The Use of Adipose-Derived Stem Cells in Selected Skin Diseases (Vitiligo, Alopecia, and Nonhealing Wounds)

Agnieszka Owczarczyk-Saczonek, Anna Wociór, Waldemar Placek, Wojciech Maksymowicz, Joanna Wojtkiewicz, Agnieszka Owczarczyk-Saczonek, Anna Wociór, Waldemar Placek, Wojciech Maksymowicz, Joanna Wojtkiewicz

Abstract

The promising results derived from the use of adipose-derived stem cells (ADSCs) in many diseases are a subject of observation in preclinical studies. ADSCs seem to be the ideal cell population for the use in regenerative medicine due to their easy isolation, nonimmunogenic properties, multipotential nature, possibilities for differentiation into various cell lines, and potential for angiogenesis. This article reviews the current data on the use of ADSCs in the treatment of vitiligo, various types of hair loss, and the healing of chronic wounds.

References

    1. Owczarczyk-Saczonek A., Placek W., Maksymowicz W. The importance and use of stem cells in dermatology. Przegląd Dermatologiczny. 2016;103(4):309–315.
    1. Beeson W., Woods E., Agha R. Tissue engineering, regenerative medicine, and rejuvenation in 2010: the role of adipose-derived stem cells. Facial Plastic Surgery. 2011;27(4):378–387.
    1. Koźlik M., Wójcicki P. The use of stem cells in plastic and reconstructive surgery. Advances in Clinical and Experimental Medicine. 2014;23(6):1011–1017.
    1. Ogliari K. S., Marinowic D., Brum D. E., Loth F. Stem cells in dermatology. Anais Brasileiros de Dermatologia. 2014;89(2):286–292.
    1. Cherubino M., Rubin J. P., Miljkovic N., Kelmendi-Doko A., Marra K. G. Adipose-derived stem cells for wound healing applications. Annals of Plastic Surgery. 2011;66(2):210–215.
    1. Kim E. H., Heo C. Y. Current applications of adipose-derived stem cells and their future perspectives. World Journal of Stem Cells. 2014;26(1):65–68.
    1. Jeon B. G., Kumar B. M., Kang E. J., et al. Characterization and comparison of telomere length, telomerase and reverse transcriptase activity and gene expression in human mesenchymal stem cells and cancer cells of various origins. Cell and Tissue Research. 2011;345(1):149–161.
    1. Chung H. M., Won C. H., Sung J. H. Responses of adipose-derived stem cells during hypoxia: enhanced skin-regenerative potential. Expert Opinion on Biological Therapy. 2009;9(12):1499–1508.
    1. Hassan W. U., Greiser U., Wang W. Role of adipose-derived stem cells in wound healing. Wound Repair Regeneration Journal. 2014;22(3):313–325.
    1. Zhu M., Heydarkhan-Hagvall S., Hedrick M., Benhaim P., Zuk P. Manual isolation of adipose-derived stem cells from human lipoaspirates. Journal of Visualized Experiments. 2013;(79, article e50585)
    1. Bajek A., Gurtowska N., Olkowska J., Kazmierski L., Maj M., Drewa T. Adipose-derived stem cells as a tool in cell-based therapies. Archivum Immunologiae et Therapiae Experimentalis (Warsz) 2016;64(6):443–454.
    1. Musina R., Bekchanova E., Sukhikh G. Comparison of mesenchymal stem cells obtained from different human tissues. Bulletin of Experimental Biology and Medicine. 2005;139(4):504–509.
    1. Niemeyer P., Vohrer J., Schmal H., et al. Survival of human mesenchymal stromal cells from bone marrow and adipose tissue after xenogenic transplantation in immunocompetent mice. Cytotherapy. 2008;10(8):784–795.
    1. Cerqueira M. T., Pirraco R. P., Santos T. C., et al. Human adipose stem cells cell sheet constructs impact epidermal morphogenesis in full-thickness excisional wounds. Biomacromolecules. 2013;14(11):3997–4008.
    1. Kim W. S., Han J., Hwang S. J., Sung J. H. An update on niche composition, signaling and functional regulation of the adipose-derived stem cells. Expert Opinion on Biological Therapy. 2014;14(8):1091–1102.
    1. Kim W. S., Park B. S., Sung J. H. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opinion on Biological Therapy. 2009;9(7):879–887.
    1. Park B. S., Kim W. S., Choi J. S., et al. Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: evidence of increased growth factor secretion. BioMed Research International. 2010;31(1):27–34.
    1. Zhang P., Kling R. E., Ravuri S. K., et al. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration. Journal of Tissue Engineering. 2014;27(5, article 2041731414556850)
    1. Gonzalez-Rey E., Gonzalez M. A., Varela N., et al. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Annals of the Rheumatic Diseases. 2010;69(1):241–248.
    1. Skalska U., Kontny E., Prochorec-Sobieszek M., Maśliński W. Intra-articular adipose-derived mesenchymal stem cells from rheumatoid arthritis patients maintain the function of chondrogenic differentiation. Rheumatology (Oxford) 2012;51(10):1757–1764.
    1. Ryu Y. J., Cho T. J., Lee D. S., Choi J. Y., Cho J. Phenotypic characterization and in vivo localization of human adipose-derived mesenchymal stem cells. Molecules and Cells. 2013;35(6):557–564.
    1. Traktuev D. O., Prater D. N., Merfeld-Clauss S., et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circulation Research. 2009;104(12):1410–1420.
    1. Hye Kim J., Gyu Park S., Kim W. K., Song S. U., Sung J. H. Functional regulation of adipose-derived stem cells by PDGF-D. Stem Cells. 2015;33(2):542–556.
    1. Rubio D., Garcia-Castro J., Martin M. C., et al. Spontaneous human adult stem cell transformation. Cancer Research. 2005;65(8):3035–3039. doi: 10.1158/0008-5472.CAN-04-4194.
    1. Gimble J. M., Floyd Z. E., Bunnell B. A. The 4th dimension and adult stem cells: can timing be everything? Journal of Cellular Biochemistry. 2009;107(4):569–578.
    1. Siciliano C., Bordin A., Ibrahim M., et al. The adipose tissue of origin influences the biological potential of human adiposestromal cells isolated from mediastinal and subcutaneous fat depots. Stem Cell Research. 2016;17(2):342–351.
    1. Russo V., Yu C., Belliveau P., Hamilton A., Flynn L. E. Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications. Stem Cells Translational Medicine. 2014;3(2):206–217.
    1. Pérez L. M., Bernal A., San Martín N., Lorenzo M., Fernández-Veledo S., Gálvez B. G. Metabolic rescue of obese adipose-derived stem cells by Lin28/Let7 pathway. Diabetes. 2013;62(7):2368–2379.
    1. Pachón-Peña G., Serena C., Ejarque M., et al. Obesity determines the immunophenotypic profile and functional characteristics of human mesenchymal stem cells from adipose tissue. Stem Cells Translational Medicine. 2016;5(4):464–475.
    1. Onate B., Vilahur G., Camino-Lopez S., et al. Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype. BMC Genomics. 2013;14:p. 625.
    1. Tobita M., Orbay H., Mizuno H. Adipose-derived stem cells: current findings and future perspectives. Discovery Medicine. 2011;11(57):160–170.
    1. Falabella R. Vitiligo and the melanocyte reservoir. Indian Journal of Dermatology. 2009;54(4):313–318.
    1. Lim W. S., Kim C. H., Kim J. Y., Do B. R., Kim E. J., Lee A. Y. Adipose-derived stem cells improve efficacy of melanocyte transplantation in animal skin. Biomolecules & Therapeutic (Seoul) 2014;22(4):328–333.
    1. Vinay K., Dogra S. Stem cells in vitiligo: current position and prospects. Pigment International. 2014;1(1):8–12.
    1. Aziz Jalali M., Jafari B., Isfahani M., Nilforoushzadeh M. A. Treatment of segmental vitiligo with normal-hair follicle autograft. The Medical Journal of the Islamic Republic of Iran. 2013;27(4):210–214.
    1. Lee J. H., Fisher D. E. Melanocyte stem cells as potential therapeutics in skin disorders. Expert Opinion on Biological Therapy. 2014;14(11):1569–1579. doi: 10.1002/mabi.201400220.
    1. Kim J. Y., Park C. D., Lee J. H., Lee C. H., Do B. R., Lee A. Y. Co-culture of melanocytes with adipose-derived stem cells as a potential substitute for co-culture with keratinocytes. Acta Dermato-Venereologica. 2012;92(1):16–23. doi: 10.2340/00015555-1174.
    1. Botchkareva N. V., Botchkarev V. A., Gilchrest B. A. Fate of melanocytes during development of the hair follicle pigmentary unit. Journal of Investigative Dermatology Symposium Proceedings. 2003;8(1):76–79.
    1. Derycke L. D., Bracke M. E. N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. The International Journal of Developmental Biology. 2004;48(5-6):463–476.
    1. Asakawa K., Toyoshima K. E., Ishibashi N., et al. Hair organ regeneration via the bioengineered hair follicular unit transplantation. Scientific Reports. 2012;2:p. 424. doi: 10.1038/srep00424.
    1. Balañá M. E., Charreau H. E., Leirós G. J. Epidermal stem cells and skin tissue engineering in hair follicle regeneration. World Journal of Stem Cell. 2015;7(4):711–727.
    1. Fukuoka H., Suga H. Hair regeneration treatment using adipose-derived stem cell conditioned medium: follow-up with trichograms. Eplasty. 2015;26(15):p. 10.
    1. Festa E., Fretz J., Berry R., et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell. 2011;146(5):761–771.
    1. Huang C. F., Chang Y. J., Hsueh Y. Y., et al. Assembling composite dermal papilla spheres with adipose-derived stem cells to enhance hair follicle induction. Science Reports. 2016;23(6, article 26436)
    1. Hwang I., Choi K. A., Park H. S., et al. Neural stem cells restore hair growth through activation of the hair follicle niche. Cell Transplantology. 2016;25(8):1439–1451.
    1. Rezza A., Sennett R., Tanguy M., Clavel C., Rendl M. PDGF signalling in the dermis and in dermal condensates is dispensable for hair follicle induction and formation. Experimental Dermatology. 2015;24(6):468–470.
    1. Yano K., Brown L. F., Detmar M. Control of hair growth and follicle size by VEGF-mediated angiogenesis. The Journal of Clinical Investigation. 2001;107(4):409–417.
    1. Misago N., Toda S., Sugihara H., Kohda H., Narisawa Y. Proliferation and differentiation of organoid hair follicle cells co-cultured with fat cells in collagen gel matrix culture. British Journal of Dermatolology. 1998;139(1):40–48.
    1. Jong M. C., Gijbels M. J., Dahlmans V. E., et al. Hyperlipidemia and cutaneous abnormalities in transgenic mice overexpressing human apolipoprotein C1. The Journal of Clinical Investigation. 1998;101(1):145–152.
    1. Kang B. M., Kwack M. H., Kim M. K., Kim J. C., Sung Y. K. Sphere formation increases the ability of cultured human dermal papilla cells to induce hair follicles from mouse epidermal cells in a reconstitution assay. Journal of Investigative Dermatology. 2012;132(1):237–239.
    1. Seo C. H., Kwack M. H., Lee S. H., Kim M. K., Kim J. C., Sung Y. K. Poor capability of 3D-cultured adipose-derived stem cells to induce hair follicles in contrast to 3D-cultured dermal papilla cells. Annals of Dermatology. 2016;28(5):662–665.
    1. Marfia G., Navone S. E., Vito C. D., et al. Mesenchymal stem cells: potential for therapy and treatment of chronic non-healing skin wounds. Organogenesis. 2015;11(4):183–206.
    1. Tartarini D., Mele E. Adult stem cell therapies for wound healing: biomaterials and computational models. Front Bioengineering Biotechnology. 2016;11(3):p. 206.
    1. Gosain A., DiPietro L. A. Aging and wound healing. World Journal of Surgery. 2004;28(3):321–326.
    1. You H. J., Han S. K. Cell therapy for wound healing. Journal of Korean Medicine Science. 2014;29(3):311–319.
    1. Akita S., Yoshimoto H., Akino K., et al. Early experiences with stem cells in treating chronic wounds. Clinics in Plastic Surgery. 2012;39(3):281–292.
    1. Stessuk T., Puzzi M. B., Chaim E. A., et al. Platelet-rich plasma (PRP) and adipose-derived mesenchymal stem cells: stimulatory effects on proliferation and migration of fibroblasts and keratinocytes in vitro. Archives of Dermatology Research. 2016;308(7):511–520.
    1. Pikuła M., Langa P., Kosikowska P., Trzonkowski P. Stem cells and growth factors in wound healing. Postepy Higieny i Medycyny Doswiadczalnej (Online) 2015;69:874–885.
    1. Kim W. S., Park B. S., Sung J. H., et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. Journal of Dermatological Science. 2007;48(1):15–24.
    1. Shingyochi Y., Orbay H., Mizuno H. Adipose-derived stem cells for wound repair and regeneration. Expert Opinion on Biologic Therapy. 2015;15(9):1285–1292.
    1. Sivan U., Jayakumar K., Krishnan L. K. Constitution of fibrin-based niche for in vitro differentiation of adipose-derived mesenchymal stem cells to keratinocytes. Bioresearch Open Access. 2014;3:339–347.
    1. Amos P. J., Bailey A. M., Shang H., Katz A. J., Lawrence M. B., Peirce S. M. Functional binding of human adipose-derived stromal cells: effects of extraction method and hypoxia pretreatment. Annales of Plastic Surgery. 2008;60(4):437–444.
    1. Li Q., Guo Y., Chen F., Liu J., Jin P. Stromal cell-derived factor-1 promotes human adipose tissue-derived stem cell survival and chronic wound healing. Experimental and Therapeutic Medicine. 2016;12(1):45–50. doi: 10.3892/etm.2016.3309.
    1. Bourin P., Bunnell B. A., Casteilla L., et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT) Cytotherapy. 2013;15(6):641–648.
    1. Carstens M. H., Gómez A., Cortés R., et al. Non-reconstructable peripheral vascular disease of the lower extremity in ten patients treated with adipose-derived stromal vascular fraction cells. Stem Cell Research. 2017;18:14–21.
    1. Amos P. J., Shang H., Bailey A. M., Taylor A., Katz A. J., Peirce S. M. IFATS collection: the role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells. 2008;26:2682–2690.
    1. Nguyen A., Guo J., Banyard D. A., et al. Stromal vascular fraction: a regenerative reality? Part 1: current concepts and review of the literature. Journal of Plastic Reconstructive and Aesthetic Surgery. 2016;69:170–179.
    1. Feng J., Mineda K., Wu S. H., et al. An injectable non-cross-linked hyaluronic-acid gel containing therapeutic spheroids of human adipose-derived stem cells. Scientific Reports. 2017;8(1):p. 1548.
    1. Park I. S., Chung P. S., Ahn J. C. Enhanced angiogenic effect of adipose-derived stromal cell spheroid with low-level light therapy in hind limb ischemia mice. Biomaterials. 2014;35:9280–9289.
    1. Dong Y., Sigen A., Rodrigues M., et al. Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing. Advanced Functional Materials. 2017;27(24, article 1606619)
    1. Huang S. P., Huang C. H., Shyu J. F., et al. Promotion of wound healing using adipose-derived stem cells in radiation ulcer of a rat model. Journal of Biomedical Science. 2013;22:p. 51.
    1. Yang J., Yamato M., Kohno C., et al. Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials. 2005;26(33):6415–6422.
    1. Sivan U., Jayakumar K., Krishnan L. K. Constitution of fibrin-based niche for in vitro differentiation of adipose-derived mesenchymal stem cells to keratinocytes. BioResearch Open Access. 2014;1(6):339–347.
    1. Dong Y., Hassan W., Zheng Y., et al. Thermoresponsive hyperbranched copolymer with multi acrylate functionality for in situ cross-linkable hyaluronic acid composite semi-IPN hydrogel. Journal of Material Science: Materials in Medicine. 2012;23(1):25–35.
    1. Dong Y., Hassan W., Kennedy R., et al. Performance of an in-situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multi-functional copolymer. Acta Biomaterialia. 2014;10(5):2076–2085.
    1. Kakudo N., Minakata T., Mitsui T., Kushida S., Notodihardjo F. Z., Kusumoto K. Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts. Plastic and Reconstructive Surgery. 2008;122:1352–6130.
    1. Raposio E., Bertozzi N., Bonomini N., et al. Adipose-derived stem cells added to platelet-rich plasma for chronic skin ulcer therapy. Wounds. 2016;28(4):126–131.
    1. Marques L. F., Stessuk T., Camargo I. C., Sabeh Junior N., Santos L., Ribeiro-Paes J. T. Platelet-rich plasma (PRP): methodological aspects and clinical applications. Platelets. 2014;26(2):101–113.
    1. Greenspoon J. A., Moulton S. G., Millett P. J., Petri M. The role of platelet rich plasma (PRP) and other biologics for rotator cuff repair. Open Orthopedy Journal. 2016;21(10):309–314.
    1. , downloading from:

Source: PubMed

Подписаться