchs D, Piller R, Linseisen J, Daniel H, Wenzel U. The human peripheral blood mononuclear cell proteome responds to a dietary flaxseed-intervention and proteins identified suggest a protective effect in atherosclerosis. Proteomics. 2007;7(18):3278–3288. doi: 10.1002/pmic.200700096.
    1. Theuwissen E, Plat J, Mensink RP. Consumption of oat beta-glucan with or without plant stanols did not influence inflammatory markers in hypercholesterolemic subjects. Mol Nutr Food Res. 2009;53(3):370–376. doi: 10.1002/mnfr.200800132.
    1. Shelby MD. A report on guidelines for mutagenicity testing. "Report of the UKEMS Sub-Committee on Guidelines for Mutagenicity Testing. Part 1: Basic Test Battery; Minimal Criteria; Professional Standards; Interpretation; Selection of Supplementary Assays," Brian J. Dean (ed). London: UKEMS, 1983. Environ Mutagen. 1983;5(6):941–943. doi: 10.1002/em.2860050617.
    1. Heddle JA, Lue CB, Saunders EF, Benz RD. Sensitivity to five mutagens in Fanconi's anemia as measured by the micronucleus method. Cancer Res. 1978;38(9):2983–2988.
    1. Fenech M. The cytokinesis-block micronucleus technique: a detailed description of the method and its application to genotoxicity studies in human populations. Mutat Res. 1993;285(1):35–44. doi: 10.1016/0027-5107(93)90049-L.

Source: PubMed

Подписаться