Effectiveness of Respiratory Muscle Training for Pulmonary Function and Walking Ability in Patients with Stroke: A Systematic Review with Meta-Analysis

Diana P Pozuelo-Carrascosa, Juan Manuel Carmona-Torres, José Alberto Laredo-Aguilera, Pedro Ángel Latorre-Román, Juan Antonio Párraga-Montilla, Ana Isabel Cobo-Cuenca, Diana P Pozuelo-Carrascosa, Juan Manuel Carmona-Torres, José Alberto Laredo-Aguilera, Pedro Ángel Latorre-Román, Juan Antonio Párraga-Montilla, Ana Isabel Cobo-Cuenca

Abstract

Background: Neurological dysfunction due to stroke affects not only the extremities and trunk muscles but also the respiratory muscles. Aim: to synthesise the evidence available about the effectiveness of respiratory muscle training (RMT) to improve respiratory function parameters and functional capacity in poststroke patients. Methods: a systematic electronic search was performed in the MEDLINE, EMBASE, SPORTDiscus, PEDro and Web of Science databases, from inception to May 2020. Study selection and data extraction: randomised controlled trials (RCTs) that examined the effects of RMT versus non-RMT or sham RMT in poststroke patients. We extracted data about respiratory function, respiratory muscle strength and functional capacity (walking ability, dyspnea, balance, activities of daily life), characteristics of studies and features of RMT interventions (a type of RMT exercise, frequency, intensity and duration). Two reviewers performed study selection and data extraction independently. Results: nineteen RCTs met the study criteria. RMT improved the first second forced expiratory volume (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF), maximal expiratory pressure (MEP), maximal inspiratory pressure (MIP) and walking ability (6 min walking test), but not Barthel index, Berg balance scale, and dyspnea. Conclusions: RMT interventions are effective to improve respiratory function and walking ability in poststroke patients.

Keywords: meta-analysis; pulmonary function; respiratory muscle training; stroke; walking ability.

Conflict of interest statement

The authors have declared no conflict of interest. The funders had no role in the design of the study, in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Literature search: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) consort diagram. RMT, Respiratory muscle training; RCTs, randomized controlled trials.
Figure 2
Figure 2
Forest plot showing the effect size (ES) of respiratory muscle training (RMT) on first second forced expiratory volume (FEV1) between intervention and control groups for each study. IMT, inspiratory muscle training; EMT, expiratory muscle training.
Figure 3
Figure 3
Forest plot showing the effect size (ES) of respiratory muscle training (RMT) on forced vital capacity (FVC) between intervention and control groups for each study. IMT, inspiratory muscle training; EMT, expiratory muscle training.
Figure 4
Figure 4
Forest plot showing the effect size (ES) of respiratory muscle training (RMT) on peak expiratory flow (PEF) between intervention and control groups for each study. IMT, inspiratory muscle training; EMT, expiratory muscle training.
Figure 5
Figure 5
Forest plot showing the effect size (ES) of respiratory muscle training (RMT) on maximal expiratory pressure (MEP) between intervention and control groups for each study. IMT, inspiratory muscle training; EMT, expiratory muscle training.
Figure 6
Figure 6
Forest plot showing the effect size (ES) of respiratory muscle training (RMT) on maximal inspiratory pressure (MIP) between intervention and control groups for each study. IMT, inspiratory muscle training; EMT, expiratory muscle training.
Figure 7
Figure 7
Forest plot showing the effect size (ES) of respiratory muscle training (RMT) on 6 min walking test (6-MWT) between intervention and control groups for each study. IMT, inspiratory muscle training; EMT, expiratory muscle training.
Figure 8
Figure 8
Forest plot showing the effect size (ES) of respiratory muscle training (RMT) on dyspnea between intervention and control groups for each study. IMT, inspiratory muscle training; EMT, expiratory muscle training.

References

    1. Hankey G.J. Stroke. Lancet. 2017;389:641–654. doi: 10.1016/S0140-6736(16)30962-X.
    1. Jandt S.R., Caballero R.M.D.S., Junior L.A.F., Dias A.S. Correlation between trunk control, respiratory muscle strength and spirometry in patients with stroke: An observational study. Physiother. Res. Int. 2010;16:218–224. doi: 10.1002/pri.495.
    1. Menezes K.K.P., Nascimento L.R., Ada L., Polese J.C., Avelino P.R., Teixeira-Salmela L.F. Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: A systematic review. J. Physiother. 2016;62:138–144. doi: 10.1016/j.jphys.2016.05.014.
    1. Polese J.C., Pinheiro M.B., Faria C.D.C.M., Britto R.R., Parreira V.F., Teixeira-Salmela L.F. Strength of the respiratory and lower limb muscles and functional capacity in chronic stroke survivors with different physical activity levels. Braz. J. Phys. Ther. 2013;17:487–493. doi: 10.1590/S1413-35552012005000114.
    1. Battaglia E., Fulgenzi A., Ferrero M.E. Rationale of the combined use of inspiratory and expiratory devices in improving maximal inspiratory pressure and maximal expiratory pressure of patients with chronic obstructive pulmonary disease. Arch. Phys. Med. Rehabil. 2009;90:913–918. doi: 10.1016/j.apmr.2008.12.019.
    1. Forbes S., Game A., Syrotuik D., Jones R., Bell G.J. The effect of inspiratory and expiratory respiratory muscle training in rowers. Res. Sports Med. 2011;19:217–230. doi: 10.1080/15438627.2011.608033.
    1. De Menezes K.K.P., Nascimento L.R., Avelino P.R., Alvarenga M.T.M., Teixeira-Salmela L.F. Efficacy of interventions to improve respiratory function after stroke. Respir. Care. 2018;63:920–933. doi: 10.4187/respcare.06000.
    1. Gomes-Neto M., Saquetto M.B., Silva C.M., Carvalho V.O., Ribeiro N., Conceição C.S. Effects of respiratory muscle training on respiratory function, respiratory muscle strength and exercise tolerance in post-stroke patients: A systematic review with meta-analysis. Arch. Phys. Med. Rehabil. 2016;97:1994–2001. doi: 10.1016/j.apmr.2016.04.018.
    1. Xiao Y., Luo M., Wang J., Luo H. Inspiratory muscle training for the recovery of function after stroke (Cochrane review) Cochrane Database Syst. Rev. 2012;5 doi: 10.1001/14651858.CD009360.pub2.
    1. Martín-Valero R., Almeida M.D.L.C., Casuso-Holgado M.J., Heredia-Madrazo A. Systematic Review of Inspiratory Muscle Training after Cerebrovascular Accident. Respir. Care. 2015;60:1652–1659. doi: 10.4187/respcare.03981.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Higgins J.P.T., Thomas J., Chandler J., Cumpston M., Li T., Page M.J., Welch V.A., editors. Cochrane Handbook for Systematic Reviews of Interventions. 2nd ed. John Wiley & Sons; Chichester, UK: 2019.
    1. Higgins J.P., Thomas S.J., Page M.J., Elbers R.G., Sterne J.A.C. Chapter 8: Assessing risk of bias in a randomized trial. In: Higgins J.P., Thomas J., Chandler J., Cumpston M., Li T., Page M.J., Welch V.A., editors. Cochrane Handbook for Systematic Reviews of Interventions Version 60 (Updated July 2019): Cochrane. John Wiley & Sons; Chichester, UK: 2019.
    1. Olivo S.A., Macedo L., Gadotti I.C., Fuentes J., Stanton T.R., Magee D.J. Scales to Assess the Quality of Randomized Controlled Trials: A Systematic Review. Phys. Ther. 2008;88:156–175. doi: 10.2522/ptj.20070147.
    1. Maher C.G., Sherrington C., Herbert R.D., Moseley A.M., Elkins M.R. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Phys. Ther. 2003;83:713–721. doi: 10.1093/ptj/83.8.713.
    1. Morris S.B. Estimating Effect Sizes From Pretest-Posttest-Control Group Designs. Organ. Res. Methods. 2007;11:364–386. doi: 10.1177/1094428106291059.
    1. DerSimonian R., Laird N. Meta-analysis in clinical trials. Control. Clin. Trials. 1986;7:177–188. doi: 10.1016/0197-2456(86)90046-2.
    1. Higgins J.P.T., Li T., Deeks J.J. Chapter 6: Choosing effect measures and computing estimates of effect. In: Higgins J.P., Thomas J., Chandler J., Cumpston M., Li T., Page M.J., Welch V.A., editors. Cochrane Handbook for Systematic Reviews of Interventions Version 60 (Updated July 2019): Cochrane. John Wiley & Sons; Chichester, UK: 2019.
    1. Liaw M.Y., Hsu C.H., Leong C.P., Liao C.Y., Wang L.Y., Lu C.H., Lin M.C. Respiratory muscle training in stroke patients with respiratory muscle weakness, dysphagia, and dysarthria—A prospective randomized trial. Medicine (Baltimore) 2020;99:e19337. doi: 10.1097/MD.0000000000019337.
    1. Lee K., Park D., Lee G. Progressive Respiratory Muscle Training for Improving Trunk Stability in Chronic Stroke Survivors: A Pilot Randomized Controlled Trial. J. Stroke Cerebrovasc. Dis. 2019;28:1200–1211. doi: 10.1016/j.jstrokecerebrovasdis.2019.01.008.
    1. De Menezes K.K.P., Nascimento L.R., Ada L., Avelino P.R., Polese J.C., Alvarenga M.T.M., Barbosa M.H., Teixeira-Salmela L.F. High-Intensity Respiratory Muscle Training Improves Strength and Dyspnea Poststroke: A Double-Blind Randomized Trial. Arch. Phys. Med. Rehabil. 2018;100:205–212. doi: 10.1016/j.apmr.2018.09.115.
    1. Cho J.E., Lee H.J., Kim M.K., Lee W.H. The improvement in respiratory function by inspiratory muscle training is due to structural muscle changes in patients with stroke: A randomized controlled pilot trial. Top. Stroke Rehabil. 2017;25:37–43. doi: 10.1080/10749357.2017.1383681.
    1. Yoo H.J., Pyun S.B. Efficacy of Bedside Respiratory Muscle Training in Patients with Stroke: A Randomized Controlled Trial. Am. J. Phys. Med. Rehabil. 2018;97:691–697. doi: 10.1097/PHM.0000000000000933.
    1. Lee H.J., Kang T.W., Kim B.R. Effects of diaphragm and deep abdominal muscle exercise on walking and balance ability in patients with hemiplegia due to stroke. J. Exerc. Rehabil. 2018;14:648–653. doi: 10.12965/jer.1836252.126.
    1. Jung K.M., Bang D.H. Effect of inspiratory muscle training on respiratory capacity and walking ability with subacute stroke patients: A randomized controlled pilot trial. J. Phys. Ther. Sci. 2017;29:336–339. doi: 10.1589/jpts.29.336.
    1. Jung N.J., Na S.S., Kim S.K., Hwangbo G. The effect of the inspiratory muscle training on functional ability in stroke patients. J. Phys. Ther. Sci. 2017;29:1954–1956. doi: 10.1589/jpts.29.1954.
    1. Oh D., Kim G., Lee W., Shin M.M.S. Effects of inspiratory muscle training on balance ability and abdominal muscle thickness in chronic stroke patients. J. Phys. Ther. Sci. 2016;28:107–111. doi: 10.1589/jpts.28.107.
    1. Guillen-Sola A., Sartor M.M., Soler N.B., Duarte E., Barrera M.C., Marco E. Respiratory muscle strength training and neuromuscular electrical stimulation in subacute dysphagic stroke patients: A randomized controlled trial. Clin. Rehabil. 2016;31:761–771. doi: 10.1177/0269215516652446.
    1. Chen P.C., Liaw M.Y., Wang L.Y., Tsai Y.C., Hsin Y.J., Chen Y.C. Inspiratory muscle training in stroke patients with congestive heart failure A CONSORT-compliant prospective randomized single-blind controlled trial. Medicine. 2016;95:e4856. doi: 10.1097/MD.0000000000004856.
    1. Messaggi-Sartor M., Guillen-Sola A., Depolo M., Duarte E., Rodríguez D.A., Barrera M.-C., Barreiro E., Escalada F., Orozco-Levi M., Marco E. Inspiratory and expiratory muscle training in subacute stroke: A randomized clinical trial. Neurology. 2015;85:564–572. doi: 10.1212/WNL.0000000000001827.
    1. Kulnik S.T., Birring S.S., Moxham J., Rafferty G.F., Kalra L. Does Respiratory Muscle Training Improve Cough Flow in Acute Stroke? Pilot Randomized Controlled Trial. Stroke. 2015;46:447–453. doi: 10.1161/STROKEAHA.114.007110.
    1. Kim C.Y., Lee J.S., Kim H.D., Kim I.S. Effects of the combination of respiratory muscle training and abdominal drawing-in maneuver on respiratory muscle activity in patients with post-stroke hemiplegia: A pilot randomized controlled trial. Top. Stroke Rehabil. 2015;22:262–270. doi: 10.1179/1074935714Z.0000000020.
    1. Yim J., Kim J., Park J. Effects of Respiratory Muscle and Endurance Training Using an Individualized Training Device on the Pulmonary Function and Exercise Capacity in Stroke Patients. Med. Sci. Monit. 2014;20:2543–2549. doi: 10.12659/MSM.891112.
    1. Jung J.-H., Kim N.-S. Effects of Inspiratory Muscle Training on Diaphragm Thickness, Pulmonary Function, and Chest Expansion in Chronic Stroke Patients. J. Korean Soc. Phys. Med. 2013;8:59–69. doi: 10.13066/kspm.2013.8.1.059.
    1. Britto R.R., Rezende N.R., Marinho K.C., Torres J.L., Parreira V.F., Teixeira-Salmela L.F. Inspiratory Muscular Training in Chronic Stroke Survivors: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2011;92:184–190. doi: 10.1016/j.apmr.2010.09.029.
    1. Kim K., Fell D.W., Lee J.H. Feedback Respiratory Training to Enhance Chest Expansion and Pulmonary Function in Chronic Stroke: A Double-Blind, Randomized Controlled Study. J. Phys. Ther. Sci. 2011;23:75–79. doi: 10.1589/jpts.23.75.
    1. Sutbeyaz S.T., Koseoglu F., Inan L., Coskun O. Respiratory muscle training improves cardiopulmonary function and exercise tolerance in subjects with subacute stroke: A randomized controlled trial. Clin. Rehabil. 2010;24:240–250. doi: 10.1177/0269215509358932.
    1. Sterne J.A., Sutton A.J., Ioannidis J.P.A., Terrin N., Jones D.R., Lau J., Carpenter J.R., Rücker G., Harbord R., Schmid C.H., et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343:d4002. doi: 10.1136/bmj.d4002.
    1. Lanini B., Gigliotti F., Coli C., Bianchi R., Pizzi A., Romagnoli I., Grazzini M., Stendardi L., Scano G. Dissociation between respiratory effort and dyspnoea in a subset of patients with stroke. Clin. Sci. 2002;103:467–473. doi: 10.1042/cs1030467.
    1. Pollock R.D., Rafferty G.F., Moxham J., Kalra L., Rafferty G.F. Respiratory Muscle Strength and Training in Stroke and Neurology: A Systematic Review. Int. J. Stroke. 2012;8:124–130. doi: 10.1111/j.1747-4949.2012.00811.x.
    1. De Almeida I.C.L., Clementino A.C.C.R., Rocha E.H.T., Brandão D.C., De Andrade A.D. Effects of hemiplegy on pulmonary function and diaphragmatic dome displacement. Respir. Physiol. Neurobiol. 2011;178:196–201. doi: 10.1016/j.resp.2011.05.017.
    1. Tomczak C.R., Jelani A., Haennel R.G., Haykowsky M., Welsh R., Manns P. Cardiac Reserve and Pulmonary Gas Exchange Kinetics in Patients With Stroke. Stroke. 2008;39:3102–3106. doi: 10.1161/STROKEAHA.108.515346.
    1. Schünemann H.J., Vist G.E., Higgins J.P., Santesso N., Deeks J.J., Glasziou P., Akl E.A., Guyatt G.H. Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons; Chichester, UK: 2019. Interpreting results and drawing conclusions; pp. 403–431.
    1. Reyes A., Ziman M., Nosaka K., Nosaka K. Respiratory Muscle Training for Respiratory Deficits in Neurodegenerative Disorders. Chest. 2013;143:1386–1394. doi: 10.1378/chest.12-1442.
    1. Field M.J., Gebruers N., Shanmuga Sundaram T., Nicholson S., Mead G. Physical Activity after Stroke: A Systematic Review and Meta-Analysis. ISRN Stroke. 2013;2013:1–13. doi: 10.1155/2013/464176.
    1. Michaelsen S.M., Ovando A.C., Romaguera F., Ada L. Effect of Backward Walking Treadmill Training on Walking Capacity after Stroke: A Randomized Clinical Trial. Int. J. Stroke. 2014;9:529–532. doi: 10.1111/ijs.12255.
    1. Sulter G., Steen C., De Keyser J. Use of the Barthel index and modified Rankin scale in acute stroke trials. Stroke. 1999;30:1538–1541. doi: 10.1161/01.STR.30.8.1538.
    1. Blum L., Korner-Bitensky N. Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review. Phys. Ther. 2008;88:559–566. doi: 10.2522/ptj.20070205.

Source: PubMed

Подписаться