The Distribution of Circulating Tumor Cells Is Different in Metastatic Lobular Compared to Ductal Carcinoma of the Breast-Long-Term Prognostic Significance

Ulrik Narbe, Pär-Ola Bendahl, Kristina Aaltonen, Mårten Fernö, Carina Forsare, Charlotte Levin Tykjær Jørgensen, Anna-Maria Larsson, Lisa Rydén, Ulrik Narbe, Pär-Ola Bendahl, Kristina Aaltonen, Mårten Fernö, Carina Forsare, Charlotte Levin Tykjær Jørgensen, Anna-Maria Larsson, Lisa Rydén

Abstract

Background: Invasive lobular carcinoma (ILC) has distinguishing features when compared to invasive ductal carcinoma of no special type (NST). In this study, we explored the distributional and prognostic characteristics of circulating tumor cells (CTCs) in metastatic ILC and NST.

Materials and methods: Patients were included in an observational trial (ClinicalTrials.gov NCT01322893) with ILC (n = 28) and NST (n = 111). CTC count (number/7.5 mL blood) was evaluated with serial sampling (CellSearch). The primary endpoint was progression-free survival (PFS).

Results: The CTC counts were higher in ILC (median 70) than in NST cases (median 2) at baseline (p < 0.001). The evidence for ≥5 CTCs as a prognostic factor for PFS in ILC was weak, but stronger with higher cut-offs (CTC ≥ 20: hazard ratio (HR) 3.0, p = 0.01) (CTC ≥ 80: HR 3.6, p = 0.004). In NST, however, the prognostic effect of CTCs ≥5 was strong. Decline in CTC count from baseline to three months was associated with improved prognosis in ILC and NST.

Conclusions: The number of CTCs is higher in ILC than in NST, implying that a higher CTC cut-off could be considered for ILC when applying the CellSearch technique.

Keywords: CTC cluster; cancer antigen 15-3; circulating tumor cells; invasive ductal carcinoma of no special type; invasive lobular carcinoma.

Conflict of interest statement

The authors declare no personal or professional financial relationship as a conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of the study cohort.
Figure 2
Figure 2
Circulating tumor cell (CTC) count at baseline by histopathological type. Abbreviations: ILC, invasive lobular carcinoma; NST, invasive ductal carcinoma of no special type; CTC count, number of CTCs per 7.5 mL blood.
Figure 3
Figure 3
Distribution of CTC counts at baseline and with serial sampling at different time points. Spaghetti plots showing number of CTCs (per 7.5 mL blood) per patient from baseline (BL) to 6 months of follow-up for invasive lobular carcinoma (ILC), left panel (A), and invasive ductal carcinoma of no special type (NST), right panel (B). The p-values correspond to pairwise tests of the null hypothesis of no change in CTC count (Wilcoxon matched-pairs signed-rank test). Note that the scale on the y-axis is logarithmic and that the y-axis has been broken to enable presentation of zeros. A small amount of random noise was added to all zeros to separate the lines. The red line connects the medians at the four time points.
Figure 4
Figure 4
Progression-free survival (PFS) by circulating tumor cell (CTC) count. Kaplan–Meier plots displaying PFS for the invasive lobular carcinoma (ILC) and invasive ductal carcinoma of no special type (NST) subgroups. Cut-off ≥5 CTCs (AB). Cut-off ≥20 CTCs (CD). Cut-off ≥80 CTCs (EF).
Figure 5
Figure 5
Overall survival (OS) by circulating tumor cell count. Kaplan–Meier plots displaying OS for the invasive lobular carcinoma (ILC) and invasive ductal carcinoma of no special type (NST) subgroups. Cut-off ≥5 CTCs (A,B). Cut-off ≥20 CTCs (C,D). Cut-off ≥80 CTCs (E,F).

References

    1. Global Burden of Disease Cancer C., Fitzmaurice C., Allen C., Barber R.M., Barregard L., Bhutta Z.A., Brenner H., Dicker D.J., Chimed-Orchir O., Dandona R., et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2017;3:524–548. doi: 10.1001/jamaoncol.2016.5688.
    1. Eisenhauer E.A., Therasse P., Bogaerts J., Schwartz L.H., Sargent D., Ford R., Dancey J., Arbuck S., Gwyther S., Mooney M., et al. New response evaluation criteria in solid tumours: Revised RECIST guideline. Eur. J. Cancer. 2009;45:228–247. doi: 10.1016/j.ejca.2008.10.026. (version 1.1)
    1. Woolf D.K., Padhani A.R., Makris A. Assessing response to treatment of bone metastases from breast cancer: What should be the standard of care? Ann. Oncol. 2015;26:1048–1057. doi: 10.1093/annonc/mdu558.
    1. Suzuki C., Jacobsson H., Hatschek T., Torkzad M.R., Boden K., Eriksson-Alm Y., Berg E., Fujii H., Kubo A., Blomqvist L. Radiologic measurements of tumor response to treatment: Practical approaches and limitations. Radiographics. 2008;28:329–344. doi: 10.1148/rg.282075068.
    1. Van Poznak C., Somerfield M.R., Bast R.C., Cristofanilli M., Goetz M.P., Gonzalez-Angulo A.M., Hicks D.G., Hill E.G., Liu M.C., Lucas W., et al. Use of Biomarkers to Guide Decisions on Systemic Therapy for Women With Metastatic Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2015;33:2695–2704. doi: 10.1200/JCO.2015.61.1459.
    1. Duffy M.J., Evoy D., McDermott E.W. CA 15-3: Uses and limitation as a biomarker for breast cancer. Clin. Chim. Acta. 2010;411:1869–1874. doi: 10.1016/j.cca.2010.08.039.
    1. Bidard F.C., Peeters D.J., Fehm T., Nole F., Gisbert-Criado R., Mavroudis D., Grisanti S., Generali D., Garcia-Saenz J.A., Stebbing J., et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: A pooled analysis of individual patient data. Lancet Oncol. 2014;15:406–414. doi: 10.1016/S1470-2045(14)70069-5.
    1. Cristofanilli M., Pierga J.Y., Reuben J., Rademaker A., Davis A.A., Peeters D.J., Fehm T., Nole F., Gisbert-Criado R., Mavroudis D., et al. The clinical use of circulating tumor cells (CTCs) enumeration for staging of metastatic breast cancer (MBC): International expert consensus paper. Crit. Rev. Oncol. Hematol. 2019;134:39–45. doi: 10.1016/j.critrevonc.2018.12.004.
    1. Yan W.T., Cui X., Chen Q., Li Y.F., Cui Y.H., Wang Y., Jiang J. Circulating tumor cell status monitors the treatment responses in breast cancer patients: A meta-analysis. Sci. Rep. 2017;7:43464. doi: 10.1038/srep43464.
    1. Cristofanilli M., Budd G.T., Ellis M.J., Stopeck A., Matera J., Miller M.C., Reuben J.M., Doyle G.V., Allard W.J., Terstappen L.W., et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 2004;351:781–791. doi: 10.1056/NEJMoa040766.
    1. Pierga J.Y., Hajage D., Bachelot T., Delaloge S., Brain E., Campone M., Dieras V., Rolland E., Mignot L., Mathiot C., et al. High independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in first-line chemotherapy for metastatic breast cancer patients. Ann. Oncol. 2012;23:618–624. doi: 10.1093/annonc/mdr263.
    1. Aceto N., Bardia A., Miyamoto D.T., Donaldson M.C., Wittner B.S., Spencer J.A., Yu M., Pely A., Engstrom A., Zhu H., et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158:1110–1122. doi: 10.1016/j.cell.2014.07.013.
    1. Mu Z., Wang C., Ye Z., Austin L., Civan J., Hyslop T., Palazzo J.P., Jaslow R., Li B., Myers R.E., et al. Prospective assessment of the prognostic value of circulating tumor cells and their clusters in patients with advanced-stage breast cancer. Breast Cancer Res. Treat. 2015;154:563–571. doi: 10.1007/s10549-015-3636-4.
    1. Larsson A.M., Jansson S., Bendahl P.O., Levin Tykjaer Jorgensen C., Loman N., Graffman C., Lundgren L., Aaltonen K., Ryden L. Longitudinal enumeration and cluster evaluation of circulating tumor cells improve prognostication for patients with newly diagnosed metastatic breast cancer in a prospective observational trial. Breast Cancer Res. 2018;20:48. doi: 10.1186/s13058-018-0976-0.
    1. Alunni-Fabbroni M., Muller V., Fehm T., Janni W., Rack B. Monitoring in metastatic breast cancer: Is imaging outdated in the era of circulating tumor cells? Breast Care (Basel) 2014;9:16–21. doi: 10.1159/000360438.
    1. Liu M.C., Shields P.G., Warren R.D., Cohen P., Wilkinson M., Ottaviano Y.L., Rao S.B., Eng-Wong J., Seillier-Moiseiwitsch F., Noone A.M., et al. Circulating tumor cells: A useful predictor of treatment efficacy in metastatic breast cancer. J. Clin. Oncol. 2009;27:5153–5159. doi: 10.1200/JCO.2008.20.6664.
    1. World Health Organisation . In: Classification of Tumours of the Breast. 4th ed. Lakhani S.R., Ellis I.O., Schnitt S.J., Tan P.H., van de Vijver M.J., editors. WHO Press; Geneva, Switzerland: 2012. p. 240.
    1. Martinez V., Azzopardi J.G. Invasive lobular carcinoma of the breast: Incidence and variants. Histopathology. 1979;3:467–488. doi: 10.1111/j.1365-2559.1979.tb03029.x.
    1. Acs G., Lawton T.J., Rebbeck T.R., LiVolsi V.A., Zhang P.J. Differential expression of E-cadherin in lobular and ductal neoplasms of the breast and its biologic and diagnostic implications. Am. J. Clin. Pathol. 2001;115:85–98. doi: 10.1309/FDHX-L92R-BATQ-2GE0.
    1. Arpino G., Bardou V.J., Clark G.M., Elledge R.M. Infiltrating lobular carcinoma of the breast: Tumor characteristics and clinical outcome. Breast Cancer Res. 2004;6:R149. doi: 10.1186/bcr767.
    1. Wasif N., Maggard M.A., Ko C.Y., Giuliano A.E. Invasive lobular vs. ductal breast cancer: A stage-matched comparison of outcomes. Ann. Surg. Oncol. 2010;17:1862–1869. doi: 10.1245/s10434-010-0953-z.
    1. Christgen M., Steinemann D., Kuhnle E., Langer F., Gluz O., Harbeck N., Kreipe H. Lobular breast cancer: Clinical, molecular and morphological characteristics. Pathol. Res. Pr. 2016;212:583–597. doi: 10.1016/j.prp.2016.05.002.
    1. Barroso-Sousa R., Metzger-Filho O. Differences between invasive lobular and invasive ductal carcinoma of the breast: Results and therapeutic implications. Adv. Med. Oncol. 2016;8:261–266. doi: 10.1177/1758834016644156.
    1. Ciriello G., Gatza M.L., Beck A.H., Wilkerson M.D., Rhie S.K., Pastore A., Zhang H., McLellan M., Yau C., Kandoth C., et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell. 2015;163:506–519. doi: 10.1016/j.cell.2015.09.033.
    1. Desmedt C., Zoppoli G., Sotiriou C., Salgado R. Transcriptomic and genomic features of invasive lobular breast cancer. Semin. Cancer Biol. 2017;44:98–105. doi: 10.1016/j.semcancer.2017.03.007.
    1. Rakha E.A., Ellis I.O. Lobular breast carcinoma and its variants. Semin. Diagn. Pathol. 2010;27:49–61. doi: 10.1053/j.semdp.2009.12.009.
    1. El-Hage A., Ruel C., Afif W., Wissanji H., Hogue J.C., Desbiens C., Leblanc G., Poirier E. Metastatic pattern of invasive lobular carcinoma of the breast-Emphasis on gastric metastases. J. Surg. Oncol. 2016;114:543–547. doi: 10.1002/jso.24362.
    1. Lv Q., Gong L., Zhang T., Ye J., Chai L., Ni C., Mao Y. Prognostic value of circulating tumor cells in metastatic breast cancer: A systemic review and meta-analysis. Clin. Transl. Oncol. 2016;18:322–330. doi: 10.1007/s12094-015-1372-1.
    1. Peeters D.J., van Dam P.J., Van den Eynden G.G., Rutten A., Wuyts H., Pouillon L., Peeters M., Pauwels P., Van Laere S.J., van Dam P.A., et al. Detection and prognostic significance of circulating tumour cells in patients with metastatic breast cancer according to immunohistochemical subtypes. Br. J. Cancer. 2014;110:375–383. doi: 10.1038/bjc.2013.743.
    1. De Gregorio A., Friedl T.W.P., Huober J., Scholz C., De Gregorio N., Rack B., Trapp E., Alunni-Fabbroni M., Riethdorf S., Mueller V., et al. Discordance in Human Epidermal Growth Factor Receptor 2 (HER2) Phenotype Between Primary Tumor and Circulating Tumor Cells in Women With HER2-Negative Metastatic Breast Cancer. JCO Precis. Oncol. 2017;1:1–12. doi: 10.1200/PO.17.00023.
    1. Jansson S., Bendahl P.O., Larsson A.M., Aaltonen K.E., Ryden L. Prognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with metastatic breast cancer in a prospective observational cohort. BMC Cancer. 2016;16:433. doi: 10.1186/s12885-016-2406-y.
    1. Allard W.J., Matera J., Miller M.C., Repollet M., Connelly M.C., Rao C., Tibbe A.G., Uhr J.W., Terstappen L.W. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 2004;10:6897–6904. doi: 10.1158/1078-0432.CCR-04-0378.
    1. Botteri E., Sandri M.T., Bagnardi V., Munzone E., Zorzino L., Rotmensz N., Casadio C., Cassatella M.C., Esposito A., Curigliano G., et al. Modeling the relationship between circulating tumour cells number and prognosis of metastatic breast cancer. Breast Cancer Res. Treat. 2010;122:211–217. doi: 10.1007/s10549-009-0668-7.
    1. Duffy M.J. Serum tumor markers in breast cancer: Are they of clinical value? Clin. Chem. 2006;52:345–351. doi: 10.1373/clinchem.2005.059832.
    1. McShane L.M., Altman D.G., Sauerbrei W., Taube S.E., Gion M., Clark G.M., Statistics Subcommittee of the NCI-EORTC Working Group on Cancer Diagnostics Reporting recommendations for tumor MARKer prognostic studies (REMARK) Nat. Clin. Pr. Urol. 2005;2:416–422.
    1. Parker J.S., Mullins M., Cheang M.C., Leung S., Voduc D., Vickery T., Davies S., Fauron C., He X., Hu Z., et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 2009;27:1160–1167. doi: 10.1200/JCO.2008.18.1370.
    1. Goldhirsch A., Wood W.C., Coates A.S., Gelber R.D., Thurlimann B., Senn H.J. Strategies for subtypes--dealing with the diversity of breast cancer: Highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann. Oncol. J. Eur. Soc. Med. Oncol. 2011;22:1736–1747. doi: 10.1093/annonc/mdr304.
    1. Chia S.K., Bramwell V.H., Tu D., Shepherd L.E., Jiang S., Vickery T., Mardis E., Leung S., Ung K., Pritchard K.I., et al. A 50-gene intrinsic subtype classifier for prognosis and prediction of benefit from adjuvant tamoxifen. Clin. Cancer Res. 2012;18:4465–4472. doi: 10.1158/1078-0432.CCR-12-0286.
    1. Janni W.J., Rack B., Terstappen L.W., Pierga J.Y., Taran F.A., Fehm T., Hall C., de Groot M.R., Bidard F.C., Friedl T.W., et al. Pooled Analysis of the Prognostic Relevance of Circulating Tumor Cells in Primary Breast Cancer. Clin. Cancer Res. 2016;22:2583–2593. doi: 10.1158/1078-0432.CCR-15-1603.
    1. Goldstein N.S. Does the level of E-cadherin expression correlate with the primary breast carcinoma infiltration pattern and type of systemic metastases? Am. J. Clin. Pathol. 2002;118:425–434. doi: 10.1309/JMRD-W08Y-6K8M-7AD8.
    1. Soysal S.D., Muenst S., Barbie T., Fleming T., Gao F., Spizzo G., Oertli D., Viehl C.T., Obermann E.C., Gillanders W.E. EpCAM expression varies significantly and is differentially associated with prognosis in the luminal B HER2(+), basal-like, and HER2 intrinsic subtypes of breast cancer. Br. J. Cancer. 2013;108:1480–1487. doi: 10.1038/bjc.2013.80.
    1. Giordano A., Giuliano M., De Laurentiis M., Eleuteri A., Iorio F., Tagliaferri R., Hortobagyi G.N., Pusztai L., De Placido S., Hess K., et al. Artificial neural network analysis of circulating tumor cells in metastatic breast cancer patients. Breast Cancer Res. Treat. 2011;129:451–458. doi: 10.1007/s10549-011-1645-5.
    1. Giuliano M., Shaikh A., Lo H.C., Arpino G., De Placido S., Zhang X.H., Cristofanilli M., Schiff R., Trivedi M.V. Perspective on Circulating Tumor Cell Clusters: Why It Takes a Village to Metastasize. Cancer Res. 2018;78:845–852. doi: 10.1158/0008-5472.CAN-17-2748.
    1. Gkountela S., Castro-Giner F., Szczerba B.M., Vetter M., Landin J., Scherrer R., Krol I., Scheidmann M.C., Beisel C., Stirnimann C.U., et al. Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding. Cell. 2019;176:98–112.e14. doi: 10.1016/j.cell.2018.11.046.
    1. Szczerba B.M., Castro-Giner F., Vetter M., Krol I., Gkountela S., Landin J., Scheidmann M.C., Donato C., Scherrer R., Singer J., et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. 2019;566:553–557. doi: 10.1038/s41586-019-0915-y.

Source: PubMed

Подписаться