Inspiratory muscle training improves exercise capacity with thoracic load carriage

Ren-Jay Shei, Robert F Chapman, Allison H Gruber, Timothy D Mickleborough, Ren-Jay Shei, Robert F Chapman, Allison H Gruber, Timothy D Mickleborough

Abstract

Thoracic load carriage (LC) exercise impairs exercise performance compared to unloaded exercise, partially due to impaired respiratory mechanics. We investigated the effects of LC on exercise and diaphragmatic fatigue in a constant-load exercise task; and whether inspiratory muscle training (IMT) improved exercise capacity and diaphragmatic fatigue with LC. Twelve recreationally active males completed three separate running trials to exhaustion (Tlim ) at a fixed speed eliciting 70% of their V˙O2max . The first two trials were completed either unloaded (UL) or while carrying a 10 kg backpack (LC). Subjects then completed 6 weeks of either true IMT or placebo-IMT. Posttraining, subjects completed an additional LC trial identical to the pretraining LC trial. Exercise metabolic and ventilatory measures were recorded. Diaphragm fatigue was assessed as the difference between preexercise and postexercise twitch diaphragmatic pressure (Pdi, tw ), assessed by bilateral stimulation of the phrenic nerve with esophageal balloon-tipped catheters measuring intrathoracic pressures. Tlim was significantly shorter (P < 0.001) with LC compared with UL by 42.9 (29.1)% (1626.5 (866.7) sec and 2311.6 (1246.5) sec, respectively). The change in Pdi, tw from pre- to postexercise was significantly greater (P = 0.001) in LC (-13.9 (5.3)%) compared with UL (3.8 (6.5)%). Six weeks of IMT significantly improved Tlim compared to pretraining (P = 0.029, %Δ +29.3 (15.7)% IMT, -8.8 (27.2)% Placebo), but did not alter the magnitude of diaphragmatic fatigue following a run to exhaustion (P > 0.05). Minute ventilation and breathing mechanics were unchanged post-IMT (P > 0.05). Six weeks of flow-resistive IMT improved exercise capacity, but did not mitigate diaphragmatic fatigue following submaximal, constant-load running to volitional exhaustion with LC.

Keywords: Diaphragm fatigue; flow limitation; performance; respiratory muscles; ventilation.

© 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

Figures

Figure 1
Figure 1
Tlim (Panel A) and Pdi, tw (Panel B) data for LC and UL conditions at baseline. Data are given as mean(SD). *significantly different between LC and UL. Tlim was 42.9(29.1)% shorter (< 0.001, 95% CI: −990.4 to −379.9 sec) with thoracic LC (1626.5 (866.7) sec) compared to UL (2311.6 (1246.5) sec). The postexercise reduction in Pdi, tw was significantly greater in LC (−13.9 (5.3)%), but not in UL (−3.8 (6.5)%); = 0.001, %Δ, +261.3; 95% CI: −14.7 to −5.3%.
Figure 2
Figure 2
Pre‐ and Posttraining Tlim for each group (open circles, IMT, open squares PLA). Tlim (Panel B) and Pdi, tw (Panel C) data from pre‐ to postIMT. *significantly different from pre‐ to posttraining. Tlim in the IMT group improved significantly more (median change 20.0%, range +9.9 to +45%; = 0.046, 95% CI +3.7 to +65.1%) compared to the PLA group (median change −3.5%, range −56.6 to +20.6%).

References

    1. ATS/ERS Statement on Respiratory Muscle Testing . 2002. Am. J. Respir. Crit. Care Med. 166:518–624.
    1. Babb, T. G. 2013. Exercise ventilatory limitation: the role of expiratory flow limitation. Exerc. Sport Sci. Rev. 41:11–18.
    1. Borg, G. A. V. 1982. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 14:377–381.
    1. Brown, P. I. , and McConnell A. K.. 2012. Respiratory‐related limitations in physically demanding occupations. Avi. Space Environ. Med. 83:424–430.
    1. Bygrave, S. , Legg S. J., Myers S., and Llewellyn M.. 2004. Effect of backpack fit on lung function. Ergonomics 47:324–329.
    1. Chatham, K. , Baldwin J., Griffiths H., Summers L., and Enright S.. 1999. Inspiratory muscle training improves shuttle run performance in healthy subjects. Physiotherapy 85:676–683.
    1. Dempsey, J. A. , Romer L., Rodman J., Miller J., and Smith C.. 2006. Consequences of exercise‐induced respiratory muscle work. Respir. Physiol. Neurobiol. 151:242–250.
    1. Dominelli, P. , Sheel A. W., and Foster G.. 2012. Effect of carrying a weighted backpack on lung mechanics during treadmill walking in healthy men. Eur. J. Appl. Physiol. 112:2001–2012.
    1. Duke, J. W. , Stickford J. L., Weavil J. C., Chapman R. F., Stager J. M., and Mickleborough T. D.. 2014. Operating lung volumes are affected by exercise mode but not trunk and hip angle during maximal exercise. Eur. J. Appl. Physiol. 114:2387–2397.
    1. Faghy, M. A. , and Brown P. I.. 2014. Thoracic load carriage‐induced respiratory muscle fatigue. Eur. J. Appl. Physiol. 114:1085–1093.
    1. Faghy, M. A. , and Brown P. I.. 2016. Training the inspiratory muscles improves running performance when carrying a 25 kg thoracic load in a backpack. Eur. J. Sport Sci. 16:585–594.
    1. Faghy, M. A. , Blacker S., and Brown P. I.. 2016. Effects of load mass carried in a backpack upon respiratory muscle fatigue. Eur. J. Sport Sci. 16:1032–1038.
    1. Gething, A. D. , Williams M., and Davies B.. 2004. Inspiratory resistive loading improves cycling capacity: a placebo controlled trial. Br. J. Sport Med. 38:730–736.
    1. Guenette, J. A. , Witt J. D., McKenzie D. C., Road J. D., and Sheel A. W.. 2007. Respiratory mechanics during exercise in endurance‐trained men and women. J. Physiol. 581:1309–1322.
    1. Harms, C. A. , Babcock M. A., McClaran S. R., Pegelow D. F., Nickele G. A., Nelson W. B., et al. 1997. Respiratory muscle work compromises leg blood flow during maximal exercise. J. Appl. Physiol. 82:1573–1583.
    1. Hopkins, S. R. , Gavin T. P., Siafakas N. M., Haseler L. J., Olfert I. M., Wagner H., et al. 1998. Effect of prolonged, heavy exercise on pulmonary gas exchange in athletes. J. Appl. Physiol. 85:1523–1532.
    1. Janssens, L. , Brumagne S., McConnell A. K., Raymaekers J., Goossens N., Gayan‐Ramirez G., et al. 2013. The assessment of inspiratory muscle fatigue in healthy individuals: a systematic review. Respir. Med. 107:331–346.
    1. Legg, S. J. , and Cruz C. O.. 2004. Effect of single and double strap backpacks on lung function. Ergonomics 47:318–323.
    1. Majumdar, D. , Srivastava K. K., Purkayastha S. S., Pichan G., and Selvamurthy W.. 1997. Physiological effects of wearing heavy body armour on male soldiers. Int. J. Indust. Erg. 20:155–161.
    1. McConnell, A. K. 2012. CrossTalk opposing view: respiratory muscle training does improve exercise tolerance. J. Physiol. 590:3397–3398.
    1. Mickleborough, T. , Stager J., Chatham K., Lindley M., and Ionescu A.. 2008. Pulmonary adaptations to swim and inspiratory muscle training. Eur. J. Appl. Physiol. 103:635–646.
    1. Mickleborough, T. D. , Nichols T., Lindley M. R., Chatham K., and Ionescu A. A.. 2010. Inspiratory flow resistive loading improves respiratory muscle function and endurance capacity in recreational runners. Scan. J. Med. Sci. Sports 20:458–468.
    1. Milic‐Emili, J. , Mead J., Turner J. M., and Glauser E. M.. 1964. Improved technique for estimating pleural pressure from esophageal balloons. J. Appl. Physiol. 19:207–211.
    1. Muza, S. R. , Latzka W. A., Epstein Y., and Pandolf K. B.. 1989. Load carriage induced alterations of pulmonary function. Int. J. Indust. Erg. 3:221–227.
    1. Pescatello, L. S. , Arena R., Riebe D., and Thompson P. D., American College of Sports Medicine . 2014. ACSM'S Guidelines for Exercise Testing and Prescription, 9th ed. Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia, PA.
    1. Phillips, D. B. , Stickland M. K., and Petersen S. R.. 2016. Ventilatory responses to prolonged exercise with heavy load carriage. Eur. J. Appl. Physiol. 116:19–27.
    1. Ricciardi, R. , Deuster P. A., and Talbot L. A.. 2008. Metabolic demands of body armor on physical performance in simulated conditions. Mil. Med. 173:817–824.
    1. Romer, L. M. , Lovering A. T., Haverkamp H. C., Pegelow D. F., and Dempsey J. A.. 2006. Effect of inspiratory muscle work on peripheral fatigue of locomotor muscles in healthy humans. J. Physiol. 571:425–439.
    1. Ross, E. , Middleton N., Shave R., George K., and McConnell A.. 2008. Changes in respiratory muscle and lung function following marathon running in man. J. Sport Sci. 26:1295–1301.
    1. Shei, R.‐J. , Paris H. L. R., Wilhite D. P., Chapman R. F., and Mickleborough T. D.. 2016a. The role of inspiratory muscle training in the management of asthma and exercise‐induced bronchoconstriction. Phys. Sportsmed. 44:327–334.
    1. Shei, R.‐J. , Lindley M., Chatham K., and Mickleborough T. D.. 2016b. Effect of flow‐resistive inspiratory loading on pulmonary and respiratory muscle function in sub‐elite swimmers. J. Sports Med. Phys. Fitness 56:392–398.
    1. Similowski, T. , Fleury B., Launois S., Cathala H. P., Bouche P., and Derenne J. P.. 1989. Cervical magnetic stimulation: a new painless method for bilateral phrenic nerve stimulation in conscious humans. J. Appl. Physiol. 67:1311–1318.
    1. Standardization of Spirometry . 1995. 1994 Update. American Thoracic Society. Am. J. Respir. Crit. Care Med. 152:1107–1136.
    1. Stickland, M. K. , Anderson W. D., Haykowsky M. J., Welsh R. C., Petersen S. R., and Jones R. L.. 2004. Effects of prolonged exercise to exhaustion on left‐ventricular function and pulmonary gas exchange. Respir. Physiol. Neurobiol. 142:197–209.
    1. Tomczak, S. E. , Guenette J. A., Reid W. D., McKenzie D. C., and Sheel A. W.. 2011. Diaphragm fatigue after submaximal exercise with chest wall restriction. Med. Sci. Sports Exerc. 43:416–424.
    1. Topeli, A. , Laghi F., and Tobin M.. 1999. Can diaphragmatic contractility be assessed by twitch airway pressures in patients with chronic obstructive pulmonary disease? Am. J. Respir. Crit. Care Med. 160:1369–1374.
    1. Turner, L. A. , Tecklenburg‐Lund S. L., Chapman R. F., Stager J. M., Wilhite D. P., and Mickleborough T. D.. 2012. Inspiratory muscle training lowers the oxygen cost of voluntary hyperpnea. J. Appl. Physiol. 112:127–134.
    1. Verges, S. , Lenherr O., Haner A. C., Schulz C., and Spengler C. M.. 2007. Increased fatigue resistance of respiratory muscles during exercise after respiratory muscle endurance training. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:R1246–R1253.
    1. Wilson, R. C. , and Jones P. W.. 1991. Long‐term reproducibility of Borg scale estimates of breathlessness during exercise. Clin. Sci. 80:309–312.
    1. Witt, J. D. , Guenette J. A., Rupert J. L., McKenzie D. C., and Sheel A. W.. 2007. Inspiratory muscle training attenuates the human respiratory muscle metaboreflex. J. Physiol. 584:1019–1028.

Source: PubMed

Подписаться