Point-of-care lung ultrasound in neonatology: classification into descriptive and functional applications

Francesco Raimondi, Nadya Yousef, Fiorella Migliaro, Letizia Capasso, Daniele De Luca, Francesco Raimondi, Nadya Yousef, Fiorella Migliaro, Letizia Capasso, Daniele De Luca

Abstract

Lung ultrasound (LUS) is the latest amongst imaging techniques: it is a radiation-free, inexpensive, point-of-care tool that the clinician can use at the bedside. This review summarises the rapidly growing scientific evidence on LUS in neonatology, dividing it into descriptive and functional applications. We report the description of the main ultrasound features of neonatal respiratory disorders and functional applications of LUS aiming to help a clinical decision (such as surfactant administration, chest drainage etc). Amongst the functional applications, we propose SAFE (Sonographic Algorithm for liFe threatening Emergencies) as a standardised protocol for emergency functional LUS in critical neonates. SAFE has been funded by a specific grant issued by the European Society for Paediatric Research. Future potential development of LUS in neonatology might be linked to its quantitative evaluation: we also discuss available data and research directions using computer-aided diagnostic techniques. Finally, tools and opportunities to teach LUS and expand the research network are briefly presented.

Conflict of interest statement

The authors declare no competing interests.

© 2018. International Pediatric Research Foundation, Inc.

Figures

Fig. 1
Fig. 1
Papers published on lung ultrasound in neonatology in 2006 and 2016. Retrieved by searching in PubMed (on 30 Dec 2017), limited to the newborn age, with the following words and MeSH terms: ((“lung”[MeSH Terms]OR“lung”[All Fields])AND (“diagnostic imaging”[Subheading]OR(“diagnostic”[All Fields]AND“imaging”[All Fields])OR“diagnostic imaging”[All Fields]OR“ultrasound”[All Fields]OR“ultrasonography”[MeSH Terms]OR “ultrasonography”[All Fields]OR“ultrasound”[All Fields]OR“ultrasonics”[MeSH Terms]OR“ultrasonics”[All Fields]))AND((“2006/01/01”[PDAT]: “2006/12/31”[PDAT])AND “infant, newborn”[MeSH Terms])OR((“2016/01/01”[PDAT]:“2016/12/31”[PDAT])
Fig. 2
Fig. 2
Lung ultrasound semiology. The basic semiology patterns are illustrated: these patterns may be variably found in different respiratory disorders described in Table 1. Arrows indicate the sub-pleural consolidation, the border of a consolidation, the double lung point or the lung point. The size threshold to distinguish micro-consolidations (sub-pleural) from consolidations (0.5 cm) is arbitrary. Some semiology patterns are also dynamically shown in the videos in Supplementary Material 1
Fig. 3
Fig. 3
SAFE (Sonographic Algorithm for liFe threatening Emergencies) algorithm for critically ill neonates. The algorithm is designed for unexpected severe decompensations (bradycardia or severe desaturation requiring resuscitative manoeuvres or significantly increasing oxygen/ventilator parameters to maintain stable oxygen saturation levels) in formerly stable neonates. SAFE protocol starts with a quick ‘eyeball’ assessment of myocardial contractility (which is accurate enough if there are no arrhythmias, extreme heart rate or ventricular sizes). Then, SAFE screens the more urgent and common causes of life-threatening event: (1) cardiac tamponade, (2) pneumothorax and (3) pleural effusion. The algorithm only takes a few minutes and aims to help diagnosing the most urgent treatable complications whilst awaiting expert help. A paediatric cardiologist evaluation of congenital heart defects is included in the algorithm but only when the most urgent causes have been already ruled out. SAFE is designed for the average neonatologist and may be applied using any probe without losing time to change it

References

    1. Lichtenstein DA, Menu Y. A bedside ultrasound sign ruling out pneumothorax in the critically ill. Lung sliding. Chest. 1995;108:1345–1348. doi: 10.1378/chest.108.5.1345.
    1. Kurepa D, et al. Neonatal lung ultrasound exam guidelines. J. Perinatol. 2018;38:11–22. doi: 10.1038/jp.2017.140.
    1. Escourrou G, De Luca D. Lung ultrasound decreased radiation exposure in preterm infants in a neonatal intensive care unit. Acta Paediatr. 2016;105:e237–e239. doi: 10.1111/apa.13369.
    1. International Liaison Committee on Lung Ultrasound (ILC-LUS) for the International Consensus Conference on Lung Ultrasound (ICC-LUS International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;38:577–591. doi: 10.1007/s00134-012-2513-4.
    1. Lichtenstein D, et al. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am. J. Respir. Crit. Care Med. 1997;156:1640–1646. doi: 10.1164/ajrccm.156.5.96-07096.
    1. Volpicelli G, et al. Lung ultrasound predicts well extravascular lung water but is of limited usefulness in the prediction of wedge pressure. Anesthesiology. 2014;121:320–327. doi: 10.1097/ALN.0000000000000300.
    1. Blank DA, et al. Lung ultrasound immediately after birth to describe normal neonatal transition: an observational study. Arch. Dis. Child Fetal Neonatal Ed. 2018;103:F157–F162. doi: 10.1136/archdischild-2017-312818.
    1. Blank DA, et al. Lung ultrasound during the initiation of breathing in healthy term and late preterm infants immediately after birth, a prospective, observational study. Resuscitation. 2017;114:59–65. doi: 10.1016/j.resuscitation.2017.02.017.
    1. Martelius L, et al. Delayed lung liquid absorption after cesarean section at term. Neonatology. 2013;104:133–610. doi: 10.1159/000351290.
    1. Copetti R, Cattarossi L. The ‘double lung point’: an ultrasound sign diagnostic of transient tachypnea of the newborn. Neonatology. 2007;91:203–209. doi: 10.1159/000097454.
    1. Vergine M, et al. Lung ultrasound accuracy in respiratory distress syndrome and transient tachypnea of the newborn. Neonatology. 2014;106:87–93. doi: 10.1159/000358227.
    1. Liu J, et al. Lung ultrasonography to diagnose transient tachypnea of the newborn. Chest. 2016;149:1269–1275. doi: 10.1016/j.chest.2015.12.024.
    1. Migliaro F, et al. Is the double lung point an accurate diagnostic marker fir transient tachypnoea of the neonate? A prospective international study. J. Pediatr. Neonatal Individ. Med. 2017;6:e060236.
    1. Raimondi F, et al. Clinical data are essential to validate lung ultrasound. Chest. 2016;149:1575. doi: 10.1016/j.chest.2016.02.685.
    1. Liu J, et al. Diagnosis of neonatal transient tachypnea and its differentiation from respiratory distress syndrome using lung ultrasound. Medicine. 2014;93:e197. doi: 10.1097/MD.0000000000000197.
    1. Copetti R, et al. Lung ultrasound in respiratory distress syndrome: a useful tool for early diagnosis. Neonatology. 2008;94:52–59. doi: 10.1159/000113059.
    1. Rachuri H, et al. Diagnostic performance of point of care ultrasonography in identifying the etiology of respiratory distress in neonates. Indian J. Pediatr. 2017;84:267–270. doi: 10.1007/s12098-016-2288-7.
    1. Brusa G, et al. Neonatal lung sonography: interobserver agreement between physician interpreters with varying levels of experience. J. Ultrasound Med. 2014;34:1549–1554. doi: 10.7863/ultra.15.14.08016.
    1. Sawires HK, et al. Use of lung ultrasound in detection of complications of respiratory distress syndrome. Ultrasound Med. Biol. 2015;41:2319–2325. doi: 10.1016/j.ultrasmedbio.2015.04.024.
    1. Lovrenski J. Lung ultrasonography of pulmonary complications in preterm infants with respiratory distress syndrome. Ups. J. Med. Sci. 2012;117:10–17. doi: 10.3109/03009734.2011.643510.
    1. Machado LU, et al. Surfactant deficiency in transient tachypnea of the newborn. J. Pediatr. 2011;159:750–754. doi: 10.1016/j.jpeds.2011.04.023.
    1. Autilo C, et al. A noninvasive surfactant adsorption test predicting the need for surfactant therapy in preterm infants treated with continuous positive airway pressure. J. Pediatr. 2017;182:66–73. doi: 10.1016/j.jpeds.2016.11.057.
    1. Gizzi C, et al. Continuous positive airway pressure and the burden of care for transient tachypnea of the neonate: retrospective cohort study. Am. J. Perinatol. 2015;32:939–943. doi: 10.1055/s-0034-1543988.
    1. Cattarossi L, et al. Surfactant administration for neonatal respiratory distress does not improve lung interstitial fluid clearance: echographic and experimental evidence. J. Perinat. Med. 2010;38:557–563. doi: 10.1515/jpm.2010.096.
    1. De Luca D, et al. The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. Lancet Respir. Med. 2017;5:657–666. doi: 10.1016/S2213-2600(17)30214-X.
    1. Pesenti A, et al. Imaging in acute respiratory distress syndrome. Intensive Care Med. 2016;42:686–698. doi: 10.1007/s00134-016-4328-1.
    1. Riviello ED, et al. Hospital incidence and outcomes of the acute respiratory distress syndrome using the Kigali modification of the Berlin definition. Am. J. Respir. Crit. Care Med. 2016;193:52–59. doi: 10.1164/rccm.201503-0584OC.
    1. De Luca D, et al. Diagnosis of neonatal ARDS: is Montreux closer to Berlin than to Kigali? Authors’ reply. Lancet Respir. Med. 2017;5:e32. doi: 10.1016/S2213-2600(17)30380-6.
    1. Piastra M, et al. Lung ultrasound findings in meconium aspiration syndrome. Early Hum. Dev. 2014;90:S41–S43. doi: 10.1016/S0378-3782(14)50011-4.
    1. Liu J, Cao HY, Fu W. Lung ultrasonography to diagnose meconium aspiration syndrome of the newborn. J. Int Med Res. 2016;44:1534–1542. doi: 10.1177/0300060516663954.
    1. Chen L, Zhang Z. Bedside ultrasonography for diagnosis of pneumothorax. Quant. Imaging Med. Surg. 2015;5:618–623.
    1. Alrajab S, et al. Pleural ultrasonography versus chest radiography for the diagnosis of pneumothorax: review of the literature and meta-analysis. Crit. Care. 2013;17:R208. doi: 10.1186/cc13016.
    1. Migliaro, F. et al. Lung ultrasound-guided emergency pneumothorax needle aspiration in a very preterm infant. BMJ Case Rep.201410.1136/bcr-2014-206803 (2014).
    1. Cattarossi L., et al. Lung ultrasound diagnostic accuracy in neonatal pneumothorax. Can. Respir. J.2016, 6515069 (2016).
    1. Liu J, et al. Lung ultrasonography to diagnose pneumothorax of the newborn. Am. J. Emerg. Med. 2017;35:1298–1302. doi: 10.1016/j.ajem.2017.04.001.
    1. Raimondi F, et al. Lung ultrasound for diagnosing pneumothorax in the critically ill neonate. J. Pediatr. 2016;175:74–78. doi: 10.1016/j.jpeds.2016.04.018.
    1. Balcells C, Del Rio R. Lung ultrasound: an useful tool for the follow-up of neonatal localized interstitial emphysema. J. Pediatr. 2015;166:1543. doi: 10.1016/j.jpeds.2015.02.016.
    1. Saracino C, Tessaro M. Pneumomediastinum as a sonographic mimic of pneumothorax. J. Ultrasound Med. 2015;34:1521–1522. doi: 10.7863/ultra.34.8.1521.
    1. Matsumoto T, Matano H. The still lung point: new sonographic evidence for pneumomediastinum. Am. J. Emerg. Med. 2016;34:344.e1-2.
    1. Liu J, et al. Lung ultrasonography for the diagnosis of severe neonatal pneumonia. Chest. 2014;146:383–388. doi: 10.1378/chest.13-2852.
    1. Chen SW, et al. Routine application of lung ultrasonography in the neonatal intensive care unit. Medicine. 2017;96:e5826. doi: 10.1097/MD.0000000000005826.
    1. Pereda MA, et al. Lung ultrasound for the diagnosis of pneumonia in children: a meta-analysis. Pediatrics. 2015;135:714–722. doi: 10.1542/peds.2014-2833.
    1. Alzahrani SA, et al. Systematic review and meta-analysis for the use of ultrasound versus radiology in diagnosing of pneumonia. Crit. Ultrasound J. 2017;9:6. doi: 10.1186/s13089-017-0059-y.
    1. Long L, et al. Lung ultrasound for the diagnosis of pneumonia in adults: a meta-analysis. Medicine. 2017;96:e5713. doi: 10.1097/MD.0000000000005713.
    1. Staub, L. J., Biscaro, R. R. M. & Maurici, R. Accuracy and applications of lung ultrasound to diagnose ventilator-associated pneumonia: a systematic review. J. Intensive Care Med.33, 447–455 (2018).
    1. Caiulo VA, et al. Lung ultrasound in bronchiolitis: comparison with chest X-ray. Eur. J. Pediatr. 2011;170:1427–1433. doi: 10.1007/s00431-011-1461-2.
    1. Taveira M, et al. Can a simple lung ultrasound score predict length of ventilation for infants with severe acute viral bronchiolitis? Arch. Pediatr. 2018;25:112–117. doi: 10.1016/j.arcped.2017.11.005.
    1. Hammer J, Numa A, Newth CJL. Acute respiratory distress syndrome caused by respiratory syncytial virus. Pediatr. Pulmonol. 1997;23:176–183. doi: 10.1002/(SICI)1099-0496(199703)23:3<176::AID-PPUL2>;2-M.
    1. Varshney T, et al. Point-of-care lung ultrasound in young children with respiratory tract infections and wheeze. Emerg. Med J. 2016;33:603–610. doi: 10.1136/emermed-2015-205302.
    1. Basile V, et al. Lung ultrasound: a useful tool in diagnosis and management of bronchiolitis. BMC Pediatr. 2015;15:63. doi: 10.1186/s12887-015-0380-1.
    1. Yousef N, De Luca D. The role of lung ultrasound in viral lower respiratory tract infections. Am. J. Perinatol. 2018;35:527–529. doi: 10.1055/s-0038-1637758.
    1. Tsung JW, Kessler DO, Shah VP. Prospective application of clinician-performed lung ultrasonography during the 2009 H1N1 influenza A pandemic: distinguishing viral from bacterial pneumonia. Crit. Ultrasound J. 2012;4:16. doi: 10.1186/2036-7902-4-16.
    1. Shen P, et al. Dynamic assessment of lung injury by ultrasound in a case with H7N9 influenza. Crit. Care. 2013;17:438. doi: 10.1186/cc12751.
    1. Testa A, Soldati G, Copetti R. Early recognition of the 2009 pandemic influenza A (H1N1) pneumonia by chest ultrasound. Crit. Care. 2012;16:R30. doi: 10.1186/cc11201.
    1. Volpicelli G, Frascisco MF. Sonographic detection of radio-occult interstitial lung involvement in measles pneumonitis. Am. J. Emerg. Med. 2009;27:128.e1-3. doi: 10.1016/j.ajem.2009.04.021.
    1. Ammari A, et al. Variables associated with the early failure of nasal CPAP in very low birth weight infants. J. Pediatr. 2005;147:341–347. doi: 10.1016/j.jpeds.2005.04.062.
    1. Moya MP, et al. Reliability of CXR for the diagnosis of bronchopulmonary dysplasia. Pediatr. Radiol. 2001;31:339–342. doi: 10.1007/s002470000420.
    1. Avni EF, et al. Sonographic prediction of chronic lung disease in the premature undergoing mechanical ventilation. Pediatr. Radiol. 1996;26:463–469. doi: 10.1007/BF01377203.
    1. Pieper CH, Smith J, Brand EJ. The value of ultrasound examination of the lungs in predicting bronchopulmonary dysplasia. Pediatr. Radiol. 2004;34:227–231. doi: 10.1007/s00247-003-1102-7.
    1. Steinhorn R, et al. Chronic pulmonary insufficiency of prematurity: developing optimal endpoints for drug development. J. Pediatr. 2017;191:15–21.e1. doi: 10.1016/j.jpeds.2017.08.006.
    1. David, M., Lamas-Pinheiro, R. & Henriques-Coelho, T. Prenatal and postnatal management of congenital pulmonary airway malformation. Neonatology110, 101–115 (2016).
    1. Yousef, N. et al. Lung ultrasound findings in congenital pulmonary airway malformations. Am. J. Perinatol. (2018) 10.1055/s-0038-1645861. (Epub ahead of print).
    1. Lichtenstein DA. BLUE-protocol and FALLS-protocol: two applications of lung ultrasound in the critically ill. Chest. 2015;147:1659–1670. doi: 10.1378/chest.14-1313.
    1. Corradi F, Brusasco C, Pelosi P. Chest ultrasound in acute respiratory distress syndrome. Curr. Opin. Crit. Care. 2014;20:98–103. doi: 10.1097/MCC.0000000000000042.
    1. Raimondi F, et al. Can neonatal lung ultrasound monitor fluid clearance and predict the need of respiratory support? Crit. Care. 2012;16:R220. doi: 10.1186/cc11865.
    1. Raimondi F, et al. Use of neonatal chest ultrasound to predict noninvasive ventilation failure. Pediatrics. 2014;134:e1089–e1094. doi: 10.1542/peds.2013-3924.
    1. Rodríguez-Fanjul J, et al. Lung ultrasound as a predictor of mechanical ventilation in neonates older than 32 weeks. Neonatology. 2016;110:198–203. doi: 10.1159/000445932.
    1. Bouhemad B, et al. Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am. J. Respir. Crit. Care Med. 2011;183:341–347. doi: 10.1164/rccm.201003-0369OC.
    1. Via G, et al. Lung ultrasound in the ICU: from diagnostic instrument to respiratory monitoring tool. Minerva Anestesiol. 2012;78:1282–1296.
    1. Brat R, et al. Lung ultrasonography score to evaluate oxygenation and surfactant need in neonates treated with continuous positive airway pressure. JAMA Pediatr. 2015;169:e151797. doi: 10.1001/jamapediatrics.2015.1797.
    1. De Martino L., et al. Lung ultrasound score predicts surfactant need in extremely preterm neonates. Pediatrics (2018) Accepted in press 10.1542/peds.2008-1536
    1. Veeramani SK, Muthusamy E. Detection of abnormalities in ultrasound lung image using multi-level RVM classification. J. Matern Fetal Neonatal Med. 2016;29:1844–1852.
    1. Palacio M, et al. Fetal Lung Texture Team. Prediction of neonatal respiratory morbidity by quantitative ultrasound lung texture analysis: a multicenter study. Am. J. Obstet. Gynecol. 2017;217:196.e1–196. doi: 10.1016/j.ajog.2017.03.016.
    1. Raimondi F, et al. Can we assess the severity of neonatal respiratory distress by ultrasound? A comparison of three methods. J. Pediatr. Neonatal Individ. Med. 2017;6:e060236.
    1. De Luca D. Noninvasive high-frequency ventilation and the errors from the past: designing simple trials neglecting complex respiratory physiology. J. Perinatol. 2017;37:1065–1066. doi: 10.1038/jp.2017.84.
    1. Frerichs I, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72:83–93. doi: 10.1136/thoraxjnl-2016-208357.
    1. Reiterer F, Sivieri E, Abbasi S. Evaluation of bedside pulmonary function in the neonate: from the past to the future. Pediatr. Pulmonol. 2015;50:1039–1050. doi: 10.1002/ppul.23245.
    1. Rodríguez-Fanjul J, et al. Usefulness of lung ultrasound in neonatal congenital heart disease (LUSNEHDI): lung ultrasound to assess pulmonary overflow in neonatal congenital heart disease. Pediatr. Cardiol. 2016;37:1482–1487. doi: 10.1007/s00246-016-1461-0.
    1. Kaskinen AK, et al. Assessment of extravascular lung water by ultrasound after congenital cardiac surgery: lung ultrasound after congenital cardiac surgery. Pediatr. Pulmonol. 2017;52:345–352. doi: 10.1002/ppul.23531.
    1. Scalea TM, et al. Focused assessment with sonography for trauma (FAST): results from an international consensus statement. J. Trauma. 1999;46:492–298.
    1. Lichtenstein D, Meziere GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest. 2008;134:117–125. doi: 10.1378/chest.07-2800.
    1. Atkinson P, et al. International federation for emergency medicine consensus statement: sonography in hypotension and cardiac arrest (SHoC): an international consensus on the use of point of care ultrasound for undifferentiated hypotension and during cardiac arrest. CJEM. 2017;19:459–470. doi: 10.1017/cem.2016.394.
    1. Mertens L, et al. Targeted neonatal echocardiography in the neonatal intensive care unit: practice guidelines and recommendations for training. Writing Group of the American Society of Echocardiography (ASE) in collaboration with the European Association of Echocardiography (EAE) and the Association for European Pediatric Cardiologists (AEPC) J. Am. Soc. Echocardiogr. 2011;24:1057–1078. doi: 10.1016/j.echo.2011.07.014.
    1. de Boode WP, et al. Recommendations for neonatologist performed echocardiography in Europe: Consensus Statement endorsed by European Society for Paediatric Research (ESPR) and European Society for Neonatology (ESN) Pediatr. Res. 2016;80:465–471. doi: 10.1038/pr.2016.126.
    1. Marwick TH. Techniques for comprehensive two dimensional echocardiographic assessment of left ventricular systolic function. Heart. 2003;89(Suppl 3):iii2-8.
    1. Foster E, Cahalan MK. The search for intelligent quantitation in echocardiography: “eyeball,” “trackball” and beyond. J. Am. Coll. Cardiol. 1993;22:848–850. doi: 10.1016/0735-1097(93)90201-B.
    1. Yousef N, Shankar-Aguilera S, De Luca D. The SAFE protocol: a sonographic algorithm for life-threatening emergencies in the neonatal intensive care unit. J. Pediatr. Neonatal Individ. Med. 2017;6:e060236.
    1. Dancel R, et al. Recommendations on the use of ultrasound guidance for adult thoracentesis: a position statement of the society of hospital medicine. J. Hosp. Med. 2018;13:126–135. doi: 10.12788/jhm.2940.
    1. Jones PW, et al. Ultrasound-guided thoracentesis: is it a safer method? Chest. 2003;123:418–423. doi: 10.1378/chest.123.2.418.
    1. Mohamed IS, et al. Ultrasound guided percutaneous relief of tension pneumomediastinum in a 1-day-old newborn. Arch. Dis. Child Fetal Neonatal Ed. 2007;92:F458. doi: 10.1136/adc.2006.114322.
    1. Jaeel P, Sheth M, Nguyen J. Ultrasonography for endotracheal tube position in infants and children. Eur. J. Pediatr. 2017;176:293–300. doi: 10.1007/s00431-017-2848-5.
    1. Hosono S, et al. A role of end-tidal CO(2) monitoring for assessment of tracheal intubations in very low birth weight infants during neonatal resuscitation at birth. J. Perinat. Med. 2009;37:79–88. doi: 10.1515/JPM.2009.017.
    1. (accessed 29 April 2018).
    1. Rippey J, Gawthrope I. Creating thoracic phantoms for diagnostic and procedural ultrasound training. Australas. J. Ultrasound Med. 2012;15:43–54. doi: 10.1002/j.2205-0140.2012.tb00226.x.
    1. Vetrugno L, et al. Phantom model and scoring system to assess ability in ultrasound-guided chest drain positioning. Crit. Ultrasound J. 2016;8:1. doi: 10.1186/s13089-016-0038-8.
    1. Park EJ, Yoon YT, Hong CK, Ha YR, Ahn JH. Randomized, noninferiority study between video versus hand ultrasound with wet foam dressing materials to simulate B-lines in lung ultrasound: a CONSORT-compliant article. Medicine. 2017;96:e7642. doi: 10.1097/MD.0000000000007642.
    1. Blüthgen C, Sanabria S, Frauenfelder T, Klingmüller V, Rominger M. Economical sponge phantom for teaching, understanding, and researching A- and B-line reverberation artifacts in lung ultrasound. J. Ultrasound Med. 2017;36:2133–2142. doi: 10.1002/jum.14266.
    1. (accessed 1 Mar 2018).

Source: PubMed

Подписаться