Pharmacokinetics and pharmacodynamics of hydroxychloroquine in hospitalized patients with COVID-19

Noël Zahr, Saik Urien, Benoit Llopis, Valérie Pourcher, Olivier Paccoud, Alexandre Bleibtreu, Julien Mayaux, Estelle Gandjbakhch, Guillaume Hekimian, Alain Combes, Olivier Benveniste, David Saadoun, Yves Allenbach, Bruno Pinna, Patrice Cacoub, Christian Funck-Brentano, Joe-Elie Salem, Noël Zahr, Saik Urien, Benoit Llopis, Valérie Pourcher, Olivier Paccoud, Alexandre Bleibtreu, Julien Mayaux, Estelle Gandjbakhch, Guillaume Hekimian, Alain Combes, Olivier Benveniste, David Saadoun, Yves Allenbach, Bruno Pinna, Patrice Cacoub, Christian Funck-Brentano, Joe-Elie Salem

Abstract

Background: Hydroxychloroquine (HCQ) dosage required to reach circulating levels that inhibit SARS-Cov-2 are extrapolated from pharmacokinetic data in non-COVID-19 patients.

Methods: We performed a population-pharmacokinetic analysis from 104 consecutive COVID-19 hospitalized patients (31 in intensive care units, 73 in medical wards, n=149 samples). Plasma HCQ concentration were measured using high performance liquid chromatography with fluorometric detection. Modelling used Monolix-2019R2.

Results: HCQ doses ranged from 200 to 800mg/day administered for 1 to 11days and median HCQ plasma concentration was 151ng/mL. Among the tested covariates, only bodyweight influenced elimination oral clearance (CL) and apparent volume of distribution (Vd). CL/F (F for unknown bioavailability) and Vd/F (relative standard-error, %) estimates were 45.9L/h (21.2) and 6690L (16.1). The derived elimination half-life (t1/2) was 102h. These parameters in COVID-19 differed from those reported in patients with lupus, where CL/F, Vd/F and t1/2 are reported to be 68L/h, 2440 L and 19.5h, respectively. Within 72h of HCQ initiation, only 16/104 (15.4%) COVID-19 patients had HCQ plasma levels above the in vitro half maximal effective concentration of HCQ against SARS-CoV-2 (240ng/mL). HCQ did not influence inflammation status (assessed by C-reactive protein) or SARS-CoV-2 viral clearance (assessed by real-time reverse transcription-PCR nasopharyngeal swabs).

Conclusion: The interindividual variability of HCQ pharmacokinetic parameters in severe COVID-19 patients was important and differed from that previously reported in non-COVID-19 patients. Loading doses of 1600mg HCQ followed by 600mg daily doses are needed to reach concentrations relevant to SARS-CoV-2 inhibition within 72hours in≥60% (95% confidence interval: 49.5-69.0%) of COVID-19 patients.

Keywords: COVID-19; Hydroxychloroquine; Pharmacodynamics; Pharmacokinetics.

Copyright © 2021 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

Figures

Figure 1
Figure 1
Observed blood (red) and plasma (green) hydroxychloroquine concentrations. Numbers stand for the patient identity and lines for the corresponding spline describing the overall trend for each matrix.
Figure 2
Figure 2
Prediction-corrected visual predictive check for plasma (A) and blood (B) hydroxychloroquine population pharmacokinetics. Plain () and green lines stand for prediction-corrected observed concentrations and their 5th, 50th and 95th percentiles. Light blue and red bands stand for the corresponding model-predicted 90% confidence intervals.
Figure 3
Figure 3
Representative predicted plasma hydroxychloroquine (HCQ) concentrations-time courses as a function of the dosing regimen evaluated in major prospective trials testing HCQ for COVID-19. Curves are drawn according to our final parameters for a typical patient weight (WT) of 79 kg (observed median). Dosing schedules are 2.4 g loading dose then 400 mg/12 h (RECOVERY), 1.2 g loading dose then 200 mg/8 h (SANOFI), 200 mg/8 h (IHU Marseille) and 800 mg loading dose then 400 mg/24 h (DISCOVERY). Curves shown are using COVID-19 patients (A), lupus patients (B), malaria patients (C), and healthy subjects (D) parameters.
Figure 4
Figure 4
Possible dosing regimen in COVID-19 patients (weighing 79 kg) according to our final model. Dosing schedules represented are 800 mg/12 h (total 1600 mg) the 1st day, then 400 mg/12 h (RED); 800 mg/12 h (total 1600 mg) the 1st day, then 200 mg/8 h (ORANGE); 400 mg/8 h (total 1200 mg) loading dose the 1st day, then 400 mg/12 h (BLUE); 600 mg/8 h (total 1800 mg) loading dose the 1st day, then 200 mg/8 h (GREEN).
Figure 5
Figure 5
Mean plasma hydroxychloroquine (HCQ) concentration-time courses for a patient with bodyweight (WT) 103 kg and half-life >70 h, red and blue curves, respectively (A) and for typical patients with 79 kg WT and clearance (CL) ranging between 30–68 L/h and volume of distribution (Vd) between 4765–13,470 L, black curves drawn from variable CL and Vd Bayesian estimates (B). Dosing regimen is 200 mg HCQ/8 h, with no loading dose.
Figure 6
Figure 6
Time-to-Sars-Cov-2 PCR negativation curves as a function of hydroxychloroquine (HCQ) plasma levels within 48 hours of HCQ start. Blue and red curves represent patients with an HCQ plasma concentration at 48 h below or above the 1st HCQ plasma concentration quartile observed in our cohort, respectively (72 ng/mL, A), median (95 ng/mL, B) and 3rd quartile (129 ng/mL, C).

References

    1. Arshad S., Kilgore P., Chaudhry Z.S., Jacobsen G., Wang D.D., Huitsing K., et al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis. 2020;97:396–403.
    1. Gautret P., Lagier J.C., Parola P., Hoang V.T., Meddeb L., Mailhe M., et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949.
    1. Gautret P., Lagier J.C., Parola P., Hoang V.T., Meddeb L., Sevestre J., et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow-up: a pilot observational study. Travel Med Infect Dis. 2020;34:101663.
    1. Mikami T., Miyashita H., Yamada T., Harrington M., Steinberg D., Dunn A., et al. Risk factors for mortality in patients with COVID-19 in New York City. J Gen Intern Med. 2020:1–10. doi: 10.1007/s11606-020-05983-z.
    1. Million M., Lagier J.C., Gautret P., Colson P., Fournier P.E., Amrane S., et al. Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: a retrospective analysis of 1061 cases in Marseille, France. Travel Med Infect Dis. 2020;35:101738.
    1. Geleris J., Sun Y., Platt J., Zucker J., Baldwin M., Hripcsak G., et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. 2020;382(25):2411–2418.
    1. Rosenberg E.S., Dufort E.M., Udo T., Wilberschied L.A., Kumar J., Tesoriero J., et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA. 2020;323(24):2493–2502.
    1. Boulware D.R., Pullen M.F., Bangdiwala A.S., Pastick K.A., Lofgren S.M., Okafor E.C., et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med. 2020;383(6):517–525.
    1. Tang W., Cao Z., Han M., Wang Z., Chen J., Sun W., et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020;369:m1849.
    1. Le M.P., Peiffer-Smadja N., Guedj J., Neant N., Mentre F., Ader F., et al. Rationale of a loading dose initiation for hydroxychloroquine treatment in COVID-19 infection in the DisCoVeRy trial. J Antimicrob Chemother. 2020;75(9):2376–2380.
    1. Yao X., Ye F., Zhang M., Cui C., Huang B., Niu P., et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Clin Infect Dis. 2020;71(15):732–739.
    1. Akpovwa H. Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity. Cell Biochem Funct. 2016;34(4):191–196.
    1. Savarino A., Boelaert J.R., Cassone A., Majori G., Cauda R. Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect Dis. 2003;3(11):722–727.
    1. Rossi B., Nguyen L.S., Zimmermann P., Boucenna F., Dubret L., Baucher L., et al. Effect of tocilizumab in hospitalized patients with severe COVID-19 pneumonia: a case-control cohort study. Pharmaceuticals (Basel) 2020;13(10):317.
    1. Lim H.S., Im J.S., Cho J.Y., Bae K.S., Klein T.A., Yeom J.S., et al. Pharmacokinetics of hydroxychloroquine and its clinical implications in chemoprophylaxis against malaria caused by Plasmodium vivax. Antimicrob Agents Chemother. 2009;53(4):1468–1475.
    1. Morita S., Takahashi T., Yoshida Y., Yokota N. Population pharmacokinetics of hydroxychloroquine in Japanese patients with cutaneous or systemic lupus erythematosus. Ther Drug Monit. 2016;38(2):259–267.
    1. Costedoat-Chalumeau N., Amoura Z., Hulot J.S., Hammoud H.A., Aymard G., Cacoub P., et al. Low blood concentration of hydroxychloroquine is a marker for and predictor of disease exacerbations in patients with systemic lupus erythematosus. Arthritis Rheum. 2006;54(10):3284–3290.
    1. Tett S.E., Cutler D.J., Beck C., Day R.O. Concentration–effect relationship of hydroxychloroquine in patients with rheumatoid arthritis – a prospective, dose ranging study. J Rheumatol. 2000;27(7):1656–1660.
    1. Munster T., Gibbs J.P., Shen D., Baethge B.A., Botstein G.R., Caldwell J., et al. Hydroxychloroquine concentration-response relationships in patients with rheumatoid arthritis. Arthritis Rheum. 2002;46(6):1460–1469.
    1. Carmichael S.J., Charles B., Tett S.E. Population pharmacokinetics of hydroxychloroquine in patients with rheumatoid arthritis. Ther Drug Monit. 2003;25(6):671–681.
    1. Noe G., Amoura Z., Combarel D., Lori L., Tissot N., Seycha A., et al. Development and validation of a fast ultra-high performance liquid chromatography-fluorescent method for the quantification of hydroxychloroquine and its metabolites in patients with lupus. Ther Drug Monit. 2019;41(4):476–482. doi: 10.1097/FTD.0000000000000614.
    1. Lixoft products. Monolix. [Accessed January 25, 2021]
    1. Anderson B.J., Holford N.H. Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol. 2008;48:303–332.
    1. R Core Team . R Foundation for Statistical Computing; Vienna, Austria: 2018. R: a language and environment for statistical computing. . [Accessed January 25, 2021]
    1. Therneau T. 2015. A package for survival analysis in S. version 2.38. [Accessed January 25, 2021]
    1. Martin-Blondel G., Ruiz S., Murris M., Faguer S., Duhalde V., Eyvrard F., et al. Hydroxychloroquine in COVID-19 patients: what still needs to be known about the kinetics. Clin Infect Dis. 2020;71(11):2962–2964.
    1. Funck-Brentano C., Salem J.E., Nguyen L.S., Drici M.D., Roden D.M. Response to the editorial “COVID-19 in patients with cardiovascular diseases”: Covid-19 treatment with hydroxychloroquine or chloroquine and azithromycin: a potential risk of Torsades de Pointes. Arch Cardiovasc Dis. 2020;113(5):367–368.
    1. Garcia-Cremades M., Solans B.P., Hughes E., Ernest J.P., Wallender E., Aweeka F., et al. Optimizing hydroxychloroquine dosing for patients with COVID-19: an integrative modeling approach for effective drug repurposing. Clin Pharmacol Ther. 2020;108(2):253–263.
    1. MacGowan A.P., Hamilton F., Bayliss M., Read L., Attwood M., Noel A., et al. Hydroxychloroquine serum concentrations in non-critical care patients infected with SARS CoV 2. medRxiv. 2020 2020.06.23.20137992. . [Accessed January 25, 2021]
    1. Themans P., Belkhir L., Dauby N., Yombi J.C., De Greef J., Delongie K.A., et al. Population pharmacokinetics of hydroxychloroquine in COVID-19 patients: implications for dose optimization. Eur J Drug Metab Pharmacokinet. 2020;45(6):703–713.
    1. Karatza E., Ismailos G., Marangos M., Karalis V. Optimization of hydroxychloroquine dosing scheme based on COVID-19 patients’ characteristics: a review of the literature and simulations. Xenobiotica. 2021;51(2):127–138.
    1. von Rosensteil N.A., Adam D. Macrolide antibacterials. Drug interactions of clinical significance. Drug Saf. 1995;13(2):105–122.
    1. Jallouli M., Galicier L., Zahr N., Aumaitre O., Frances C., Le Guern V., et al. Determinants of hydroxychloroquine blood concentration variations in systemic lupus erythematosus. Arthritis Rheumatol. 2015;67(8):2176–2184.
    1. Chasset F., Arnaud L., Costedoat-Chalumeau N., Zahr N., Bessis D., Frances C. The effect of increasing the dose of hydroxychloroquine (HCQ) in patients with refractory cutaneous lupus erythematosus (CLE): an open-label prospective pilot study. J Am Acad Dermatol. 2016;74(4) 693–9.e3.
    1. Nguyen L.S., Dolladille C., Drici M.D., Fenioux C., Alexandre J., Mira J.P., et al. Cardiovascular toxicities associated with hydroxychloroquine and azithromycin: an analysis of the World Health Organization pharmacovigilance database. Circulation. 2020;142(3):303–305.
    1. Funck-Brentano C., Nguyen L.S., Salem J.E. Retraction and republication: cardiac toxicity of hydroxychloroquine in COVID-19. Lancet. 2020;396(10245):e2–e3.
    1. Gerard A., Romani S., Fresse A., Viard D., Parassol N., Granvuillemin A., et al. “Off-label” use of hydroxychloroquine, azithromycin, lopinavir-ritonavir and chloroquine in COVID-19: a survey of cardiac adverse drug reactions by the French Network of Pharmacovigilance Centers. Therapie. 2020;75(4):371–379.
    1. Roustit M., Guilhaumou R., Molimard M., Drici M.D., Laporte S., Montastruc J.L., et al. Chloroquine and hydroxychloroquine in the management of COVID-19: much kerfuffle but little evidence. Therapie. 2020;75(4):363–370.
    1. Cavalcanti A.B., Zampieri F.G., Rosa R.G., Azevedo L.C.P., Veiga V.C., Avezum A., et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N Engl J Med. 2020;383(21):2041–2052.
    1. Skipper C.P., Pastick K.A., Engen N.W., Bangdiwala A.S., Abassi M., Lofgren S.M., et al. Hydroxychloroquine in non-hospitalized adults with early COVID-19: a randomized trial. Ann Intern Med. 2020;173(8):623–631.
    1. Mitja O., Corbacho-Monné M., Ubals M., Tebe C., Peñafiel J., Tobias A., et al. Hydroxychloroquine for early treatment of adults with mild Covid-19: a randomized-controlled trial. Clin Infect Dis. 2020:ciaa1009. doi: 10.1093/cid/ciaa1009.
    1. Horby P., Mafham M., Linsell L., Bell J.L., Staplin N., Emberson J.R., et al. Effect of hydroxychloroquine in hospitalized patients with COVID-19: preliminary results from a multi-centre, randomized, controlled trial. medRxiv. 2020 doi: 10.1101/2020.07.15.20151852. 2020.07.15.20151852. . [Accessed January 25, 2021]

Source: PubMed

Подписаться