MR phase-contrast imaging in pulmonary hypertension

Ursula Reiter, Gert Reiter, Michael Fuchsjäger, Ursula Reiter, Gert Reiter, Michael Fuchsjäger

Abstract

Pulmonary hypertension (PH) is a life-threatening, multifactorial pathophysiological haemodynamic condition, diagnosed when the mean pulmonary arterial pressure equals or exceeds 25 mmHg at rest during right heart catheterization. Cardiac MRI, in general, and MR phase-contrast (PC) imaging, in particular, have emerged as potential techniques for the standardized assessment of cardiovascular function, morphology and haemodynamics in PH. Allowing the quantification and characterization of macroscopic cardiovascular blood flow, MR PC imaging offers non-invasive evaluation of haemodynamic alterations associated with PH. Techniques used to study the PH include both the routine two-dimensional (2D) approach measuring predominant velocities through an acquisition plane and the rapidly evolving four-dimensional (4D) PC imaging, which enables the assessment of the complete time-resolved, three-directional blood-flow velocity field in a volume. Numerous parameters such as pulmonary arterial mean velocity, vessel distensibility, flow acceleration time and volume and tricuspid regurgitation peak velocity, as well as the duration and onset of vortical blood flow in the main pulmonary artery, have been explored to either diagnose PH or find non-invasive correlates to right heart catheter parameters. Furthermore, PC imaging-based analysis of pulmonary arterial pulse-wave velocities, wall shear stress and kinetic energy losses grants novel insights into cardiopulmonary remodelling in PH. This review aimed to outline the current applications of 2D and 4D PC imaging in PH and show why this technique has the potential to contribute significantly to early diagnosis and characterization of PH.

Figures

Figure 1.
Figure 1.
Schematic drawing indicating haemodynamic parameters typically assessed by right heart catheterization (RHC) and clinical PH groups. Arrows sketch the localization of the origin of disease. CO, cardiac output; CTEPH, chronic thromboembolic pulmonary hypertension; LA, left atrium; mPA, main pulmonary artery; PAH, pulmonary arterial hypertension; PAP, pulmonary arterial pressure; PAWP, pulmonary arterial wedge pressure; PH-LHD, pulmonary hypertension due to left heart disease; PH-lung, PH due to lung diseases; PV, pulmonary veins; PVR, pulmonary vascular resistance; RA, right atrium; RAP, right atrial pressure; RV, right ventricle; TPG, transpulmonary pressure gradient.
Figure 2.
Figure 2.
Principle of an electrocardiographically (ECG)-gated two-dimensional phase-contrast sequence. Segmentation is usually performed by interleaved acquisition of more (here three) data lines with and without velocity encoding per heartbeat. The principle of reconstruction of velocity (red) and magnitude (blue) images is indicated for three pixels (P) in one frame.
Figure 3.
Figure 3.
Impact of the choice of velocity-encoding value (VENC). Three two-dimensional phase-contrast measurements through the main pulmonary artery were performed consecutively in a healthy volunteer; the same systolic phase is shown. VENC = 300 cm s−1 (left panel): maximum velocities are much smaller than VENC and cause consequently only small phase differences, low contrast to stationary tissue and bad signal-to-noise ratio. VENC = 90 cm s−1 (mid panel): maximum velocities are close to VENC and cause phase differences close to 180°, high contrast to stationary tissue and good signal-to-noise ratio. VENC = 60 cm s−1 (right panel): maximum velocities are higher than VENC and cause phase differences larger 180°, which are erroneously represented as velocities in the opposite direction. This phenomenon is called aliasing.
Figure 4.
Figure 4.
Principle of three-directional phase-contrast imaging data acquisition. A velocity vector is specified by its two in-plane and one through-plane components.
Figure 5.
Figure 5.
Examples of a vector plot, streamline and a particle trace visualization of the same four-dimensional phase-contrast data set of a healthy volunteer displayed on maximum intensity projection for anatomic orientation. Vector plot showing three-dimensional velocity vectors projected on a multiplanar reconstructed cut-plane through the superior vena cava (SVC), inferior vena cava (IVC), right atrium (RA) and right ventricle (RV) in end-systole. Velocity magnitude is colour encoded (a). Streamline visualization demonstrating the three-dimensional tangent curves to the velocity vectors in end-systole. Seeding points were placed in the IVC, SVC and right ventricular outflow tract; velocity magnitude is colour encoded (b). Particle trace visualization showing the three-dimensional paths of particles in end-systole, which were seeded in the IVC (blue) and SVC (red) in end-diastole.
Figure 6.
Figure 6.
Planning of a through-plane two-dimensional phase-contrast imaging acquisition plane (a, b) in the main pulmonary artery (solid line) together with the resulting magnitude (c) and velocity (d) images. For evaluation of pulmonary arterial blood flow, the vessel cross-sectional area is usually segmented on the magnitude (solid contour) and transferred to the phase image (dotted contour).
Figure 7.
Figure 7.
Evaluation of a through-plane two-dimensional phase-contrast measurement in the main pulmonary artery. Time course of the vessel cross-sectional area (a): area change (AC) and relative area change (RAC) are calculated from minimum cross-sectional area (Amin) and maximum cross-sectional area (Amax); time course of the maximum velocity (b): peak velocity (vpeak) is indicated; time course of the mean velocity (c): time to peak (TTP) is defined as the time interval between onset of blood flow and maximum mean velocity (vmean,max); the ejection time (ET) is time interval between onset and end (vmean = 0 cm s−1) of systolic pulmonary arterial blood flow; time course of the pulmonary blood flow (d): acceleration time (AT) is defined as time interval between onset of blood flow and peak flow (Qpeak); maximum change in flow rate during ejection (dQ/dtmax) and acceleration volume (AccV) are indicated. The subscript avg denotes the average with respect to all cardiac phases. RR, cardiac interval.
Figure 8.
Figure 8.
Retrograde blood flow (RF) in a through-plane two-dimensional phase-contrast measurement in the main pulmonary artery (mPA) of a patient with pulmonary arterial hypertension (a). Onset time (ROT) of RF as well as the relative onset time of retrograde flow (rROT) with respect to cardiac interval (RR) can be evaluated by segmentation of RF in the velocity images (b).
Figure 9.
Figure 9.
Vector plots of mid-systolic blood flow velocity fields in a healthy volunteer (a) and a patient with pulmonary hypertension (PH) (b) in orientation of the right ventricular outflow tract. Whereas blood motion is uniformly directed forward in the main pulmonary artery of the healthy volunteer, a vortical blood flow pattern along the main pulmonary artery is observed in the main pulmonary artery in the patient with PH.
Figure 10.
Figure 10.
Early diastolic streamline visualizations of main pulmonary artery blood flow in two different patients with pulmonary arterial hypertension. A parallel appearance of vortical flow in the main pulmonary artery and helical flow into the right pulmonary artery (a). Pulmonary regurgitation does not hinder formation of vortical blood flow (b).
Figure 11.
Figure 11.
Assessment of pulse-wave velocity (PWV) in the pulmonary artery by transit-time approach (a) and flow-area method (b). Δx denotes the distance between measurement positions, Δt is difference of velocity onsets. Black dots in the vessel area—flow plot display measured data points in early systole. RR, cardiac interval.
Figure 12.
Figure 12.
Schematic drawing illustrating the definition of wall shear stress (WSS). Δvx denotes the radial velocity gradient at the vessel wall. ηblood is the viscosity of blood.
Figure 13.
Figure 13.
Planning of the through-plane two-dimensional phase-contrast imaging acquisition plane of tricuspid inflow (solid line) on early diastolic images in 4-chamber (left) and right ventricular 2-chamber (right) view (a) and delineation of the tricuspid inflow (yellow region of interest) on resulting magnitude (left) and velocity (right) images (b). Planning of the tricuspid regurgitation jet velocity on systolic images in 4-chamber (left) and right ventricular 2-chamber (right) view (c) and determination of the peak velocity (vpeak) (d). (Acquisition plane 1 cm proximal to the tricuspid valve). VENC, velocity-encoding value.

References

    1. Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, et al. . Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 2013; 62 (Suppl. 25): D42–50. doi: 10.1016/j.jacc.2013.10.032
    1. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. . 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J 2015; 46: 903–75. doi: 10.1183/13993003.01032-2015
    1. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, et al. . Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2013; 62 (Suppl. 25): D34–41. doi: 10.1016/j.jacc.2013.10.029
    1. Pawade T, Holloway B, Bradlow W, Steeds RP. Noninvasive imaging for the diagnosis and prognosis of pulmonary hypertension. Expert Rev Cardiovasc Ther 2014; 12: 71–86. doi: 10.1586/14779072.2014.867806
    1. Vonk Noordegraaf A, Haddad F, Bogaard HJ, Hassoun PM. Noninvasive imaging in the assessment of the cardiopulmonary vascular unit. Circulation 2015; 131: 899–913. doi: 10.1161/CIRCULATIONAHA.114.006972
    1. Kreitner KF. Noninvasive imaging of pulmonary hypertension. Semin Respir Crit Care Med 2014; 35: 99–111. doi: 10.1055/s-0033-1363456
    1. Naeije R, D'Alto M, Forfia PR. Clinical and research measurement techniques of the pulmonary circulation: the present and the future. Prog Cardiovasc Dis 2015; 57: 463–72. doi: 10.1016/j.pcad.2014.12.003
    1. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E; Society for Cardiovascular Magnetic Resonance Board of Trustees Task Force on Standardized Protocols. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 2013; 15: 91. doi: 10.1186/1532-429X-15-91
    1. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, et al. . Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 2013; 15: 35. doi: 10.1186/1532-429X-15-35
    1. Swift AJ, Wild JM, Nagle SK, Roldán-Alzate A, François CJ, Fain S, et al. . Quantitative magnetic resonance imaging of pulmonary hypertension: a practical approach to the current state of the art. J Thorac Imaging 2014; 29: 68–79. doi: 10.1097/RTI.0000000000000079
    1. Wang N, Hu X, Liu C, Ali B, Guo X, Liu M, et al. . A systematic review of the diagnostic accuracy of cardiovascular magnetic resonance for pulmonary hypertension. Can J Cardiol 2014; 30: 455–63. doi: 10.1016/j.cjca.2013.11.028
    1. Iwasawa T. Diagnosis and management of pulmonary arterial hypertension using MR imaging. Magn Reson Med Sci 2013; 12: 1–9. doi: 10.2463/mrms.2012-0040
    1. Marrone G, Mamone G, Luca A, Vitulo P, Bertani A, Pilato M, et al. . The role of 1.5T cardiac MRI in the diagnosis, prognosis and management of pulmonary arterial hypertension. Int J Cardiovasc Imaging 2010; 26: 665–81. doi: 10.1007/s10554-010-9623-2
    1. McLure LE, Peacock AJ. Cardiac magnetic resonance imaging for the assessment of the heart and pulmonary circulation in pulmonary hypertension. Eur Respir J 2009; 33: 1454–66. doi: 10.1183/09031936.00139907
    1. Swift AJ, Rajaram S, Condliffe R, Capener D, Hurdman J, Elliot CA, et al. . Diagnostic accuracy of cardiovascular magnetic resonance imaging of right ventricular morphology and function in the assessment of suspected pulmonary hypertension results from the ASPIRE registry. J Cardiovasc Magn Reson 2012; 14: 40. doi: 10.1186/1532-429X-14-40
    1. Roeleveld RJ, Marcus JT, Boonstra A, Postmus PE, Marques KM, Bronzwaer JG, et al. . A comparison of noninvasive MRI-based methods of estimating pulmonary artery pressure in pulmonary hypertension. J Magn Reson Imaging 2005; 22: 67–72. doi: 10.1002/jmri.20338
    1. Dellegrottaglie S, Sanz J, Poon M, Viles-Gonzalez JF, Sulica R, Goyenechea M, et al. . Pulmonary hypertension: accuracy of detection with left ventricular septal-to-free wall curvature ratio measured at cardiac MR. Radiology 2007; 243: 63–9. doi: 10.1148/radiol.2431060067
    1. Sato T, Tsujino I, Ohira H, Oyama-Manabe N, Ito YM, Noguchi T, et al. . Paradoxical interventricular septal motion as a major determinant of late gadolinium enhancement in ventricular insertion points in pulmonary hypertension. PLoS One 2013; 8: e66724. doi: 10.1371/journal.pone.0066724
    1. Freed BH, Gomberg-Maitland M, Chandra S, Mor-Avi V, Rich S, Archer SL, et al. . Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension. J Cardiovasc Magn Reson 2012; 14: 11. doi: 10.1186/1532-429X-14-11
    1. Junqueira FP, Macedo R, Coutinho AC, Loureiro R, De Pontes PV, Domingues RC, et al. . Myocardial delayed enhancement in patients with pulmonary hypertension and right ventricular failure: evaluation by cardiac MRI. Br J Radiol 2009; 82: 821–6. doi: 10.1259/bjr/28241773
    1. Swift AJ, Rajaram S, Hurdman J, Hill C, Davies C, Sproson TW, et al. . Noninvasive estimation of PA pressure, flow, and resistance with CMR imaging: derivation and prospective validation study from the ASPIRE registry. JACC Cardiovasc Imaging 2013; 6: 1036–47. doi: 10.1016/j.jcmg.2013.01.013
    1. Jardim C, Rochitte CE, Humbert M, Rubenfeld G, Jasinowodolinski D, Carvalho CR, et al. . Pulmonary artery distensibility in pulmonary arterial hypertension: an MRI pilot study. Eur Respir J 2007; 29: 476–81. doi: 10.1183/09031936.00016806
    1. Gan CT, Lankhaar JW, Westerhof N, Marcus JT, Becker A, Twisk JW, et al. . Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 2007; 132: 1906–12. doi: 10.1378/chest.07-1246
    1. Shehata ML, Harouni AA, Skrok J, Basha TA, Boyce D, Lechtzin N, et al. . Regional and global biventricular function in pulmonary arterial hypertension: a cardiac MR imaging study. Radiology 2013; 266: 114–22. doi: 10.1148/radiol.12111599
    1. Alunni JP, Degano B, Arnaud C, Tétu L, Blot-Soulétie N, Didier A, et al. . Cardiac MRI in pulmonary artery hypertension: correlations between morphological and functional parameters and invasive measurements. Eur Radiol 2010; 20: 1149–59. doi: 10.1007/s00330-009-1664-3
    1. Srichai MB, Lim RP, Wong S, Lee VS. Cardiovascular applications of phase-contrast MRI. AJR Am J Roentgenol 2009; 192: 662–75. doi: 10.2214/AJR.07.3744
    1. Ley S, Mereles D, Puderbach M, Gruenig E, Schöck H, Eichinger M, et al. . Value of MR phase-contrast flow measurements for functional assessment of pulmonary arterial hypertension. Eur Radiol 2007; 17: 1892–7. doi: 10.1007/s00330-006-0559-9
    1. Gatehouse PD, Keegan J, Crowe LA, Masood S, Mohiaddin RH, Kreitner KF, et al. . Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol 2005; 15: 2172–84. doi: 10.1007/s00330-005-2829-3
    1. Nayak KS, Nielsen JF, Bernstein MA, Markl M, D Gatehouse P, M Botnar R, et al. . Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson 2015; 17: 71. doi: 10.1186/s12968-015-0172-7
    1. Markl M, Kilner PJ, Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2011; 13: 7. doi: 10.1186/1532-429X-13-7
    1. Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4D flow MRI. J Magn Reson Imaging 2012; 36: 1015–36. doi: 10.1002/jmri.23632
    1. Hope MD, Sedlic T, Dyverfeldt P. Cardiothoracic magnetic resonance flow imaging. J Thorac Imaging 2013; 28: 217–30. doi: 10.1097/RTI.0b013e31829192a1
    1. Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhäll CJ, Ebbers T, et al. . 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 2015; 17: 72. doi: 10.1186/s12968-015-0174-5
    1. Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Valsangiacomo Buechel ER, et al. . Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 2013; 15: 51. doi: 10.1186/1532-429X-15-51
    1. Devos DG, Kilner PJ. Calculations of cardiovascular shunts and regurgitation using magnetic resonance ventricular volume and aortic and pulmonary flow measurements. Eur Radiol 2010; 20: 410–21. doi: 10.1007/s00330-009-1568-2
    1. Lankhaar JW, Hofman MB, Marcus JT, Zwanenburg JJ, Faes TJ, Vonk-Noordegraaf A. Correction of phase offset errors in main pulmonary artery flow quantification. J Magn Reson Imaging 2005; 22: 73–9. doi: 10.1002/jmri.20361
    1. Holland BJ, Printz BF, Lai WW. Baseline correction of phase-contrast images in congenital cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2010; 12: 11. doi: 10.1186/1532-429X-12-11
    1. Sakuma H, Kawada N, Kubo H, Nishide Y, Takano K, Kato N, et al. . Effect of breath holding on blood flow measurement using fast velocity encoded cine MRI. Magn Reson Med 2001; 45: 346–8. doi: 10.1002/1522-2594(200102)45:2<346::AID-MRM1044>;2-I
    1. Ley S, Fink C, Puderbach M, Zaporozhan J, Plathow C, Eichinger M, et al. . MRI Measurement of the hemodynamics of the pulmonary and systemic arterial circulation: influence of breathing maneuvers. AJR Am J Roentgenol 2006; 187: 439–44. doi: 10.2214/AJR.04.1738
    1. Johansson B, Babu-Narayan SV, Kilner PJ. The effects of breath-holding on pulmonary regurgitation measured by cardiovascular magnetic resonance velocity mapping. J Cardiovasc Magn Reson 2009; 11: 1. doi: 10.1186/1532-429X-11-1
    1. Abolmaali N, Seitz U, Esmaeili A, Kock M, Radeloff D, Ackermann H, et al. . Evaluation of a resistance-based model for the quantification of pulmonary arterial hypertension using MR flow measurements. J Magn Reson Imaging 2007; 26: 646–53. doi: 10.1002/jmri.21059
    1. Roldán-Alzate A, Frydrychowicz A, Johnson KM, Kellihan H, Chesler NC, Wieben O, et al. . Non-invasive assessment of cardiac function and pulmonary vascular resistance in an canine model of acute thromboembolic pulmonary hypertension using 4D flow cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2014; 16: 23. doi: 10.1186/1532-429X-16-23
    1. Garcia-Álvarez A, Fernández-Friera L, García-Ruiz JM, Nuño-Ayala M, Pereda D, Fernández-Jimenez R, et al. . Noninvasive monitoring of serial changes in pulmonary vascular resistance and acute vasodilator testing using cardiac magnetic resonance. J Am Coll Cardiol 2013; 62: 1621–31. doi: 10.1016/j.jacc.2013.07.037
    1. Kang KW, Chang HJ, Kim YJ, Choi BW, Lee HS, Yang WI, et al. . Cardiac magnetic resonance imaging-derived pulmonary artery distensibility index correlates with pulmonary artery stiffness and predicts functional capacity in patients with pulmonary arterial hypertension. Circ J 2011; 75: 2244–51. doi: 10.1253/circj.CJ-10-1310
    1. Stevens GR, Garcia-Alvarez A, Sahni S, Garcia MJ, Fuster V, Sanz J. RV dysfunction in pulmonary hypertension is independently related to pulmonary artery stiffness. JACC Cardiovasc Imaging 2012; 5: 378–87. doi: 10.1016/j.jcmg.2011.11.020
    1. Swift AJ, Rajaram S, Condliffe R, Capener D, Hurdman J, Elliot C, et al. . Pulmonary artery relative area change detects mild elevations in pulmonary vascular resistance and predicts adverse outcome in pulmonary hypertension. Invest Radiol 2012; 47: 571–7. doi: 10.1097/RLI.0b013e31826c4341
    1. Sanz J, Kariisa M, Dellegrottaglie S, Prat-González S, Garcia MJ, Fuster V, et al. . Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. JACC Cardiovasc Imaging 2009; 2: 286–95. doi: 10.1016/j.jcmg.2008.08.007
    1. Sanz J, Kuschnir P, Rius T, Salguero R, Sulica R, Einstein AJ, et al. . Pulmonary arterial hypertension: noninvasive detection with phase-contrast MR imaging. Radiology 2007; 243: 70–9. doi: 10.1148/radiol.2431060477
    1. Moral S, Fernández-Friera L, Stevens G, Guzman G, García-Alvarez A, Nair A, et al. . New index alpha improves detection of pulmonary hypertension in comparison with other cardiac magnetic resonance indices. Int J Cardiol 2012; 161: 25–30. doi: 10.1016/j.ijcard.2011.04.024
    1. García-Alvarez A, Fernández-Friera L, Mirelis JG, Sawit S, Nair A, Kallman J, et al. . Non-invasive estimation of pulmonary vascular resistance with cardiac magnetic resonance. Eur Heart J 2011; 32: 2438–45. doi: 10.1093/eurheartj/ehr173
    1. Helderman F, Mauritz GJ, Andringa KE, Vonk-Noordegraaf A, Marcus JT. Early onset of retrograde flow in the main pulmonary artery is a characteristic of pulmonary arterial hypertension. J Magn Reson Imaging 2011; 33: 1362–8. doi: 10.1002/jmri.22581
    1. Truong U, Fonseca B, Dunning J, Burgett S, Lanning C, Ivy DD, et al. . Wall shear stress measured by phase contrast cardiovascular magnetic resonance in children and adolescents with pulmonary arterial hypertension. J Cardiovasc Magn Reson 2013; 15: 81. doi: 10.1186/1532-429X-15-81
    1. Rolf A, Rixe J, Kim WK, Guth S, Körlings N, Möllmann H, et al. . Pulmonary vascular remodeling before and after pulmonary endarterectomy in patients with chronic thromboembolic pulmonary hypertension: a cardiac magnetic resonance study. Int J Cardiovasc Imaging 2015; 31: 613–9. doi: 10.1007/s10554-014-0580-z
    1. Ley S, Kramm T, Kauczor HU, Mayer E, Heussel CP, Thelen M, et al. . Pre- and postoperative assessment of hemodynamics in patients with chronic thromboembolic pulmonary hypertension by MR techniques. [In German.] Rofo 2003; 175: 1647–54. doi: 10.1055/s-2003-45340
    1. Guo X, Liu M, Ma Z, Wang S, Yang Y, Zhai Z, et al. . Flow characteristics of the proximal pulmonary arteries and vena cava in patients with chronic thromboembolic pulmonary hypertension: correlation between 3.0 T phase-contrast MRI and right heart catheterization. Diagn Interv Radiol 2014; 20: 414–20. doi: 10.5152/dir.2014.13501
    1. Barker AJ, Roldán-Alzate A, Entezari P, Shah SJ, Chesler NC, Wieben O, et al. . Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial hypertension: results from two institutions. Magn Reson Med 2015; 73: 1904–13. doi: 10.1002/mrm.25326
    1. Ley S, Fink C, Risse F, Ehlken N, Fischer C, Ley-Zaporozhan J, et al. . Magnetic resonance imaging to assess the effect of exercise training on pulmonary perfusion and blood flow in patients with pulmonary hypertension. Eur Radiol 2013; 23: 324–31. doi: 10.1007/s00330-012-2606-z
    1. Castelain V, Hervé P, Lecarpentier Y, Duroux P, Simonneau G, Chemla D. Pulmonary artery pulse pressure and wave reflection in chronic pulmonary thromboembolism and primary pulmonary hypertension. J Am Coll Cardiol 2001; 37: 1085–92. doi: 10.1016/S0735-1097(00)01212-2
    1. Hardziyenka M, Reesink HJ, Bouma BJ, de Bruin-Bon HA, Campian ME, Tanck MW, et al. . A novel echocardiographic predictor of in-hospital mortality and mid-term haemodynamic improvement after pulmonary endarterectomy for chronic thrombo-embolic pulmonary hypertension. Eur Heart J 2007; 28: 842–9. doi: 10.1093/eurheartj/ehl534
    1. Klok FA, Romeih S, Westenberg JJ, Kroft LJ, Huisman MV, de Roos A. Pulmonary flow profile and distensibility following acute pulmonary embolism. J Cardiovasc Magn Reson 2011; 13: 14. doi: 10.1186/1532-429X-13-14
    1. Kondo C, Caputo GR, Masui T, Foster E, O'Sullivan M, Stulbarg MS, et al. . Pulmonary hypertension: pulmonary flow quantification and flow profile analysis with velocity-encoded cine MR imaging. Radiology 1992; 183: 751–8. doi: 10.1148/radiology.183.3.1584932
    1. Mousseaux E, Tasu JP, Jolivet O, Simonneau G, Bittoun J, Gaux JC. Pulmonary arterial resistance: noninvasive measurement with indexes of pulmonary flow estimated at velocity-encoded MR imaging–preliminary experience. Radiology 1999; 212: 896–902. doi: 10.1148/radiology.212.3.r99au21896
    1. Quail MA, Knight DS, Steeden JA, Taelman L, Moledina S, Taylor AM, et al. . Noninvasive pulmonary artery wave intensity analysis in pulmonary hypertension. Am J Physiol Heart Circ Physiol 2015; 308: H1603–11. doi: 10.1152/ajpheart.00480.2014
    1. Sugimoto M, Kajino H, Kajihama A, Nakau K, Murakami N, Azuma H. Assessment of pulmonary arterial pressure by velocity-encoded cine magnetic resonance imaging in children with congenital heart disease. Circ J 2013; 77: 3015–22. doi: 10.1253/circj.CJ-13-0626
    1. Muthurangu V, Taylor A, Andriantsimiavona R, Hegde S, Miquel ME, Tulloh R, et al. . Novel method of quantifying pulmonary vascular resistance by use of simultaneous invasive pressure monitoring and phase-contrast magnetic resonance flow. Circulation 2004; 110: 826–34. doi: 10.1161/01.CIR.0000138741.72946.84
    1. Kreitner KF, Wirth GM, Krummenauer F, Weber S, Pitton MB, Schneider J, et al. . Noninvasive assessment of pulmonary hemodynamics in patients with chronic thromboembolic pulmonary hypertension by high temporal resolution phase-contrast MRI: correlation with simultaneous invasive pressure recordings. Circ Cardiovasc Imaging 2013; 6: 722–9. doi: 10.1161/CIRCIMAGING.112.000276
    1. Mauritz GJ, Marcus JT, Boonstra A, Postmus PE, Westerhof N, Vonk-Noordegraaf A. Non-invasive stroke volume assessment in patients with pulmonary arterial hypertension: left-sided data mandatory. J Cardiovasc Magn Reson 2008; 10: 51. doi: 10.1186/1532-429X-10-51
    1. O'Brien KR, Cowan BR, Jain M, Stewart RA, Kerr AJ, Young AA. MRI phase contrast velocity and flow errors in turbulent stenotic jets. J Magn Reson Imaging 2008; 28: 210–8. doi: 10.1002/jmri.21395
    1. Nordmeyer S, Riesenkampff E, Messroghli D, Kropf S, Nordmeyer J, Berger F, et al. . Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow. J Magn Reson Imaging 2013; 37: 208–16. doi: 10.1002/jmri.23793
    1. Hoeper MM. Definition, classification, and epidemiology of pulmonary arterial hypertension. Semin Respir Crit Care Med 2009; 30: 369–75. doi: 10.1055/s-0029-1233306
    1. Chernobelsky A, Shubayev O, Comeau CR, Wolff SD. Baseline correction of phase contrast images improves quantification of blood flow in the great vessels. J Cardiovasc Magn Reson 2007; 9: 681–5. doi: 10.1080/10976640601187588
    1. Rigsby CK, Hilpipre N, McNeal GR, Zhang G, Boylan EE, Popescu AR, et al. . Analysis of an automated background correction method for cardiovascular MR phase contrast imaging in children and young adults. Pediatr Radiol 2014; 44: 265–73. doi: 10.1007/s00247-013-2830-y
    1. Bane O, Shah SJ, Cuttica MJ, Collins JD, Selvaraj S, Chatterjee NR, et al. . A non-invasive assessment of cardiopulmonary hemodynamics with MRI in pulmonary hypertension. Magn Reson Imaging 2015; 33: 1224–35. doi: 10.1016/j.mri.2015.08.005
    1. Laffon E, Vallet C, Bernard V, Montaudon M, Ducassou D, Laurent F, et al. . A computed method for noninvasive MRI assessment of pulmonary arterial hypertension. J Appl Physiol (1985) 2004; 96: 463–8.
    1. Rich S, D'Alonzo GE, Dantzker DR, Levy PS. Magnitude and implications of spontaneous hemodynamic variability in primary pulmonary hypertension. Am J Cardiol 1985; 55: 159–63. doi: 10.1016/0002-9149(85)90319-4
    1. Reiter G, Reiter U, Kovacs G, Kainz B, Schmidt K, Maier R, et al. . Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circ Cardiovasc Imaging 2008; 1: 23–30. doi: 10.1161/CIRCIMAGING.108.780247
    1. Odagiri K, Inui N, Miyakawa S, Hakamata A, Wei J, Takehara Y, et al. . Abnormal hemodynamics in the pulmonary artery seen on time-resolved 3-dimensional phase-contrast magnetic resonance imaging (4D-flow) in a young patient with idiopathic pulmonary arterial hypertension. Circ J 2014; 78: 1770–2. doi: 10.1253/circj.CJ-14-0283
    1. Ota H, Sugimura K, Miura M, Shimokawa H. Four-dimensional flow magnetic resonance imaging visualizes drastic change in vortex flow in the main pulmonary artery after percutaneous transluminal pulmonary angioplasty in a patient with chronic thromboembolic pulmonary hypertension. Eur Heart J 2015; 36: 1630. doi: 10.1093/eurheartj/ehv054
    1. Reiter G, Reiter U, Kovacs G, Olschewski H, Fuchsjäger M. Blood flow vortices along the main pulmonary artery measured with MR imaging for diagnosis of pulmonary hypertension. Radiology 2015; 275: 71–9. doi: 10.1148/radiol.14140849
    1. Reiter U, Reiter G, Kovacs G, Stalder AF, Gulsun MA, Greiser A, et al. . Evaluation of elevated mean pulmonary arterial pressure based on magnetic resonance 4D velocity mapping: comparison of visualization techniques. PLoS One 2013; 8: e82212. doi: 10.1371/journal.pone.0082212
    1. Bächler P, Pinochet N, Sotelo J, Crelier G, Irarrazaval P, Tejos C, et al. . Assessment of normal flow patterns in the pulmonary circulation by using 4D magnetic resonance velocity mapping. Magn Reson Imaging 2013; 31: 178–88. doi: 10.1016/j.mri.2012.06.036
    1. François CJ, Srinivasan S, Schiebler ML, Reeder SB, Niespodzany E, Landgraf BR, et al. . 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of Fallot. J Cardiovasc Magn Reson 2012; 14: 16. doi: 10.1186/1532-429X-14-16
    1. Lankhaar JW, Westerhof N, Faes TJ, Gan CT, Marques KM, Boonstra A, et al. . Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension. Eur Heart J 2008; 29: 1688–95. doi: 10.1093/eurheartj/ehn103
    1. Bradlow WM, Gatehouse PD, Hughes RL, O'Brien AB, Gibbs JS, Firmin DN, et al. . Assessing normal pulse wave velocity in the proximal pulmonary arteries using transit time: a feasibility, repeatability, and observer reproducibility study by cardiovascular magnetic resonance. J Magn Reson Imaging 2007; 25: 974–81. doi: 10.1002/jmri.20888
    1. Peng HH, Chung HW, Yu HY, Tseng WY. Estimation of pulse wave velocity in main pulmonary artery with phase contrast MRI: preliminary investigation. J Magn Reson Imaging 2006; 24: 1303–10. doi: 10.1002/jmri.20782
    1. Ibrahim el-SH, Shaffer JM, White RD. Assessment of pulmonary artery stiffness using velocity-encoding magnetic resonance imaging: evaluation of techniques. Magn Reson Imaging 2011; 29: 966–74. doi: 10.1016/j.mri.2011.04.012
    1. Tang BT, Pickard SS, Chan FP, Tsao PS, Taylor CA, Feinstein JA. Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: an image-based, computational fluid dynamics study. Pulm Circ 2012; 2: 470–6. doi: 10.4103/2045-8932.105035
    1. Katritsis D, Kaiktsis L, Chaniotis A, Pantos J, Efstathopoulos EP, Marmarelis V. Wall shear stress: theoretical considerations and methods of measurement. Prog Cardiovasc Dis 2007; 49: 307–29. doi: 10.1016/j.pcad.2006.11.001
    1. Barker AJ, Lanning C, Shandas R. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann Biomed Eng 2010; 38: 788–800. doi: 10.1007/s10439-009-9854-3
    1. Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 2008; 60: 1218–31. doi: 10.1002/mrm.21778
    1. Tuder RM. Pathology of pulmonary arterial hypertension. Semin Respir Crit Care Med 2009; 30: 376–85. doi: 10.1055/s-0029-1233307
    1. Mutlak D, Aronson D, Lessick J, Reisner SA, Dabbah S, Agmon Y. Functional tricuspid regurgitation in patients with pulmonary hypertension: is pulmonary artery pressure the only determinant of regurgitation severity? Chest 2009; 135: 115–21. doi: 10.1378/chest.08-0277
    1. Westenberg JJ, Roes SD, Ajmone Marsan N, Binnendijk NM, Doornbos J, Bax JJ, et al. . Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology 2008; 249: 792–800. doi: 10.1148/radiol.2492080146
    1. Roes SD, Hammer S, van der Geest RJ, Marsan NA, Bax JJ, Lamb HJ, et al. . Flow assessment through four heart valves simultaneously using 3-dimensional 3-directional velocity-encoded magnetic resonance imaging with retrospective valve tracking in healthy volunteers and patients with valvular regurgitation. Invest Radiol 2009; 44: 669–75. doi: 10.1097/RLI.0b013e3181ae99b5
    1. Hsiao A, Tariq U, Alley MT, Lustig M, Vasanawala SS. Inlet and outlet valve flow and regurgitant volume may be directly and reliably quantified with accelerated, volumetric phase-contrast MRI. J Magn Reson Imaging 2015; 41: 376–85. doi: 10.1002/jmri.24578
    1. Nogami M, Ohno Y, Koyama H, Kono A, Takenaka D, Kataoka T, et al. . Utility of phase contrast MR imaging for assessment of pulmonary flow and pressure estimation in patients with pulmonary hypertension: comparison with right heart catheterization and echocardiography. J Magn Reson Imaging 2009; 30: 973–80. doi: 10.1002/jmri.21935
    1. Carlsson M, Heiberg E, Toger J, Arheden H. Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am J Physiol Heart Circ Physiol 2012; 302: H893–900. doi: 10.1152/ajpheart.00942.2011
    1. Fredriksson AG, Svalbring E, Eriksson J, Dyverfeldt P, Alehagen U, Engvall J, et al. . 4D flow MRI can detect subtle right ventricular dysfunction in primary left ventricular disease. J Magn Reson Imaging 2016; 43: 558–65. doi: 10.1002/jmri.25015
    1. Han QJ, Witschey WR, Fang-Yen CM, Arkles JS, Barker AJ, Forfia PR, et al. . Altered right ventricular kinetic energy work density and viscous energy dissipation in patients with Pulmonary Arterial Hypertension: a pilot study using 4D flow MRI. PLoS One 2015; 10: e0138365. doi: 10.1371/journal.pone.0138365
    1. Fenster BE, Browning J, Schroeder JD, Schafer M, Podgorski CA, Smyser J, et al. . Vorticity is a marker of right ventricular diastolic dysfunction. Am J Physiol Heart Circ Physiol 2015; 309: H1087–93. doi: 10.1152/ajpheart.00278.2015
    1. Ibrahim el-SH, White RD. Cardiovascular magnetic resonance for the assessment of pulmonary arterial hypertension: toward a comprehensive CMR exam. Magn Reson Imaging 2012; 30: 1047–58. doi: 10.1016/j.mri.2012.03.001
    1. Vonk-Noordegraaf A, Souza R. Cardiac magnetic resonance imaging: what can it add to our knowledge of the right ventricle in pulmonary arterial hypertension? Am J Cardiol 2012; 110: 25S–31S. doi: 10.1016/j.amjcard.2012.06.013
    1. Bollache E, Redheuil A, Clement-Guinaudeau S, Defrance C, Perdrix L, Ladouceur M, et al. . Automated left ventricular diastolic function evaluation from phase-contrast cardiovascular magnetic resonance and comparison with Doppler echocardiography. J Cardiovasc Magn Reson 2010; 12: 63. doi: 10.1186/1532-429X-12-63

Source: PubMed

Подписаться