Predictors of poor seroconversion and adverse events to SARS-CoV-2 mRNA BNT162b2 vaccine in cancer patients on active treatment

Tania Buttiron Webber, Nicoletta Provinciali, Marco Musso, Martina Ugolini, Monica Boitano, Matteo Clavarezza, Mauro D'Amico, Carlotta Defferrari, Alberto Gozza, Irene Maria Briata, Monica Magnani, Fortuna Paciolla, Nadia Menghini, Emanuela Marcenaro, Raffaele De Palma, Nicoletta Sacchi, Leonello Innocenti, Giacomo Siri, Oriana D'Ecclesiis, Isabella Cevasco, Sara Gandini, Andrea DeCensi, Tania Buttiron Webber, Nicoletta Provinciali, Marco Musso, Martina Ugolini, Monica Boitano, Matteo Clavarezza, Mauro D'Amico, Carlotta Defferrari, Alberto Gozza, Irene Maria Briata, Monica Magnani, Fortuna Paciolla, Nadia Menghini, Emanuela Marcenaro, Raffaele De Palma, Nicoletta Sacchi, Leonello Innocenti, Giacomo Siri, Oriana D'Ecclesiis, Isabella Cevasco, Sara Gandini, Andrea DeCensi

Abstract

Purpose: Initial findings in patients with cancer suggest a lower seroconversion to SARS-CoV-2 vaccination possibly related to myelo-immunosuppressive therapies. We conducted a prospective study to assess factors predicting poor seroconversion and adverse events following immunisation (AEFI) to the BNT162b2 vaccine in patients on active treatment.

Patients and methods: Cancer patients, candidates to two doses of BNT162b2 SARS-CoV-2 vaccination, were enrolled. Patients on active surveillance served as controls. The primary endpoint was poor seroconversion (anti S1/S2 IgG < 25 AU/mL) after 21 days from the second dose.

Results: Between March and July 2021, 320 subjects were recruited, and 291 were assessable. The lack of seroconversion at 21 days from the second dose was 1.6% (95% CI, 0.4-8.7) on active surveillance, 13.9% (8.2-21.6) on chemotherapy, 11.4% (5.1-21.3) on hormone therapy, 21.7% (7.5-43.7) on targeted therapy and 4.8% (0.12-23.8) on immune-checkpoint-inhibitors (ICI). Compared to controls, the risk of no IgG response was greater for chemotherapy (p = 0.033), targeted therapy (0.005) and hormonotherapy (p = 0.051). Lymphocyte count < 1 × 109/L (p = 0.04) and older age (p = 0.03) also significantly predicted poor seroconversion. Overall, 43 patients (14.8%) complained of AEFI, mostly of mild grade. Risk of AEFI was greater in females (p = 0.001) and younger patients (p = 0.009).

Conclusion: Chemotherapy, targeted therapy, hormone therapy, lymphocyte count < 1 × 109/L, and increasing age predict poor seroconversion after two doses of BNT162b2 in up to 20% of patients, indicating the need for a third dose and long-term serological testing in non-responders. AEFI occur much more frequently in women and younger subjects who may benefit from preventive medications. CLINICALTRIALS.

Gov identifier: NCT04932863.

Keywords: Antibody responses to the BNT162b2 vaccine; COVID-19 vaccine in cancer patients; Cancer biological treatment; Cancer chemotherapy; Cancer hormone therapy; Cancer immunotherapy; Cancer target therapy; Immunogenicity; SARS-CoV-2 vaccine; SARS-CoV-2 vaccine adverse effects.

Conflict of interest statement

Conflict of interest statement We declare no competing interests.

Copyright © 2021. Published by Elsevier Ltd.

Figures

Fig. 1
Fig. 1
Participant flow diagram.
Fig. 2
Fig. 2
Forest plot of the relative risk (RR) of poor seroconversion (

Fig. 3

Forest plot of the Odds…

Fig. 3

Forest plot of the Odds Ratios (OR) for adverse events following immunisation from…

Fig. 3
Forest plot of the Odds Ratios (OR) for adverse events following immunisation from a multivariable logistic model adjusted for sex, age and smoke.
Fig. 3
Fig. 3
Forest plot of the Odds Ratios (OR) for adverse events following immunisation from a multivariable logistic model adjusted for sex, age and smoke.

References

    1. Kuderer N.M., Choueiri T.K., Shah D.P., et al. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet. 2020 Jun 20;395(10241):1907–1918. doi: 10.1016/S0140-6736(20)31187-9. PMID: 32473681; PMCID: PMC7255743.
    1. Lee L.Y.W., Cazier J.B., Starkey T., et al. COVID-19 prevalence and mortality in patients with cancer and the effect of primary tumour subtype and patient demographics: a prospective cohort study. Lancet Oncol. 2020 Oct;21(10):1309–1316. doi: 10.1016/S1470-2045(20)30442-3. PMID: 32853557; PMCID: PMC7444972.
    1. Polack F.P., Thomas S.J., Kitchin N., et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020 Dec 31;383(27):2603–2615. doi: 10.1056/NEJMoa2034577. PMID: 33301246; PMCID: PMC7745181.
    1. Monin L., Laing A.G., Muñoz-Ruiz M., et al. Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study. Lancet Oncol. 2021 Jun;22(6):765–778. doi: 10.1016/S1470-2045(21)00213-8. PMID: 33930323; PMCID: PMC8078907.
    1. Palich R., Veyri M., Marot S., et al. Weak immunogenicity after a single dose of SARS-CoV-2 mRNA vaccine in treated cancer patients. Ann Oncol. 2021 Aug;32(8):1051–1053. doi: 10.1016/j.annonc.2021.04.020. Epub 2021 Apr 29. PMID: 33932501; PMCID: PMC8081573.
    1. Barrière J., Chamorey E., Adjtoutah Z., et al. Impaired immunogenicity of BNT162b2 anti-SARS-CoV-2 vaccine in patients treated for solid tumors. Ann Oncol. 2021 Aug;32(8):1053–1055. doi: 10.1016/j.annonc.2021.04.019.
    1. Garassino M.C., Vyas M., de Vries E.G.E., et al. The ESMO Call to Action on COVID-19 vaccinations and patients with cancer: Vaccinate. Monitor. Educate. Ann Oncol. 2021 May;32(5):579–581. doi: 10.1016/j.annonc.2021.01.068. PMID: 33582237; PMCID: PMC7879154.
    1. Forni G., Mantovani A., COVID-19 Commission of Accademia Nazionale dei Lincei, Rome COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ. 2021 Feb;28(2):626–639. doi: 10.1038/s41418-020-00720-9. PMID: 33479399; PMCID: PMC7818063.
    1. Van der Veldt A.A.M., Oosting S.F., Dingemans A.C., et al. COVID-19 vaccination: the VOICE for patients with cancer. Nat Med. 2021 Apr;27(4):568–569. doi: 10.1038/s41591-021-01240-w. PMID: 33589821.
    1. .
    1. Desai A., Gainor J.F., Hegde A., et al. COVID-19 vaccine guidance for patients with cancer participating in oncology clinical trials. Nat Rev Clin Oncol. 2021 May;18(5):313–319. doi: 10.1038/s41571-021-00487-z. PMID: 33723371; PMCID: PMC7957448.
    1. Waissengrin B., Agbarya A., Safadi E., Padova H., Wolf I. Short-term safety of the BNT162b2 mRNA COVID-19 vaccine in patients with cancer treated with immune checkpoint inhibitors. Lancet Oncol. 2021 May;22(5):581–583. doi: 10.1016/S1470-2045(21)00155-8. Epub 2021 Apr 1. PMID: 33812495; PMCID: PMC8016402.
    1. Terpos E., Zagouri F., Liontos M., et al. Low titers of SARS-CoV-2 neutralizing antibodies after first vaccination dose in cancer patients receiving checkpoint inhibitors. J Hematol Oncol. 2021 May 31;14(1):86. doi: 10.1186/s13045-021-01099-x. PMID: 34059088; PMCID: PMC8165511.
    1. Thakkar A., Gonzalez-Lugo J.D., Goradia N., et al. Seroconversion rates following COVID-19 vaccination among patients with cancer. Cancer Cell. 2021 Jun 5 doi: 10.1016/j.ccell.2021.06.002. S1535-S6108(21)00285-3. PMID: 34133951; PMCID: PMC8179248.
    1. Cari L., Fiore P., Naghavi Alhosseini M., Sava G., Nocentini G. Blood clots and bleeding events following BNT162b2 and ChAdOx1 nCoV-19 vaccine: an analysis of European data. J Autoimmun. 2021 Aug;122:102685. doi: 10.1016/j.jaut.2021.102685. PMID: 34174723; PMCID: PMC8220408.
    1. Glück T., Kiefmann B., Grohmann M., Falk W., Straub R.H., Schölmerich J. Immune status and risk for infection in patients receiving chronic immunosuppressive therapy. J Rheumatol. 2005 Aug;32(8):1473–1480. PMID: 16078322.
    1. Bonelli F., Sarasini A., Zierold C., et al. Clinical and analytical performance of an automated serological test that identifies S1/S2-neutralizing IgG in COVID-19 patients semiquantitatively. J Clin Microbiol. 2020 Aug 24;58(9) doi: 10.1128/JCM.01224-20. PMID: 32580948; PMCID: PMC7448652.
    1. National SARS-CoV-2 Serology Assay Evaluation Group Performance characteristics of five immunoassays for SARS-CoV-2: a head-to-head benchmark comparison. Lancet Infect Dis. 2020 Dec;20(12):1390–1400. doi: 10.1016/S1473-3099(20)30634-4. PMID: 32979318; PMCID: PMC7511171.
    1. .
    1. Thakkar A., Pradhan K., Jindal S., et al. Patterns of seroconversion for SARS-CoV-2 IgG in patients with malignant disease and association with anticancer therapy. Nat Cancer. 2021;2:392–399. doi: 10.1038/s43018-021-00191-y.
    1. Irfan A., Muhammad Khuram S., Muhammad Q., et al. Lymphocyte as a predictive marker for seronegativity of COVID-19. Biomed J Sci Tech Res. 2020;32(4) BJSTR. MS.ID.005279.
    1. Zhao Q., Meng M., Kumar R., et al. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a systemic review and meta-analysis. Int J Infect Dis. 2020 Jul;96:131–135. doi: 10.1016/j.ijid.2020.04.086. Epub 2020 May 4. PMID: 32376308; PMCID: PMC7196544.
    1. Walsh E.E., Frenck R.W., Jr., Falsey A.R., et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med. 2020 Dec 17;383(25):2439–2450. doi: 10.1056/NEJMoa2027906. PMID: 33053279; PMCID: PMC7583697.
    1. Collier D.A., Ferreira I.A.T.M., Kotagiri P., et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature. 2021 Jun 30 doi: 10.1038/s41586-021-03739-1. PMID: 34192737.
    1. Barrière J., Re D., Peyrade F., Carles M. Current perspectives for SARS-CoV-2 vaccination efficacy improvement in patients with active treatment against cancer. Eur J Cancer. 2021. Sep;154:66–72. doi: 10.1016/j.ejca.2021.06.008. Epub 2021 Jun 18. PMID: 34243079; PMCID: PMC8260097.
    1. Mauvais-Jarvis F., Klein S.L., Levin E.R. Estradiol, progesterone, immunomodulation, and COVID-19 outcomes. Endocrinology. 2020 Sep 1;161(9):bqaa127. doi: 10.1210/endocr/bqaa127. PMID: 32730568; PMCID: PMC7438701.
    1. Gadi N., Wu S.C., Spihlman A.P., Moulton V.R. What's sex got to do with COVID-19? Gender-based differences in the host immune response to coronaviruses. Front Immunol. 2020 Aug 28;11:2147. doi: 10.3389/fimmu.2020.02147. PMID: 32983176; PMCID: PMC7485092.
    1. Straub R.H., Miller L.E., Schölmerich J., Zietz B. Cytokines and hormones as possible links between endocrinosenescence and immunosenescence. J Neuroimmunol. 2000 Sep 1;109(1):10–15. doi: 10.1016/s0165-5728(00)00296-4. PMID: 10969175.
    1. Chakravarthy K., Strand N., Frosch A., et al. Recommendations and guidance for steroid injection therapy and COVID-19 vaccine administration from the American Society of Pain and Neuroscience (ASPN) J Pain Res. 2021 Mar 5;14:623–629. doi: 10.2147/JPR.S302115. PMID: 33716511; PMCID: PMC7944369.
    1. Gounant V., Ferré V.M., Soussi G., et al. Efficacy of SARS-CoV-2 vaccine in thoracic cancer patients: a prospective study supporting a third dose in patients with minimal serologic response after two vaccine doses. medRxiv Preprint. 2021 doi: 10.1101/2021.08.12.21261806.
    1. Klein S.L., Flanagan K.L. Sex differences in immune responses. Nat Rev Immunol. 2016 Oct;16(10):626–638. doi: 10.1038/nri.2016.90. Epub 2016 Aug 22. PMID: 27546235.
    1. Qiu F., Liang C.L., Liu H., et al. Impacts of cigarette smoking on immune responsiveness: up and down or upside down? Oncotarget. 2017 Jan 3;8(1):268–284. doi: 10.18632/oncotarget.13613. PMID: 27902485; PMCID: PMC5352117.
    1. Sopori M. Effects of cigarette smoke on the immune system. Nat Rev Immunol. 2002 May;2(5):372–377. doi: 10.1038/nri803. PMID: 12033743.

Source: PubMed

Подписаться