Surgery, neuroinflammation and cognitive impairment

Azeem Alam, Zac Hana, Zhaosheng Jin, Ka Chun Suen, Daqing Ma, Azeem Alam, Zac Hana, Zhaosheng Jin, Ka Chun Suen, Daqing Ma

Abstract

Trauma experienced during surgery can contribute to the development of a systemic inflammatory response that can cause multi-organ dysfunction or even failure. Post-surgical neuroinflammation is a documented phenomenon that results in synaptic impairment, neuronal dysfunction and death, and impaired neurogenesis. Various pro-inflammatory cytokines, such as TNFα, maintain a state of chronic neuroinflammation, manifesting as post-operative cognitive dysfunction and post-operative delirium. Furthermore, elderly patients with post-operative cognitive dysfunction or delirium are three times more likely to experience permanent cognitive impairment or dementia. We conducted a narrative review, considering evidence extracted from various databases including Pubmed, MEDLINE and EMBASE, as well as journals and book reference lists. We found that further pre-clinical and well-powered clinical studies are required to delineate the precise pathogenesis of post-operative delirium and cognitive dysfunction. Despite the burden of post-operative neurological sequelae, clinical studies investigating therapeutic agents, such as dexmedetomidine, ibuprofen and statins, have yielded conflicting results. In addition, evidence supporting novel therapeutic avenues, such as nicotinic and HMGB-1 targeting and remote ischaemic pre-conditioning, is limited and necessitates further investigation.

Keywords: Inflammation; Multiple organ dysfunction syndrome; Neuroinflammation; Surgery; Systemic inflammatory response syndrome; Therapeutic targets.

Copyright © 2018. Published by Elsevier B.V.

Figures

Fig. 1
Fig. 1
End organ effects of postoperative systemic inflammatory response syndrome (SIRS). Surgical dissection and its associated trauma cause cell death which, in turn, results in the release of intracellular components into the extracellular space. These include immunogenic compounds such as RNA and DAMPs (HMGB-1, ATP and Histone) which bind to and activate specific toll-like receptors (TLRs), driving the NFκB mediated transcription of pro-inflammatory cytokines. Furthermore, activated T cells release pro-inflammatory mediators and can cause direct cytotoxicity. These processes result in tissue injury, oedema and inflammation and ultimately damage organs. ALI, acute lung injury. ARDS, acute respiratory distress syndrome. BBB, blood brain barrier. GFR, glomerular filtration rate. SVR, systemic vascular resistance.
Fig. 2
Fig. 2
Mechanism of post-operative neuroinflammation. DAMPs and PAMPs activate the downstream pathway involved in inducing the production of TNFα, as well as other proinflammatory mediators via NF-κB. This causes the loss of blood-brain barrier (BBB) integrity, due to endothelial dysfunction occurs and increased permeability of the BBB. As a result, there is a recruitment of circulating lymphocytes into the neuronal tissue, and microglia and astrocytes are activated. Cytokines induce the synthesis and release of NO via inducible nitric oxide synthase from the activated microglia and astrocytes. Also, cytokines cause an increase in intracellular Ca2+. In addition, GSK-3 dysfunction occurs in neuroinflammation, which potentiates microglial activation and migration and stimulates cells to produce NO and TNFα via NF-κB activation. Subsequently, neuroinflammation leads to neuronal apoptosis, reduced hippocampal neurogenesis, impaired synaptic plasticity and a loss of synaptic connections. All of this, in turn, leads to neurodegenerative conditions such as post-operative cognitive dysfunction and increased risk of Alzheimer's disease. BBB, blood brain barrier. DAMP, danger associated molecular pattern. GSK-3, Glycogen synthase kinase-3. iNOS, inducible nitric oxide synthase. NO, nitric oxide. TLR, toll like receptor.

References

    1. Weiser T.G., Haynes A.B., Molina G., Lipsitz S.R., Esquivel M.M., Uribe-Leitz T. Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes. Lancet. 2015 Apr 27;385(Suppl. 2) S11–6736(15)60806–6. [Epub 2015 Apr 26]
    1. Weiser T., Haynes A., Molina G., Lipsitz S., Esquivel M., Uribe-Leitz T. Size and distribution of the global volume of surgery in 2012. 2012. Available at:
    1. Moller J.T., Cluitmans P., Rasmussen L.S., Houx P., Rasmussen H., Canet J. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International study of post-operative cognitive dysfunction. Lancet. 1998 Mar 21;351(9106):857–861.
    1. Sprung J., Roberts R.O., Weingarten T.N., Nunes Cavalcante A., Knopman D.S., Petersen R.C. Postoperative delirium in elderly patients is associated with subsequent cognitive impairment. Br. J. Anaesth. 2017;119(2):316–323.
    1. Pittet D., Rangel-Frausto S., Li N., Tarara D., Costigan M., Rempe L. Systemic inflammatory response syndrome, sepsis, severe sepsis and septic shock: incidence, morbidities and outcomes in surgical ICU patients. Intensive Care Med. 1995 Apr;21(4):302–309.
    1. Takenaka K., Ogawa E., Wada H., Hirata T. Systemic inflammatory response syndrome and surgical stress in thoracic surgery. J. Crit. Care. 2006 Mar;21(1):48–53. [discussion 53–5]
    1. Mokart D., Merlin M., Sannini A., Brun J.P., Delpero J.R., Houvenaeghel G. Procalcitonin, interleukin 6 and systemic inflammatory response syndrome (SIRS): early markers of postoperative sepsis after major surgery. Br. J. Anaesth. 2005 Jun;94(6):767–773.
    1. Aosasa S., Ono S., Mochizuki H., Tsujimoto H., Osada S., Takayama E. Activation of monocytes and endothelial cells depends on the severity of surgical stress. World J. Surg. 2000 Jan;24(1):10–16.
    1. Abe T., Oka M., Tangoku A., Hayashi H., Yamamoto K., Yahara N. Interleukin-6 production in lung tissue after transthoracic esophagectomy. J. Am. Coll. Surg. 2001 Mar;192(3):322–329.
    1. Lv S., Song H.L., Zhou Y., Li L.X., Cui W., Wang W. Tumour necrosis factor-alpha affects blood-brain barrier permeability and tight junction-associated occludin in acute liver failure. Liver Int. 2010 Sep;30(8):1198–1210.
    1. Weaver L.C., Bao F., Dekaban G.A., Hryciw T., Shultz S.R., Cain D.P. CD11d integrin blockade reduces the systemic inflammatory response syndrome after traumatic brain injury in rats. Exp. Neurol. 2015 Sep;271:409–422.
    1. Yang S., Gu C., Mandeville E.T., Dong Y., Esposito E., Zhang Y. Anesthesia and surgery impair Blood-brain barrier and cognitive function in mice. Front. Immunol. 2017;8
    1. Zhang S., Dong H., Zhang X., Li N., Sun J., Qian Y. Cerebral mast cells contribute to postoperative cognitive dysfunction by promoting blood brain barrier disruption. Behav. Brain Res. 2016 Feb 1;298(Pt B):158–166.
    1. Feng X, Valdearcos M, Uchida Y, Lutrin D, Maze M, Koliwad SK. Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight;2(7).
    1. Xu J., Dong H., Qian Q., Zhang X., Wang Y., Jin W. Astrocyte-derived CCL2 participates in surgery-induced cognitive dysfunction and neuroinflammation via evoking microglia activation. Behav. Brain Res. 2017 Aug 14;332:145–153.
    1. Tian A., Ma H., Zhang R., Tan W., Wang X., Wu B. Interleukin17A promotes postoperative cognitive dysfunction by triggering Î2-amyloid accumulation via the transforming growth factor-Î2 (TGFÎ2)/smad signaling pathway. PLoS One. 2015;10(10)
    1. Onishi R.M., Gaffen S.L. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 2010 Mar;129(3):311–321.
    1. Docagne F., Gabriel C., Lebeurrier N., Lesne S., Hommet Y., Plawinski L. Sp1 and Smad transcription factors co-operate to mediate TGF-beta-dependent activation of amyloid-beta precursor protein gene transcription. Biochem. J. 2004 Oct 15;383(Pt 2):393–399.
    1. Qiu L.L., Ji M.H., Zhang H., Yang J.J., Sun X.R., Tang H. NADPH oxidase 2-derived reactive oxygen species in the hippocampus might contribute to microglial activation in postoperative cognitive dysfunction in aged mice. Brain Behav. Immun. 2016 Jan;51:109–118.
    1. Lu S.M., Yu C.J., Liu Y.H., Dong H.Q., Zhang X., Zhang S.S. S100A8 contributes to postoperative cognitive dysfunction in mice undergoing tibial fracture surgery by activating the TLR4/MyD88 pathway. Brain Behav. Immun. 2015 Feb;44:221–234.
    1. Lin G.X., Wang T., Chen M.H., Hu Z.H., Ouyang W. Serum high-mobility group box 1 protein correlates with cognitive decline after gastrointestinal surgery. Acta Anaesthesiol. Scand. 2014 Jul;58(6):668–674.
    1. Terrando N., Yang T., Wang X., Fang J., Cao M., Andersson U. Systemic HMGB1 neutralization prevents postoperative neurocognitive dysfunction in aged rats. Front. Immunol. 2016;7
    1. He H.J., Wang Y., Le Y., Duan K.M., Yan X.B., Liao Q. Surgery upregulates high mobility group box-1 and disrupts the blood-brain barrier causing cognitive dysfunction in aged rats. CNS Neurosci. Ther. 2012 Dec;18(12):994–1002.
    1. Howells D.W., Porritt M.J., Wong J.Y., Batchelor P.E., Kalnins R., Hughes A.J. Reduced BDNF mRNA expression in the Parkinson's disease substantia nigra. Exp. Neurol. 2000 Nov;166(1):127–135.
    1. Lee J.G., Shin B.S., You Y.S., Kim J.E., Yoon S.W., Jeon D.W. Decreased serum brain-derived neurotrophic factor levels in elderly korean with dementia. Psychiatry Investig. 2009 Dec;6(4):299–305.
    1. Tian X.S., Tong Y.W., Li Z.Q., Li L.X., Zhang T., Ren T.Y. Surgical stress induces brain-derived neurotrophic factor reduction and postoperative cognitive dysfunction via glucocorticoid receptor phosphorylation in aged mice. CNS Neurosci. Ther. 2015 May;21(5):398–409.
    1. Hovens I.B., Schoemaker R.G., van der Zee E.A., Absalom A.R., Heineman E., van Leeuwen B.L. Postoperative cognitive dysfunction: involvement of neuroinflammation and neuronal functioning. Brain Behav. Immun. 2014 May;38:202–210.
    1. Wei P., Zheng Q., Liu H., Wan T., Zhou J., Li D. Nicotine-induced neuroprotection against cognitive dysfunction after partial hepatectomy involves activation of BDNF/TrkB signaling pathway and inhibition of NF-kappaB signaling pathway in aged rats. Nicotine Tob. Res. 2017 Jul 27;20(4):515–522.
    1. Fan D., Li J., Zheng B., Hua L., Zuo Z. Enriched environment attenuates surgery-induced impairment of learning, memory, and neurogenesis possibly by preserving BDNF expression. Mol. Neurobiol. 2016 Jan;53(1):344–354.
    1. Singh N., Haldar S., Tripathi A.K., Horback K., Wong J., Sharma D. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid. Redox Signal. 2014 Mar 10;20(8):1324–1363.
    1. Rouault T.A., Cooperman S. Brain iron metabolism. Semin. Pediatr. Neurol. 2006 Sep;13(3):142–148.
    1. Smith M.A., Zhu X., Tabaton M., Liu G., McKeel D.W., Jr., Cohen M.L. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J. Alzheimers Dis. 2010;19(1):363–372.
    1. An L.N., Yue Y., Guo W.Z., Miao Y.L., Mi W.D., Zhang H. Surgical trauma induces iron accumulation and oxidative stress in a rodent model of postoperative cognitive dysfunction. Biol. Trace Elem. Res. 2013 Feb;151(2):277–283.
    1. Li Y., Pan K., Chen L., Ning J.L., Li X., Yang T. Deferoxamine regulates neuroinflammation and iron homeostasis in a mouse model of postoperative cognitive dysfunction. J. Neuroinflammation. 2016 Oct 12;13(1):268. [-016-0740-2]
    1. Pan K., Li X., Chen Y., Zhu D., Li Y., Tao G. Deferoxamine pre-treatment protects against postoperative cognitive dysfunction of aged rats by depressing microglial activation via ameliorating iron accumulation in hippocampus. Neuropharmacology. 2016 Dec;111:180–194.
    1. Bonaz B., Sinniger V., Pellissier S. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J. Physiol. 2016 Oct 15;594(20):5781–5790.
    1. Fujii T., Mashimo M., Moriwaki Y., Misawa H., Ono S., Horiguchi K. Physiological functions of the cholinergic system in immune cells. J. Pharmacol. Sci. 2017 May;134(1):1–21.
    1. Rivera A., Vanzuli I., Arellano J.J., Butt A. Decreased regenerative capacity of oligodendrocyte progenitor cells (NG2-Glia) in the ageing brain: a vicious cycle of synaptic dysfunction, myelin loss and neuronal disruption? Curr. Alzheimer Res. 2016;13(4):413–418.
    1. Newman L. Aneurysmal bone cyst--a lesion in the mandibular ramus. Br. J. Oral Maxillofac. Surg. 1987 Feb;25(1):74–78.
    1. Rama Rao K.V., Kielian T. Neuron-astrocyte interactions in neurodegenerative diseases: role of neuroinflammation. Clin. Exp. Neuroimmunol. 2015 Aug;6(3):245–263.
    1. Yuste J.E., Tarragon E., Campuzano C.M., Ros-Bernal F. Implications of glial nitric oxide in neurodegenerative diseases. Front. Cell Neurosci. 2015;9
    1. Olmos G., Llado J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediat. Inflamm. 2014;2014:861231.
    1. Zhang X., Dong H., Li N., Zhang S., Sun J., Zhang S. Activated brain mast cells contribute to postoperative cognitive dysfunction by evoking microglia activation and neuronal apoptosis. J. Neuroinflammation. 2016 May 31;13(1):127. [-016-0592-9]
    1. Plaschke K., Muller A.K., Kopitz J. Surgery-induced changes in rat IL-1beta and acetylcholine metabolism: role of physostigmine. Clin. Exp. Pharmacol. Physiol. 2014 Sep;41(9):663–670.
    1. Plaschke K., Schulz S., Rullof R., Weigand M.A., Kopitz J. In-depth characterization of the neuroinflammatory reaction induced by peripheral surgery in an animal model. J. Neural Transm. (Vienna) 2018 Oct;125(10):1487–1494.
    1. Plaschke K., Weigand M.A., Fricke F., Kopitz J. Neuroinflammation: effect of surgical stress compared to anaesthesia and effect of physostigmine. Neurol. Res. 2016 May;38(5):397–405.
    1. Ekdahl C.T., Claasen J.H., Bonde S., Kokaia Z., Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl. Acad. Sci. U. S. A. 2003 Nov 11;100(23):13632–13637.
    1. Martin M., Rehani K., Jope R.S., Michalek S.M. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol. 2005 Aug;6(8):777–784.
    1. Ramirez S.H., Fan S., Dykstra H., Rom S., Mercer A., Reichenbach N.L. Inhibition of glycogen synthase kinase 3beta promotes tight junction stability in brain endothelial cells by half-life extension of occludin and claudin-5. PLoS One. 2013;8(2)
    1. Saczynski J.S., Inouye S.K., Kosar C., Tommet D., Marcantonio E.R., Fong T. Cognitive and brain reserve and the risk of postoperative delirium in older patients. Lancet Psychiatry. 2014 Nov;1(6):437–443.
    1. van Gool W.A., van de Beek D., Eikelenboom P. Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet. 2010 Feb 27;375(9716):773–775.
    1. Liu X., Yu Y., Zhu S. Inflammatory markers in postoperative delirium (POD) and cognitive dysfunction (POCD): a meta-analysis of observational studies. PLoS One. 2018 Apr 11;13(4)
    1. Rundshagen I. Postoperative cognitive dysfunction. Dtsch. Arztebl. Int. 2014 Feb;111(8):119–125.
    1. Needham M.J., Webb C.E., Bryden D.C. Postoperative cognitive dysfunction and dementia: what we need to know and do. Br. J. Anaesth. 2017 Dec 1;119(suppl_1):i115–i125.
    1. Demura S., Takahashi K., Kawahara N., Watanabe Y., Tomita K. Serum interleukin-6 response after spinal surgery: estimation of surgical magnitude. J. Orthop. Sci. 2006 May;11(3):241–247.
    1. Terrando N., Eriksson L.I., Ryu J.K., Yang T., Monaco C., Feldmann M. Resolving postoperative neuroinflammation and cognitive decline. Ann. Neurol. 2011 Dec;70(6):986–995.
    1. Benson R.A., Ozdemir B.A., Matthews D., Loftus I.M. A systematic review of postoperative cognitive decline following open and endovascular aortic aneurysm surgery. Ann. R. Coll. Surg. Engl. 2017 Feb;99(2):97–100.
    1. Buvanendran A., Kroin J.S., Berger R.A., Hallab N.J., Saha C., Negrescu C. Upregulation of prostaglandin E2 and interleukins in the central nervous system and peripheral tissue during and after surgery in humans. Anesthesiology. 2006 Mar;104(3):403–410.
    1. Matsumoto E.D., Margulis V., Tunc L., Taylor G.D., Duchene D., Johnson D.B. Cytokine response to surgical stress: comparison of pure laparoscopic, hand-assisted laparoscopic, and open nephrectomy. J. Endourol. 2005 Nov;19(9):1140–1145.
    1. Dantzer R. Cytokine-induced sickness behavior: where do we stand? Brain Behav. Immun. 2001 Mar;15(1):7–24.
    1. Kapila A.K., Watts H.R., Wang T., Ma D. The impact of surgery and anesthesia on post-operative cognitive decline and Alzheimer's disease development: biomarkers and preventive strategies. J. Alzheimers Dis. 2014;41(1):1–13.
    1. Lyman M., Lloyd D.G., Ji X., Vizcaychipi M.P., Ma D. Neuroinflammation: the role and consequences. Neurosci. Res. 2014 Feb;79:1–12.
    1. Vanderweyde T., Bednar M.M., Forman S.A., Wolozin B. Iatrogenic risk factors for Alzheimer's disease: surgery and anesthesia. J. Alzheimers Dis. 2010;22(Suppl. 3):91–104.
    1. Orellana A.M., Vasconcelos A.R., Leite J.A., de Sa Lima L., Andreotti D.Z., Munhoz C.D. Age-related neuroinflammation and changes in AKT-GSK-3beta and WNT/ beta-CATENIN signaling in rat hippocampus. Aging (Albany NY) 2015 Dec;7(12):1094–1111.
    1. Plaschke K., Kopitz J. In vitro streptozotocin model for modeling Alzheimer-like changes: effect on amyloid precursor protein secretases and glycogen synthase kinase-3. J. Neural Transm. (Vienna) 2015 Apr;122(4):551–557.
    1. Xu Z., Dong Y., Wang H., Culley D.J., Marcantonio E.R., Crosby G. Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice. Sci. Rep. 2014;4
    1. Lee T.A., Wolozin B., Weiss K.B., Bednar M.M. Assessment of the emergence of Alzheimer's disease following coronary artery bypass graft surgery or percutaneous transluminal coronary angioplasty. J. Alzheimers Dis. 2005 Aug;7(4):319–324.
    1. Chen P.L., Yang C.W., Tseng Y.K., Sun W.Z., Wang J.L., Wang S.J. Risk of dementia after anaesthesia and surgery. Br. J. Psychiatry. 2014 Mar;204(3):188–193.
    1. Royse C.F., Saager L., Whitlock R., Ou-Young J., Royse A., Vincent J. Impact of methylprednisolone on postoperative quality of recovery and delirium in the steroids in cardiac surgery trial: a randomized, double-blind, placebo-controlled substudy. Anesthesiology. 2017 Feb;126(2):223–233.
    1. Whitlock R.P., Devereaux P.J., Teoh K.H., Lamy A., Vincent J., Pogue J. Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): a randomised, double-blind, placebo-controlled trial. Lancet. 2015 Sep 26;386(10000):1243–1253.
    1. Dieleman J.M., Nierich A.P., Rosseel P.M., van der Maaten J.M., Hofland J., Diephuis J.C. Intraoperative high-dose dexamethasone for cardiac surgery: a randomized controlled trial. JAMA. 2012 Nov 7;308(17):1761–1767.
    1. Valentin L.S., Pereira V.F., Pietrobon R.S., Schmidt A.P., Oses J.P., Portela L.V. Effects of single low dose of dexamethasone before noncardiac and nonneurologic surgery and general anesthesia on postoperative cognitive dysfunction-a phase iii double blind, randomized clinical trial. PLoS One. 2016 May 6;11(5)
    1. Peng M., Wang Y.L., Wang F.F., Chen C., Wang C.Y. The cyclooxygenase-2 inhibitor parecoxib inhibits surgery-induced proinflammatory cytokine expression in the hippocampus in aged rats. J. Surg. Res. 2012 Nov;178(1):e1–e8.
    1. Zhu Y.Z., Yao R., Zhang Z., Xu H., Wang L.W. Parecoxib prevents early postoperative cognitive dysfunction in elderly patients undergoing total knee arthroplasty: a double-blind, randomized clinical consort study. Medicine (Baltimore) 2016 Jul;95(28)
    1. Mu D.L., Zhang D.Z., Wang D.X., Wang G., Li C.J., Meng Z.T. Parecoxib supplementation to morphine analgesia decreases incidence of delirium in elderly patients after hip or knee replacement surgery: a randomized controlled trial. Anesth. Analg. 2017 Jun;124(6):1992–2000.
    1. Zhao W.X., Zhang J.H., Cao J.B., Wang W., Wang D.X., Zhang X.Y. Acetaminophen attenuates lipopolysaccharide-induced cognitive impairment through antioxidant activity. J. Neuroinflammation. 2017 Jan 21;14(1):17. [-016-0781-6]
    1. Rao P., Knaus E.E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci. 2008 Sep 20;11(2):81s–110s.
    1. Huang C., Irwin M.G., Wong G.T.C., Chang R.C.C. Evidence of the impact of systemic inflammation on neuroinflammation from a non-bacterial endotoxin animal model. J. Neuroinflammation. 2018 May 17;15(1) 147-018-1163-z.
    1. Le V., Kurnutala L., SchianodiCola J., Ahmed K., Yarmush J., Daniel Eloy J. Premedication with intravenous ibuprofen improves recovery characteristics and stress response in adults undergoing laparoscopic cholecystectomy: a randomized controlled trial. Pain Med. 2016 Feb;18
    1. Yamanaka D., Kawano T., Nishigaki A., Aoyama B., Tateiwa H., Shigematsu-Locatelli M. Preventive effects of dexmedetomidine on the development of cognitive dysfunction following systemic inflammation in aged rats. J. Anesth. 2017 Feb;31(1):25–35.
    1. Paeschke N., von Haefen C., Endesfelder S., Sifringer M., Spies C.D. Dexmedetomidine Prevents Lipopolysaccharide-Induced MicroRNA Expression in the Adult Rat Brain. Int. J. Mol. Sci. 2017 Aug 23;18(9)
    1. Huang Z., Liu G., Zeng Q., Gao R., Zhang S., Wang L. MiR-29b expression is associated with a dexmedetomidine-mediated protective effect against oxygen-glucose deprivation-induced injury to SK-N-SH cells in vitro. Cell Biol. Int. 2017 Oct;31
    1. Chen Y., Zhang X., Zhang B., He G., Zhou L., Xie Y. Dexmedetomidine reduces the neuronal apoptosis related to cardiopulmonary bypass by inhibiting activation of the JAK2-STAT3 pathway. Drug Des. Dev. Ther. 2017 Sep 26;11:2787–2799.
    1. Ning Q., Liu Z., Wang X., Zhang R., Zhang J., Yang M. Neurodegenerative changes and neuroapoptosis induced by systemic lipopolysaccharide administration are reversed by dexmedetomidine treatment in mice. Neurol. Res. 2017 Apr;39(4):357–366.
    1. Zhu Y.J., Peng K., Meng X.W., Ji F.H. Attenuation of neuroinflammation by dexmedetomidine is associated with activation of a cholinergic anti-inflammatory pathway in a rat tibial fracture model. Brain Res. 2016 Aug 1;1644:1–8.
    1. Su X., Meng Z.T., Wu X.H., Cui F., Li H.L., Wang D.X. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet. 2016 Oct 15;388(10054):1893–1902.
    1. Zhang D.F., Su X., Meng Z.T., Li H.L., Wang D.X., Li X.Y. Impact of dexmedetomidine on long-term outcomes after noncardiac surgery in elderly: 3-year follow-up of a randomized controlled trial. Ann. Surg. 2018 May;8
    1. Zhou C., Zhu Y., Liu Z., Ruan L. Effect of dexmedetomidine on postoperative cognitive dysfunction in elderly patients after general anaesthesia: a meta-analysis. J. Int. Med. Res. 2016 Dec;44(6):1182–1190.
    1. Duan X., Coburn M., Rossaint R., Sanders R.D., Waesberghe J.V., Kowark A. Efficacy of perioperative dexmedetomidine on postoperative delirium: systematic review and meta-analysis with trial sequential analysis of randomised controlled trials. Br. J. Anaesth. 2018 Aug;121(2):384–397.
    1. Lodenius A., Ebberyd A., Hardemark Cedborg A., Hagel E., Mkrtchian S., Christensson E. Sedation with dexmedetomidine or propofol impairs hypoxic control of breathing in healthy male volunteers: a nonblinded, randomized crossover study. Anesthesiology. 2016 Oct;125(4):700–715.
    1. Gerlach A.T., Blais D.M., Jones G.M., Burcham P.K., Stawicki S.P., Cook C.H. Predictors of dexmedetomidine-associated hypotension in critically ill patients. Int. J. Crit. Illn. Inj. Sci. 2016 Jul-Sep;6(3):109–114.
    1. Grimm M.O.W., Mett J., Grimm H.S., Hartmann T. APP function and lipids: a bidirectional link. Front. Mol. Neurosci. 2017;10
    1. Hoglund K., Wallin A., Blennow K. Effect of statins on beta-amyloid metabolism in humans: potential importance for the development of senile plaques in Alzheimer's disease. Acta Neurol. Scand. Suppl. 2006;185:87–92.
    1. Parsons R.B., Price G.C., Farrant J.K., Subramaniam D., Adeagbo-Sheikh J., Austen B.M. Statins inhibit the dimerization of beta-secretase via both isoprenoid- and cholesterol-mediated mechanisms. Biochem. J. 2006 Oct 15;399(2):205–214.
    1. Burns M.P., Igbavboa U., Wang L., Wood W.G., Duff K. Cholesterol distribution, not total levels, correlate with altered amyloid precursor protein processing in statin-treated mice. NeuroMolecular Med. 2006;8(3):319–328.
    1. Shepardson N.E., Shankar G.M., Selkoe D.J. Cholesterol and statins in Alzheimer’s disease: II. Review of human trials and recommendations. Arch. Neurol. 2011 Nov;68(11):1385–1392.
    1. Vizcaychipi M.P., Watts H.R., O'Dea K.P., Lloyd D.G., Penn J.W., Wan Y. The therapeutic potential of atorvastatin in a mouse model of postoperative cognitive decline. Ann. Surg. 2014 Jun;259(6):1235–1244.
    1. Chu C.S., Tseng P.T., Stubbs B., Chen T.Y., Tang C.H., Li D.J. Use of statins and the risk of dementia and mild cognitive impairment: a systematic review and meta-analysis. Sci. Rep. 2018 Apr 11;8(1):5804. [-018-24248-8]
    1. Heart Protection Study Collaborative Group MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002 Jul 6;360(9326):7–22.
    1. Shepherd J., Blauw G.J., Murphy M.B., Bollen E.L., Buckley B.M., Cobbe S.M. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002 Nov 23;360(9346):1623–1630.
    1. McGuinness B., Craig D., Bullock R., Passmore P. Statins for the prevention of dementia. Cochrane Database Syst. Rev. 2009 Apr 15;(2):CD003160. doi(2):CD003160.
    1. Li Y., Zhao L., Fu H., Wu Y., Wang T. Ulinastatin suppresses lipopolysaccharide induced neuro-inflammation through the downregulation of nuclear factor-kappaB in SD rat hippocampal astrocyte. Biochem. Biophys. Res. Commun. 2015 Mar 20;458(4):763–770.
    1. Lv Z.T., Huang J.M., Zhang J.M., Zhang J.M., Guo J.F., Chen A.M. Effect of ulinastatin in the treatment of postperative cognitive dysfunction: review of current literature. Biomed. Res. Int. 2016;2016:2571080.
    1. Terrando N., Yang T., Ryu J.K., Newton P.T., Monaco C., Feldmann M. Stimulation of the alpha7 nicotinic acetylcholine receptor protects against neuroinflammation after tibia fracture and endotoxemia in mice. Mol. Med. 2015 Mar 17;20:667–675.
    1. Vacas S., Degos V., Tracey K.J., Maze M. High-mobility group box 1 protein initiates postoperative cognitive decline by engaging bone marrow-derived macrophages. Anesthesiology. 2014 May;120(5):1160–1167.
    1. Kong Z.H., Chen X., Hua H.P., Liang L., Liu L.J. The oral pretreatment of glycyrrhizin prevents surgery-induced cognitive impairment in aged mice by reducing neuroinflammation and alzheimer's-related pathology via HMGB1 inhibition. J. Mol. Neurosci. 2017 Dec;63(3–4):385–395.
    1. Dugbartey G.J., Bouma H.R., Lobb I., Sener A. Hydrogen sulfide: a novel nephroprotectant against cisplatin-induced renal toxicity. Nitric Oxide. 2016 Jul 1;57:15–20.
    1. Wallace J.L., Wang R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat. Rev. Drug Discov. 2015 May;14(5):329–345.
    1. Tu F.P., Li J.X., Li Q., Wang J. Effects of hydrogen sulfide on cognitive dysfunction and NR2B in rats. J. Surg. Res. 2016 Oct;205(2):426–431.
    1. Cheon S.Y., Kim J.M., Kam E.H., Ho C.C., Kim E.J., Chung S. Cell-penetrating interactomic inhibition of nuclear factor-kappa B in a mouse model of postoperative cognitive dysfunction. Sci. Rep. 2017 Oct 18;7(1):13482. [-017-14027-2]
    1. Liu Z.J., Chen C., Li X.R., Ran Y.Y., Xu T., Zhang Y. Remote ischemic preconditioning-mediated neuroprotection against stroke is associated with significant alterations in peripheral immune responses. CNS Neurosci. Ther. 2016 Jan;22(1):43–52.
    1. He Z., Xu N., Qi S. Remote ischemic preconditioning improves the cognitive function of elderly patients following colon surgery: a randomized clinical trial. Medicine (Baltimore) 2017 Apr;96(17)
    1. Hudetz J.A., Patterson K.M., Iqbal Z., Gandhi S.D., Pagel P.S. Remote ischemic preconditioning prevents deterioration of short-term postoperative cognitive function after cardiac surgery using cardiopulmonary bypass: results of a pilot investigation. J. Cardiothorac. Vasc. Anesth. 2015 Apr;29(2):382–388.
    1. Hess D.C., Hoda M.N., Khan M.B. Humoral mediators of remote ischemic conditioning: important role of eNOS/NO/Nitrite. Acta Neurochir. Suppl. 2016;121:45–48.
    1. Sales A.H.A., Barz M., Bette S., Wiestler B., Ryang Y.M., Meyer B. Impact of ischemic preconditioning on surgical treatment of brain tumors: a single-center, randomized, double-blind, controlled trial. BMC Med. 2017 Jul 25;15(1):137. [-017-0898-1]
    1. Meybohm P., Kohlhaas M., Stoppe C., Gruenewald M., Renner J., Bein B. RIPHeart (Remote Ischemic Preconditioning for Heart Surgery) study: myocardial dysfunction, postoperative neurocognitive dysfunction, and 1 year follow-up. J. Am. Heart Assoc. 2018 Mar 26;7(7)
    1. Rogers G.B., Keating D.J., Young R.L., Wong M.L., Licinio J., Wesselingh S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatry. 2016 Jun;21(6):738–748.
    1. Kim S., Kim H., Yim Y.S., Ha S., Atarashi K., Tan T.G. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature. 2017 Sep 28;549(7673):528–532.
    1. Sherwin E., Dinan T.G., Cryan J.F. Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann. N. Y. Acad. Sci. 2018 May;1420(1):5–25.
    1. Vogt N.M., Kerby R.L., Dill-McFarland K.A., Harding S.J., Merluzzi A.P., Johnson S.C. Gut microbiome alterations in Alzheimer's disease. Sci. Rep. 2017 Oct 19;7(1) 13537-017-13601-y.
    1. Vuong H.E., Yano J.M., Fung T.C., Hsiao E.Y. The microbiome and host behavior. Annu. Rev. Neurosci. 2017 Jul 25;40:21–49.
    1. Tse J.K.Y. Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders. ACS Chem. Neurosci. 2017 Jul 19;8(7):1438–1447.
    1. Frohlich E.E., Farzi A., Mayerhofer R., Reichmann F., Jacan A., Wagner B. Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav. Immun. 2016 Aug;56:140–155.
    1. Liang P., Weiran S., Zhiyi S. Perioperative use of cefazolin ameliorates postoperative cognitive dysfunction but induces gut inflammation in mice. J. Neuroinflammation. 2018;15(235)

Source: PubMed

Подписаться