Probing the frontostriatal loops involved in executive and limbic processing via interleaved TMS and functional MRI at two prefrontal locations: a pilot study

Colleen A Hanlon, Melanie Canterberry, Joseph J Taylor, William DeVries, Xingbao Li, Truman R Brown, Mark S George, Colleen A Hanlon, Melanie Canterberry, Joseph J Taylor, William DeVries, Xingbao Li, Truman R Brown, Mark S George

Abstract

Background: The prefrontal cortex (PFC) is an anatomically and functionally heterogeneous area which influences cognitive and limbic processing through connectivity to subcortical targets. As proposed by Alexander et al. (1986) the lateral and medial aspects of the PFC project to distinct areas of the striatum in parallel but functionally distinct circuits. The purpose of this preliminary study was to determine if we could differentially and consistently activate these lateral and medial cortical-subcortical circuits involved in executive and limbic processing though interleaved transcranial magnetic stimulation (TMS) in the MR environment.

Methods: Seventeen healthy individuals received interleaved TMS-BOLD imaging with the coil positioned over the dorsolateral (EEG: F3) and ventromedial PFC (EEG: FP1). BOLD signal change was calculated in the areas directly stimulated by the coil and in subcortical regions with afferent and efferent connectivity to the TMS target areas. Additionally, five individuals were tested on two occasions to determine test-retest reliability.

Results: Region of interest analysis revealed that TMS at both prefrontal sites led to significant BOLD signal increases in the cortex under the coil, in the striatum, and the thalamus, but not in the visual cortex (negative control region). There was a significantly larger BOLD signal change in the caudate following medial PFC TMS, relative to lateral TMS. The hippocampus in contrast was significantly more activated by lateral TMS. Post-hoc voxel-based analysis revealed that within the caudate the location of peak activity was in the ventral caudate following medial TMS and the dorsal caudate following lateral TMS. Test-retest reliability data revealed consistent BOLD responses to TMS within each individual but a large variation between individuals.

Conclusion: These data demonstrate that, through an optimized TMS/BOLD sequence over two unique prefrontal targets, it is possible to selectively interrogate the patency of these established cortical-subcortical networks in healthy individuals, and potentially patient populations.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. TMS stimulation sites and anatomical…
Figure 1. TMS stimulation sites and anatomical regions of interest.
TMS was applied at two locations the DLPFC (F3, blue circle) and the MPFC (FP1, red circle), shown here on a standardized anatomical image (black circles = standard positions in the 10–20 system) (A). Regions of interest for analysis were defined apriori using standardized regions from the Automated Anatomical Labeling atlas (AAL) and included the middle frontal gyrus (blue), superior and middle orbital gyri (red)), caudate (pink), putamen (yellow), amygdale (orange), hippocampus (teal), and thalamus (green) (B). Additionally the cuneus was chosen as a control region (dark gray).
Figure 2. The location of the peak…
Figure 2. The location of the peak BOLD response for each individual following TMS pulses to the F3 location (blue spheres) and to the FP1 location (red spheres).
The locations of the peak BOLD response for each individual have be normalized to standard space and projected to the surface of standard cortical mask such that all points are visible in a common space. The mean location of peak activity in the cluster beneath the coil is shown (larger blue and red spheres).
Figure 3. Hemodynamic response in the left…
Figure 3. Hemodynamic response in the left DLPFC and MPFC following stimulation at F3 and FP1.
Figure 4. Percent BOLD signal change in…
Figure 4. Percent BOLD signal change in subcortical brain regions monosynaptically connected to the left DLPFC or MPFC following stimulation at the DLPFC site (F3) (gray) and the MPFC site ((FP1) (black).
The left and right portions of each ROI are displayed. *p

Figure 5. Spatial distribution of regions significantly…

Figure 5. Spatial distribution of regions significantly activated by single-pulse TMS to the left DLPFC…

Figure 5. Spatial distribution of regions significantly activated by single-pulse TMS to the left DLPFC (A) and the MPFC (B).
A model of the placement of the TMS coil in the MR environment is shown in the far left panel. Statistical contrast maps of change in BOLD signal following a TMS pulse are shown in the panels to the right (t values displayed on colorbar, maximum 5).

Figure 6. Percent signal change in the…

Figure 6. Percent signal change in the left DLPFC following stimulation at F3 (A) and…

Figure 6. Percent signal change in the left DLPFC following stimulation at F3 (A) and the MPFC following stimulation at FP1 (B) for 5 participants who underwent the experiment on two visits at the same threshold of stimulation.
Figure 5. Spatial distribution of regions significantly…
Figure 5. Spatial distribution of regions significantly activated by single-pulse TMS to the left DLPFC (A) and the MPFC (B).
A model of the placement of the TMS coil in the MR environment is shown in the far left panel. Statistical contrast maps of change in BOLD signal following a TMS pulse are shown in the panels to the right (t values displayed on colorbar, maximum 5).
Figure 6. Percent signal change in the…
Figure 6. Percent signal change in the left DLPFC following stimulation at F3 (A) and the MPFC following stimulation at FP1 (B) for 5 participants who underwent the experiment on two visits at the same threshold of stimulation.

References

    1. Goldman-Rakic PS (1988) Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci 11: 137–156.
    1. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–381.
    1. Koechlin E, Corrado G, Pietrini P, Grafman J (2000) Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proc Natl Acad Sci U S A 97: 7651–7656.
    1. Druzgal TJ, D’Esposito M (2001) A neural network reflecting decisions about human faces. Neuron 32: 947–955.
    1. Dolan RJ, Fletcher PC (1997) Dissociating prefrontal and hippocampal function in episodic memory encoding. Nature 388: 582–585.
    1. Blumenfeld RS, Ranganath C (2006) Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J Neurosci 26: 916–925.
    1. Cabeza R, Dolcos F, Graham R, Nyberg L (2002) Similarities and differences in the neural correlates of episodic memory retrieval and working memory. Neuroimage 16: 317–330.
    1. Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 15: 4851–4867.
    1. Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10: 206–219.
    1. Price JL (1999) Prefrontal cortical networks related to visceral function and mood. Ann N Y Acad Sci 877: 383–396.
    1. Adcock RA, Thangavel A, Whitfield-Gabrieli S, Knutson B, Gabrieli JD (2006) Reward-motivated learning: mesolimbic activation precedes memory formation. Neuron 50: 507–517.
    1. Knutson B, Taylor J, Kaufman M, Peterson R, Glover G (2005) Distributed neural representation of expected value. J Neurosci 25: 4806–4812.
    1. Mobbs D, Greicius MD, Abdel-Azim E, Menon V, Reiss AL (2003) Humor modulates the mesolimbic reward centers. Neuron 40: 1041–1048.
    1. Berns GS (2004) Something funny happened to reward. Trends Cogn Sci 8: 193–194.
    1. Bjork JM, Chen G, Hommer DW (2011) Psychopathic tendencies and mesolimbic recruitment by cues for instrumental and passively obtained rewards. Biol Psychol 89: 408–415.
    1. Buckholtz JW, Treadway MT, Cowan RL, Woodward ND, Benning SD, et al. (2010) Mesolimbic dopamine reward system hypersensitivity in individuals with psychopathic traits. Nat Neurosci 13: 419–421.
    1. Fladung AK, Gron G, Grammer K, Herrnberger B, Schilly E, et al. (2010) A neural signature of anorexia nervosa in the ventral striatal reward system. Am J Psychiatry 167: 206–212.
    1. Kufahl PR, Li Z, Risinger RC, Rainey CJ, Wu G, et al. (2005) Neural responses to acute cocaine administration in the human brain detected by fMRI. Neuroimage 28: 904–914.
    1. Franklin TR, Wang Z, Wang J, Sciortino N, Harper D, et al. (2007) Limbic activation to cigarette smoking cues independent of nicotine withdrawal: a perfusion fMRI study. Neuropsychopharmacology 32: 2301–2309.
    1. Grusser SM, Wrase J, Klein S, Hermann D, Smolka MN, et al. (2004) Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology (Berl) 175: 296–302.
    1. Ochsner KN, Hughes B, Robertson ER, Cooper JC, Gabrieli JD (2009) Neural systems supporting the control of affective and cognitive conflicts. J Cogn Neurosci 21: 1842–1855.
    1. Zanolie K, Van Leijenhorst L, Rombouts SA, Crone EA (2008) Separable neural mechanisms contribute to feedback processing in a rule-learning task. Neuropsychologia 46: 117–126.
    1. Baudewig J, Siebner HR, Bestmann S, Tergau F, Tings T, et al. (2001) Functional MRI of cortical activations induced by transcranial magnetic stimulation (TMS). Neuroreport 12: 3543–3548.
    1. Bestmann S, Baudewig J, Frahm J (2003) On the synchronization of transcranial magnetic stimulation and functional echo-planar imaging. J Magn Reson Imaging 17: 309–316.
    1. Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2005) BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. Neuroimage 28: 22–29.
    1. Bohning DE, Shastri A, McConnell KA, Nahas Z, Lorberbaum JP, et al. (1999) A combined TMS/fMRI study of intensity-dependent TMS over motor cortex. Biol Psychiatry 45: 385–394.
    1. Bohning DE, Shastri A, McGavin L, McConnell KA, Nahas Z, et al. (2000) Motor cortex brain activity induced by 1-Hz transcranial magnetic stimulation is similar in location and level to that for volitional movement. Invest Radiol 35: 676–683.
    1. Bohning DE, Shastri A, Nahas Z, Lorberbaum JP, Andersen SW, et al. (1998) Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Invest Radiol 33: 336–340.
    1. Bohning DE, Shastri A, Wassermann EM, Ziemann U, Lorberbaum JP, et al. (2000) BOLD-f MRI response to single-pulse transcranial magnetic stimulation (TMS). J Magn Reson Imaging 11: 569–574.
    1. Strafella AP, Ko JH, Grant J, Fraraccio M, Monchi O (2005) Corticostriatal functional interactions in Parkinson’s disease: a rTMS/[11C]raclopride PET study. Eur J Neurosci 22: 2946–2952.
    1. Strafella AP, Paus T, Barrett J, Dagher A (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21: RC157.
    1. Li X, Teneback CC, Nahas Z, Kozel FA, Large C, et al. (2004) Interleaved transcranial magnetic stimulation/functional MRI confirms that lamotrigine inhibits cortical excitability in healthy young men. Neuropsychopharmacology 29: 1395–1407.
    1. Nahas Z, Lomarev M, Roberts DR, Shastri A, Lorberbaum JP, et al. (2001) Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI. Biol Psychiatry 50: 712–720.
    1. Li X, Large CH, Ricci R, Taylor JJ, Nahas Z, et al. (2010) Using interleaved transcranial magnetic stimulation/functional magnetic resonance imaging (fMRI) and dynamic causal modeling to understand the discrete circuit specific changes of medications: lamotrigine and valproic acid changes in motor or prefrontal effective connectivity. Psychiatry Res 194: 141–148.
    1. Bohning DE, Denslow S, Bohning PA, Walker JA, George MS (2003) A TMS coil positioning/holding system for MR image-guided TMS interleaved with fMRI. Clin Neurophysiol 114: 2210–2219.
    1. George MS, Nahas Z, Kozol FA, Li X, Yamanaka K, et al. (2003) Mechanisms and the current state of transcranial magnetic stimulation. CNS Spectr 8: 496–514.
    1. Rusjan PM, Barr MS, Farzan F, Arenovich T, Maller JJ, et al. (2010) Optimal transcranial magnetic stimulation coil placement for targeting the dorsolateral prefrontal cortex using novel magnetic resonance image-guided neuronavigation. Hum Brain Mapp 31: 1643–1652.
    1. Beam W, Borckardt JJ, Reeves ST, George MS (2009) An efficient and accurate new method for locating the F3 position for prefrontal TMS applications. Brain Stimul 2: 50–54.
    1. Shastri A, George MS, Bohning DE (1999) Performance of a system for interleaving transcranial magnetic stimulation with steady-state magnetic resonance imaging. Electroencephalogr Clin Neurophysiol Suppl 51: 55–64.
    1. Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2004) Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. Eur J Neurosci 19: 1950–1962.
    1. Hanlon CA, Wesley MJ, Roth AJ, Miller MD, Porrino LJ (2010) Loss of laterality in chronic cocaine users: an fMRI investigation of sensorimotor control. Psychiatry Res 181: 15–23.
    1. Hanlon CA, Wesley MJ, Stapleton JR, Laurienti PJ, Porrino LJ (2011) The association between frontal-striatal connectivity and sensorimotor control in cocaine users. Drug Alcohol Depend 115: 240–243.
    1. Shitara H, Shinozaki T, Takagishi K, Honda M, Hanakawa T (2011) Time course and spatial distribution of fMRI signal changes during single-pulse transcranial magnetic stimulation to the primary motor cortex. Neuroimage 56: 1469–1479.
    1. Barbas H, Blatt GJ (1995) Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus 5: 511–533.
    1. Goldman-Rakic PS, Selemon LD, Schwartz ML (1984) Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12: 719–743.
    1. Bozkurt A, Kamper L, Stephan K, Kotter R (2002) The structural basis of information transfer from medial temporal lobe to prefrontal cortex in the macaque monkey. Computational Neuroscience Trends in Research 44: 753–758.
    1. Morris R, Pandya DN, Petrides M (1999) Fiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey. J Comp Neurol 407: 183–192.
    1. Mufson EJ, Pandya DN (1984) Some observations on the course and composition of the cingulum bundle in the rhesus monkey. J Comp Neurol 225: 31–43.
    1. McConnell KA, Nahas Z, Shastri A, Lorberbaum JP, Kozel FA, et al. (2001) The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex. Biol Psychiatry 49: 454–459.

Source: PubMed

Подписаться