Determining the impact of 24/7 phone support on hospital readmissions after aortic valve replacement surgery (the AVRre study): study protocol for a randomised controlled trial

Irene Lie, Stein Ove Danielsen, Theis Tønnessen, Svein Solheim, Marit Leegaard, Leiv Sandvik, Torbjørn Wisløff, Jonny Vangen, Tor Henning Røsstad, Philip Moons, Irene Lie, Stein Ove Danielsen, Theis Tønnessen, Svein Solheim, Marit Leegaard, Leiv Sandvik, Torbjørn Wisløff, Jonny Vangen, Tor Henning Røsstad, Philip Moons

Abstract

Background: Patients undergoing surgical aortic valve replacement (sAVR) have high rates of 30-day readmissions. They also report a low health-related quality of life (HRQOL) and elevated anxiety and depression. The aim of the AVRre study is to determine the efficacy and cost of a 24/7 phone-support intervention in reducing post-discharge readmissions after sAVR. The nature of the support is to help patients better understand and self-manage non-urgent symptoms at home.

Methods/design: AVRre is a prospective, randomised controlled study comprising 30 days of continuous phone-support intervention and then intermittent follow-up for the first 12 months. Phone call data from and to patients are evaluated qualitatively; thus, the study has a mixed-method design. Two hundred and eighty-six patients, aged >18 years, scheduled for a sAVR - singly or in combination with another procedure - are recruited from locations in southeast Norway. Patients are randomly assigned to the intervention group, who are purposively phone-called individually 2 and 9 days after discharge and offered on-demand 24/7 (around-the-clock) telephone support for 30 days post-discharge. The primary outcome variable is the number of 30-day hospital readmissions. Secondary outcomes are anxiety and depression symptoms, as measured by the Hospital Anxiety and Depression Scale, HRQOL and quality-adjusted life years, measured by the EuroQol (EQ-5D). Intervention and hospital readmission (diagnosis-related groups (DRGs)/length of stay) for the first year after initial discharge from hospital are used for a cost-utility analysis. Standard parametric and non-parametric tests are used for evaluations over time. Analysis of covariance is used to control for possible differences at baseline. Narratives from phone calls are transcribed verbatim and analysed using systematic text condensation.

Discussion: A complex 'around-the-clock' intervention within a university hospital-based setting could be an effective strategy to reduce the high readmission rates to hospital after sAVR. Furthermore, the AVRre 24/7 phone-support manual can be adapted to other high-risk surgery populations with high readmission rates.

Trial registration: ClinicalTrials.gov, NCT02522663 . Registered on 11 August 2015.

Keywords: Clinical trial; Patient readmission; Thoracic surgery.

Figures

Fig. 1
Fig. 1
Patient flow and data collection chart
Fig. 2
Fig. 2
SPIRIT schedule of enrolment, interventions and assessments for the AVRre study

References

    1. Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Baron-Esquivias G, Baumgartner H, et al. Guidelines on the management of valvular heart disease (version 2012): the Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Eur J Cardiothorac Surg. 2012;42(4):S1–S44. doi: 10.1093/ejcts/ezs455.
    1. Barreto-Filho JA, Wang Y, Dodson JA, Desai MM, Sugeng L, Geirsson A, et al. Trends in aortic valve replacement for elderly patients in the United States, 1999–2011. JAMA. 2013;310(19):2078–85. doi: 10.1001/jama.2013.282437.
    1. Sibilitz KL, Berg SK, Thygesen LC, Hansen TB, Kober L, Hassager C, et al. High readmission rate after heart valve surgery: a nationwide cohort study. Int J Cardiol. 2015;189:96–104. doi: 10.1016/j.ijcard.2015.04.078.
    1. Hannan EL, Samadashvili Z, Jordan D, Sundt TM, Stamato NJ, Lahey SJ, et al. Thirty-day readmissions after transcatheter aortic valve implantation versus surgical aortic valve replacement in patients with severe aortic stenosis in New York State. Circ Cardiovasc Interv. 2015;8(8):e002744. doi: 10.1161/CIRCINTERVENTIONS.115.002744.
    1. Kim Y, Gani F, Lucas DJ, Ejaz A, Spolverato G, Canner JK, et al. Early versus late readmission after surgery among patients with employer-provided health insurance. Ann Surg. 2015;262(3):502–11. doi: 10.1097/SLA.0000000000001429.
    1. Engzelius J. Readmission at Bærum hospital. Oslo, Norway: A coordination pilot project. Project Mandate. Health East South; 2012.
    1. Leppin AL, Gionfriddo MR, Kessler M, Brito JP, Mair FS, Gallacher K, et al. Preventing 30-day hospital readmissions: a systematic review and meta-analysis of randomized trials. JAMA Intern Med. 2014;174(7):1095–107. doi: 10.1001/jamainternmed.2014.1608.
    1. Hansen LO, Young RS, Hinami K, Leung A, Williams MV. Interventions to reduce 30-day rehospitalization: a systematic review. Ann Intern Med. 2011;155(8):520–8. doi: 10.7326/0003-4819-155-8-201110180-00008.
    1. Melton LD, Foreman C, Scott E, McGinnis M, Cousins M. Prioritized post-discharge telephonic outreach reduces hospital readmissions for select high-risk patients. Am J Manag Care. 2012;18(12):838–44.
    1. Lancaster E, Postel M, Satou N, Shemin R, Benharash P. Introspection into institutional database allows for focused quality improvement plan in cardiac surgery: example for a new global healthcare system. Am Surg. 2013;79(10):1040–4.
    1. Maniar HS, Bell JM, Moon MR, Meyers BF, Marsala J, Lawton JS, et al. Prospective evaluation of patients readmitted after cardiac surgery: analysis of outcomes and identification of risk factors. J Thorac Cardiovasc Surg. 2014;147(3):1013–8. doi: 10.1016/j.jtcvs.2013.10.066.
    1. Murugiah K, Wang Y, Dodson JA, Nuti SV, Dharmarajan K, Ranasinghe I, et al. Trends in hospitalizations among Medicare survivors of aortic valve replacement in the United States from 1999 to 2010. Ann Thorac Surg. 2015;99(2):509–17. doi: 10.1016/j.athoracsur.2014.08.045.
    1. Redzek A, Mironicki M, Gvozdenovic A, Petrovic M, Cemerlic-Adic N, Ilic A, et al. Predictors for hospital readmission after cardiac surgery. J Card Surg. 2015;30(1):1–6. doi: 10.1111/jocs.12441.
    1. Lie I, Bunch EH, Smeby NA, Arnesen H, Hamilton G. Patients' experiences with symptoms and needs in the early rehabilitation phase after coronary artery bypass grafting. Eur J Cardiovasc Nurs. 2012;11(1):14–24. doi: 10.1016/j.ejcnurse.2010.09.004.
    1. Holmboe O B, OA. The national hospital patient’s experience survey: National results in 2015: The Norwegian Knowledge Centre for the Health Services (NOKC). 2016.
    1. Fredericks S, Lapum J, Lo J. Anxiety, depression, and self-management: a systematic review. Clin Nurs Res. 2012;21(4):411–30. doi: 10.1177/1054773812436681.
    1. Lie I, Arnesen H, Sandvik L, Hamilton G, Bunch EH. Effects of a home-based intervention program on anxiety and depression 6 months after coronary artery bypass grafting: a randomized controlled trial. J Psychosom Res. 2007;62(4):411–8. doi: 10.1016/j.jpsychores.2006.11.010.
    1. Williams JB, Alexander KP, Morin JF, Langlois Y, Noiseux N, Perrault LP, et al. Preoperative anxiety as a predictor of mortality and major morbidity in patients aged >70 years undergoing cardiac surgery. Am J Cardiol. 2013;111(1):137–42. doi: 10.1016/j.amjcard.2012.08.060.
    1. Blumenthal JA, Lett HS, Babyak MA, White W, Smith PK, Mark DB, et al. Depression as a risk factor for mortality after coronary artery bypass surgery. Lancet. 2003;362(9384):604–9. doi: 10.1016/S0140-6736(03)14190-6.
    1. Connerney I, Shapiro PA, McLaughlin JS, Bagiella E, Sloan RP. Relation between depression after coronary artery bypass surgery and 12-month outcome: a prospective study. Lancet. 2001;358(9295):1766–71. doi: 10.1016/S0140-6736(01)06803-9.
    1. Tully PJ, Baker RA. Depression, anxiety, and cardiac morbidity outcomes after coronary artery bypass surgery: a contemporary and practical review. J Geriatr Cardiol. 2012;9(2):197–208. doi: 10.3724/SP.J.1263.2011.12221.
    1. Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gotzsche PC, Krleza-Jeric K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–7. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Schulz KF, Altman DG, Moher D, CONSORT Group CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med. 2010;152(11):726–32. doi: 10.7326/0003-4819-152-11-201006010-00232.
    1. Boutron I, Moher D, Altman DG, Schulz KF, Ravaud P, CONSORT Group Extending the CONSORT statement to randomized trials of nonpharmacologic treatment: explanation and elaboration. Ann Intern Med. 2008;148(4):295–309. doi: 10.7326/0003-4819-148-4-200802190-00008.
    1. Zigmond AS, Snaith RP. The Hospital Anxiety and Depression Scale. Acta Psychiatr Scand. 1983;67(6):361–70. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Herrmann C. International experiences with the Hospital Anxiety and Depression Scale—a review of validation data and clinical results. J Psychosom Res. 1997;42(1):17–41. doi: 10.1016/S0022-3999(96)00216-4.
    1. Wisloff T, Hagen G, Hamidi V, Movik E, Klemp M, Olsen JA. Estimating QALY gains in applied studies: a review of cost-utility analyses published in 2010. Pharmacoeconomics. 2014;32(4):367–75. doi: 10.1007/s40273-014-0136-z.
    1. Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. In: Shrewhart WA, Wilk SS, editors. Wiley Series in Probability and Statistics. 3. Hoboken: Wiley; 2013.
    1. Veierød MB, Lydersen S, Laake P. Medical statistics: in clinical and epidemiological research. Oslo: Gyldendal akademisk; 2012.
    1. Vickers AJ. The use of percentage change from baseline as an outcome in a controlled trial is statistically inefficient: a simulation study. BMC Med Res Methodol. 2001;1:6. doi: 10.1186/1471-2288-1-6.
    1. Vickers AJ, Altman DG. Statistics notes: analysing controlled trials with baseline and follow up measurements. BMJ. 2001;323(7321):1123–4. doi: 10.1136/bmj.323.7321.1123.
    1. Little RJ, D'Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367(14):1355–60. doi: 10.1056/NEJMsr1203730.
    1. Malterud K. Systematic text condensation: a strategy for qualitative analysis. Scand J Public Health. 2012;40(8):795–805. doi: 10.1177/1403494812465030.
    1. Spillane JP, Pareja AS, Dorner L, Barnes C, May H, Huff J, et al. Mixing methods in randomized controlled trials (RCTs): validation, contextualization, triangulation, and control. Educ Assess Eval Account. 2010;22(1):5–28. doi: 10.1007/s11092-009-9089-8.
    1. Burke RE, Guo R, Prochazka AV, Misky GJ. Identifying keys to success in reducing readmissions using the ideal transitions in care framework. BMC Health Serv Res. 2014;14:423. doi: 10.1186/1472-6963-14-423.

Source: PubMed

Подписаться