Alcohol and Cancer: Mechanisms and Therapies

Anuradha Ratna, Pranoti Mandrekar, Anuradha Ratna, Pranoti Mandrekar

Abstract

Several scientific and clinical studies have shown an association between chronic alcohol consumption and the occurrence of cancer in humans. The mechanism for alcohol-induced carcinogenesis has not been fully understood, although plausible events include genotoxic effects of acetaldehyde, cytochrome P450 2E1 (CYP2E1)-mediated generation of reactive oxygen species, aberrant metabolism of folate and retinoids, increased estrogen, and genetic polymorphisms. Here, we summarize the impact of alcohol drinking on the risk of cancer development and potential underlying molecular mechanisms. The interactions between alcohol abuse, anti-tumor immune response, tumor growth, and metastasis are complex. However, multiple studies have linked the immunosuppressive effects of alcohol with tumor progression and metastasis. The influence of alcohol on the host immune system and the development of possible effective immunotherapy for cancer in alcoholics are also discussed here. The conclusive biological effects of alcohol on tumor progression and malignancy have not been investigated extensively using an animal model that mimics the human disease. This review provides insights into cancer pathogenesis in alcoholics, alcohol and immune interactions in different cancers, and scope and future of targeted immunotherapeutic modalities in patients with alcohol abuse.

Keywords: alcohol; animal models; cancer risk; immunosuppression; immunotherapy; metabolism.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Pathways of ethanol metabolism. Ethanol is oxidized mainly by cytosolic alcohol dehydrogenase (ADH) to acetaldehyde. Acetaldehyde then enters the mitochondria where it is oxidized to acetate by mitochondrial aldehyde dehydrogenase (ALDH). Another major pathway of ethanol metabolism includes its oxidation in microsomes by cytochrome P450 2E1 (CYP2E1) enzyme and requires nicotinamide adenine dinucleotide phosphate (NADPH) instead of nicotinamide adenine dinucleotide (NAD+) as for ADH. Reactive oxygen species (ROS) are formed due to alcohol metabolism by CYP2E1 and the re-oxidation of NADH in the mitochondria. A catalase-mediated reaction in the peroxisomes is considered a minor metabolic pathway of alcohol metabolism.
Figure 2
Figure 2
Various mechanisms by which alcohol may affect carcinogenesis. Ethanol is oxidized to acetaldehyde by ADH, which acts as a carcinogen and binds to DNA. This metabolism is modified by polymorphisms or mutations in the genes encoding metabolizing enzymes. Acetaldehyde can form hybrid-adducts with reactive residues (e.g., malondialdehyde adduct) acting on proteins, mediating lipid peroxidation and nucleic acid oxidation. Excessive alcohol consumption leads to the induction of CYP2E1 pathway and may indirectly contribute to acetaldehyde development and ROS production. Excessive alcohol enhances catabolism of retinoic acid by alcohol-induced CYP2E1. The interaction of retinoids with different signaling pathways, including estrogen signaling, may favor proliferation and malignant transformation of pre-cancerous cells. Chronic ethanol intake is also associated with the failure of immune surveillance of tumor cells.

References

    1. Centers for Disease Control and Prevention Alcohol-Related Disease Impact (ARDI) Application, 2013. [(accessed on 10 August 2017)]; Available online: .
    1. World Health Organization . Global Status Report on Alcohol and Health, 2014. World Health Organization; Luxembourg: 2014. [(accessed on 22 June 2017)]. Available online: .
    1. Center for Behavioral Health Statistics and Quality . 2014 National Survey on Drug Use and Health: Detailed Tables. Substance Abuse and Mental Health Services Administration; Rockville, MD, USA: 2015. [(accessed on 22 June 2017)]. Available online: .
    1. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans . IARC Monographs on the Evaluation of Carcinogenic Risks in Humans. Volume 96. International Agency for Research on Cancer; Lyon, France: 2010. Alcohol consumption and ethyl carbamate; pp. 1281–1383.
    1. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans . IARC Monographs on the Evaluation of Carcinogenic Risks in Humans. Volume 100E. International Agency for Research on Cancer; Lyon, France: 2012. Personal habits and indoor combustions; pp. 373–472.
    1. Testino G. The burden of cancer attributable to alcohol consumption. Maedica. 2011;6:313–320.
    1. Meadows G.G., Zhang H. Effects of alcohol on tumor growth, metastasis, immune response, and host survival. Alcohol Res. 2015;37:311–322.
    1. Seitz H.K., Stickel F., Homann N. Pathogenetic mechanisms of upper aerodigestive tract cancer in alcoholics. Int. J. Cancer. 2004;108:483–487. doi: 10.1002/ijc.11600.
    1. Seitz H.K., Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat. Rev. Cancer. 2007;7:599–612. doi: 10.1038/nrc2191.
    1. Gyamfi M.A., Wan Y.J. Pathogenesis of alcoholic liver disease: The role of nuclear receptors. Exp. Biol. Med. 2010;235:547–560. doi: 10.1258/ebm.2009.009249.
    1. Huang X., Li X., Ma Q., Xu Q., Duan W., Lei J., Zhang L., Wu Z. Chronic alcohol exposure exacerbates inflammation and triggers pancreatic acinar-to-ductal metaplasia through pi3k/akt/ikk. Int. J. Mol. Med. 2015;35:653–663. doi: 10.3892/ijmm.2014.2055.
    1. Druesne-Pecollo N., Tehard B., Mallet Y., Gerber M., Norat T., Hercberg S., Latino-Martel P. Alcohol and genetic polymorphisms: Effect on risk of alcohol-related cancer. Lancet Oncol. 2009;10:173–180. doi: 10.1016/S1470-2045(09)70019-1.
    1. Boffetta P., Hashibe M. Alcohol and cancer. Lancet Oncol. 2006;7:149–156. doi: 10.1016/S1470-2045(06)70577-0.
    1. Boffetta P., Hashibe M., La Vecchia C., Zatonski W., Rehm J. The burden of cancer attributable to alcohol drinking. Int. J. Cancer. 2006;119:884–887. doi: 10.1002/ijc.21903.
    1. Poschl G., Seitz H.K. Alcohol and cancer. Alcohol Alcohol. 2004;39:155–165. doi: 10.1093/alcalc/agh057.
    1. Corrao G., Bagnardi V., Zambon A., La Vecchia C. A meta-analysis of alcohol consumption and the risk of 15 diseases. Prev. Med. 2004;38:613–619. doi: 10.1016/j.ypmed.2003.11.027.
    1. Morgan T.R., Mandayam S., Jamal M.M. Alcohol and hepatocellular carcinoma. Gastroenterology. 2004;127:S87–S96. doi: 10.1053/j.gastro.2004.09.020.
    1. El-Serag H.B., Rudolph K.L. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–2576. doi: 10.1053/j.gastro.2007.04.061.
    1. Abdel-Wahab M., Mostafa M., Sabry M., el-Farrash M., Yousef T. Aflatoxins as a risk factor for hepatocellular carcinoma in Egypt, mansoura gastroenterology center study. Hepatogastroenterology. 2008;55:1754–1759.
    1. Schulze K., Imbeaud S., Letouze E., Alexandrov L.B., Calderaro J., Rebouissou S., Couchy G., Meiller C., Shinde J., Soysouvanh F., et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 2015;47:505–511. doi: 10.1038/ng.3252.
    1. Baan R., Straif K., Grosse Y., Secretan B., El Ghissassi F., Bouvard V., Altieri A., Cogliano V., WHO International Agency for Research on Cancer Monograph Working Group Carcinogenicity of alcoholic beverages. Lancet Oncol. 2007;8:292–293. doi: 10.1016/S1470-2045(07)70099-2.
    1. Schwab M. Encyclopedia of Cancer. 3rd ed. Springer; Berlin, Germany: 2011.
    1. Longnecker M.P. Alcoholic beverage consumption in relation to risk of breast cancer: Meta-analysis and review. Cancer Causes Control. 1994;5:73–82. doi: 10.1007/BF01830729.
    1. Kopp T.I., Jensen D.M., Ravn-Haren G., Cohen A., Sommer H.M., Dragsted L.O., Tjonneland A., Hougaard D.M., Vogel U. Alcohol-related breast cancer in postmenopausal women—Effect of cyp19a1, pparg and ppargc1a polymorphisms on female sex-hormone levels and interaction with alcohol consumption and nsaid usage in a nested case-control study and a randomised controlled trial. BMC Cancer. 2016;16:283. doi: 10.1186/s12885-016-2317-y.
    1. Dallal C.M., Tice J.A., Buist D.S., Bauer D.C., Lacey J.V., Jr., Cauley J.A., Hue T.F., Lacroix A., Falk R.T., Pfeiffer R.M., et al. Estrogen metabolism and breast cancer risk among postmenopausal women: A case-cohort study within B~FIT. Carcinogenesis. 2014;35:346–355. doi: 10.1093/carcin/bgt367.
    1. Welsch T., Kleeff J., Seitz H.K., Buchler P., Friess H., Buchler M.W. Update on pancreatic cancer and alcohol-associated risk. J. Gastroenterol. Hepatol. 2006;21(Suppl. 3):S69–S75. doi: 10.1111/j.1440-1746.2006.04574.x.
    1. Seitz H.K., Pöschl G., Salaspuro M.P. Alcohol, Tobacco and Cancer. Karger; Basel, Switzerland: 2006.
    1. Cho E., Smith-Warner S.A., Ritz J., van den Brandt P.A., Colditz G.A., Folsom A.R., Freudenheim J.L., Giovannucci E., Goldbohm R.A., Graham S., et al. Alcohol intake and colorectal cancer: A pooled analysis of 8 cohort studies. Ann. Intern. Med. 2004;140:603–613. doi: 10.7326/0003-4819-140-8-200404200-00007.
    1. Corrao G., Bagnardi V., Zambon A., Arico S. Exploring the dose-response relationship between alcohol consumption and the risk of several alcohol-related conditions: A meta-analysis. Addiction. 1999;94:1551–1573. doi: 10.1046/j.1360-0443.1999.9410155111.x.
    1. McKinnell R., Parchment R., Perantoni A., Pierce G., Damjanov I. The Biological Basis of Cancer. 2nd ed. Cambridge University Press; Cambridge, UK: 2006.
    1. Tsutsumi M., George J., Ishizawa K., Fukumura A., Takase S. Effect of chronic dietary ethanol in the promotion of n-nitrosomethylbenzylamine-induced esophageal carcinogenesis in rats. J. Gastroenterol. Hepatol. 2006;21:805–813. doi: 10.1111/j.1440-1746.2005.04040.x.
    1. Hilakivi-Clarke L., Cabanes A., de Assis S., Wang M., Khan G., Shoemaker W.J., Stevens R.G. In utero alcohol exposure increases mammary tumorigenesis in rats. Br. J. Cancer. 2004;90:2225–2231. doi: 10.1038/sj.bjc.6601793.
    1. Brandon-Warner E., Walling T.L., Schrum L.W., McKillop I.H. Chronic ethanol feeding accelerates hepatocellular carcinoma progression in a sex-dependent manner in a mouse model of hepatocarcinogenesis. Alcohol. Clin. Exp. Res. 2012;36:641–653. doi: 10.1111/j.1530-0277.2011.01660.x.
    1. Seitz H.K., Simanowski U.A., Garzon F.T., Rideout J.M., Peters T.J., Koch A., Berger M.R., Einecke H., Maiwald M. Possible role of acetaldehyde in ethanol-related rectal cocarcinogenesis in the rat. Gastroenterology. 1990;98:406–413. doi: 10.1016/0016-5085(90)90832-L.
    1. Beland F.A., Benson R.W., Mellick P.W., Kovatch R.M., Roberts D.W., Fang J.L., Doerge D.R. Effect of ethanol on the tumorigenicity of urethane (ethyl carbamate) in b6c3f1 mice. Food Chem. Toxicol. 2005;43:1–19. doi: 10.1016/j.fct.2004.07.018.
    1. Watabiki T., Okii Y., Tokiyasu T., Yoshimura S., Yoshida M., Akane A., Shikata N., Tsubura A. Long-term ethanol consumption in icr mice causes mammary tumor in females and liver fibrosis in males. Alcohol. Clin. Exp. Res. 2000;24:117S–122S.
    1. Jackson C.L., Hu F.B., Kawachi I., Williams D.R., Mukamal K.J., Rimm E.B. Black-white differences in the relationship between alcohol drinking patterns and mortality among us men and women. Am. J. Public Health. 2015;105(Suppl. 3):S534–S543. doi: 10.2105/AJPH.2015.302615.
    1. Seitz H.K., Oneta C.M. Gastrointestinal alcohol dehydrogenase. Nutr. Rev. 1998;56:52–60. doi: 10.1111/j.1753-4887.1998.tb01692.x.
    1. Xu M., Wang S., Ren Z., Frank J.A., Yang X.H., Zhang Z., Ke Z.J., Shi X., Luo J. Chronic ethanol exposure enhances the aggressiveness of breast cancer: The role of p38gamma. Oncotarget. 2016;7:3489–3505. doi: 10.18632/oncotarget.6508.
    1. Masso-Welch P.A., Tobias M.E., Vasantha Kumar S.C., Bodziak M., Mashtare T., Jr., Tamburlin J., Koury S.T. Folate exacerbates the effects of ethanol on peripubertal mouse mammary gland development. Alcohol. 2012;46:285–292. doi: 10.1016/j.alcohol.2011.12.003.
    1. Scoccianti C., Cecchini M., Anderson A.S., Berrino F., Boutron-Ruault M.C., Espina C., Key T.J., Leitzmann M., Norat T., Powers H., et al. European code against cancer 4th edition: Alcohol drinking and cancer. Cancer Epidemiol. 2016;45:181–188. doi: 10.1016/j.canep.2016.09.011.
    1. Forner A., Llovet J.M., Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–1255. doi: 10.1016/S0140-6736(11)61347-0.
    1. El-Serag H.B. Hepatocellular carcinoma. N. Engl. J. Med. 2011;365:1118–1127. doi: 10.1056/NEJMra1001683.
    1. Petri A.L., Tjonneland A., Gamborg M., Johansen D., Hoidrup S., Sorensen T.I., Gronbaek M. Alcohol intake, type of beverage, and risk of breast cancer in pre- and postmenopausal women. Alcohol. Clin. Exp. Res. 2004;28:1084–1090. doi: 10.1097/01.ALC.0000130812.85638.E1.
    1. Suzuki R., Orsini N., Mignone L., Saji S., Wolk A. Alcohol intake and risk of breast cancer defined by estrogen and progesterone receptor status—A meta-analysis of epidemiological studies. Int. J. Cancer. 2008;122:1832–1841. doi: 10.1002/ijc.23184.
    1. Li C.I., Chlebowski R.T., Freiberg M., Johnson K.C., Kuller L., Lane D., Lessin L., O’Sullivan M.J., Wactawski-Wende J., Yasmeen S., et al. Alcohol consumption and risk of postmenopausal breast cancer by subtype: The women’s health initiative observational study. J. Natl. Cancer Inst. 2010;102:1422–1431. doi: 10.1093/jnci/djq316.
    1. Li Y., Baer D., Friedman G.D., Udaltsova N., Shim V., Klatsky A.L. Wine, liquor, beer and risk of breast cancer in a large population. Eur. J. Cancer. 2009;45:843–850. doi: 10.1016/j.ejca.2008.11.001.
    1. Lew J.Q., Freedman N.D., Leitzmann M.F., Brinton L.A., Hoover R.N., Hollenbeck A.R., Schatzkin A., Park Y. Alcohol and risk of breast cancer by histologic type and hormone receptor status in postmenopausal women: The nih-aarp diet and health study. Am. J. Epidemiol. 2009;170:308–317. doi: 10.1093/aje/kwp120.
    1. Gago-Dominguez M., Castelao J.E., Gude F., Fernandez M.P., Aguado-Barrera M.E., Ponte S.M., Redondo C.M., Castelo M.E., Dominguez A.N., Garzon V.M., et al. Alcohol and breast cancer tumor subtypes in a Spanish cohort. Springerplus. 2016;5:39. doi: 10.1186/s40064-015-1630-2.
    1. Kwan M.L., Kushi L.H., Weltzien E., Maring B., Kutner S.E., Fulton R.S., Lee M.M., Ambrosone C.B., Caan B.J. Epidemiology of breast cancer subtypes in two prospective cohort studies of breast cancer survivors. Breast Cancer Res. 2009;11:R31. doi: 10.1186/bcr2261.
    1. Sun X., Tang Y., Tan X., Li Q., Zhong W., Sun X., Jia W., McClain C.J., Zhou Z. Activation of peroxisome proliferator-activated receptor-gamma by rosiglitazone improves lipid homeostasis at the adipose tissue-liver axis in ethanol-fed mice. Am. J. Phys. Gastrointest. Liver Phys. 2012;302:G548–G557.
    1. Kang L., Sebastian B.M., Pritchard M.T., Pratt B.T., Previs S.F., Nagy L.E. Chronic ethanol-induced insulin resistance is associated with macrophage infiltration into adipose tissue and altered expression of adipocytokines. Alcohol. Clin. Exp. Res. 2007;31:1581–1588. doi: 10.1111/j.1530-0277.2007.00452.x.
    1. Chen X., Sebastian B.M., Tang H., McMullen M.M., Axhemi A., Jacobsen D.W., Nagy L.E. Taurine supplementation prevents ethanol-induced decrease in serum adiponectin and reduces hepatic steatosis in rats. Hepatology. 2009;49:1554–1562. doi: 10.1002/hep.22811.
    1. Fulham M.A., Mandrekar P. Sexual dimorphism in alcohol induced adipose inflammation relates to liver injury. PLoS ONE. 2016;11:e0164225. doi: 10.1371/journal.pone.0164225.
    1. Cooper C.S., Foster C.S. Concepts of epigenetics in prostate cancer development. Br. J. Cancer. 2009;100:240–245. doi: 10.1038/sj.bjc.6604771.
    1. Wu A.H., Wan P., Bernstein L. A multiethnic population-based study of smoking, alcohol and body size and risk of adenocarcinomas of the stomach and esophagus (United States) Cancer Causes Control. 2001;12:721–732. doi: 10.1023/A:1011290704728.
    1. Lagergren J., Bergstrom R., Lindgren A., Nyren O. The role of tobacco, snuff and alcohol use in the aetiology of cancer of the oesophagus and gastric cardia. Int. J. Cancer. 2000;85:340–346. doi: 10.1002/(SICI)1097-0215(20000201)85:3<340::AID-IJC8>;2-N.
    1. Go V.L., Gukovskaya A., Pandol S.J. Alcohol and pancreatic cancer. Alcohol. 2005;35:205–211. doi: 10.1016/j.alcohol.2005.03.010.
    1. Gupta S., Wang F., Holly E.A., Bracci P.M. Risk of pancreatic cancer by alcohol dose, duration, and pattern of consumption, including binge drinking: A population-based study. Cancer Causes Control. 2010;21:1047–1059. doi: 10.1007/s10552-010-9533-6.
    1. Testino G. Alcoholic diseases in hepato-gastroenterology: A point of view. Hepatogastroenterology. 2008;55:371–377.
    1. Orywal K., Szmitkowski M. Alcohol dehydrogenase and aldehyde dehydrogenase in malignant neoplasms. Clin. Exp. Med. 2017;17:131–139. doi: 10.1007/s10238-016-0408-3.
    1. Jelski W., Kozlowski M., Laudanski J., Niklinski J., Szmitkowski M. Alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase activity in the sera of patients with esophageal cancer. Clin. Exp. Med. 2009;9:131–137. doi: 10.1007/s10238-008-0028-7.
    1. Jelski W., Zalewski B., Szmitkowski M. The activity of class i, ii, iii, and iv alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in liver cancer. Dig. Dis. Sci. 2008;53:2550–2555. doi: 10.1007/s10620-007-0153-2.
    1. Orywal K., Jelski W., Zdrodowski M., Szmitkowski M. The activity of class i, ii, iii and iv alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in cervical cancer. Clin. Biochem. 2011;44:1231–1234. doi: 10.1016/j.clinbiochem.2011.07.004.
    1. Asakage T., Yokoyama A., Haneda T., Yamazaki M., Muto M., Yokoyama T., Kato H., Igaki H., Tsujinaka T., Kumagai Y., et al. Genetic polymorphisms of alcohol and aldehyde dehydrogenases, and drinking, smoking and diet in japanese men with oral and pharyngeal squamous cell carcinoma. Carcinogenesis. 2007;28:865–874. doi: 10.1093/carcin/bgl206.
    1. Hiraki A., Matsuo K., Wakai K., Suzuki T., Hasegawa Y., Tajima K. Gene-gene and gene-environment interactions between alcohol drinking habit and polymorphisms in alcohol-metabolizing enzyme genes and the risk of head and neck cancer in Japan. Cancer Sci. 2007;98:1087–1091. doi: 10.1111/j.1349-7006.2007.00505.x.
    1. Coutelle C., Hohn B., Benesova M., Oneta C.M., Quattrochi P., Roth H.J., Schmidt-Gayk H., Schneeweiss A., Bastert G., Seitz H.K. Risk factors in alcohol associated breast cancer: Alcohol dehydrogenase polymorphism and estrogens. Int. J. Oncol. 2004;25:1127–1132.
    1. Visvanathan K., Crum R.M., Strickland P.T., You X., Ruczinski I., Berndt S.I., Alberg A.J., Hoffman S.C., Comstock G.W., Bell D.A., et al. Alcohol dehydrogenase genetic polymorphisms, low-to-moderate alcohol consumption, and risk of breast cancer. Alcohol. Clin. Exp. Res. 2007;31:467–476. doi: 10.1111/j.1530-0277.2006.00334.x.
    1. Covolo L., Gelatti U., Talamini R., Garte S., Trevisi P., Franceschi S., Franceschini M., Barbone F., Tagger A., Ribero M.L., et al. Alcohol dehydrogenase 3, glutathione s-transferase m1 and t1 polymorphisms, alcohol consumption and hepatocellular carcinoma (Italy) Cancer Causes Control. 2005;16:831–838. doi: 10.1007/s10552-005-2302-2.
    1. Cai Q., Wu J., Cai Q., Chen E.Z., Jiang Z.Y. Association between glu504lys polymorphism of ALDH2 gene and cancer risk: A meta-analysis. PLoS ONE. 2015;10:e0117173. doi: 10.1371/journal.pone.0117173.
    1. Yang S.J., Wang H.Y., Li X.Q., Du H.Z., Zheng C.J., Chen H.G., Mu X.Y., Yang C.X. Genetic polymorphisms of ADH and ALDH2association with esophageal cancer risk in southwest China. World J. Gastroenterol. 2007;13:5760–5764. doi: 10.3748/wjg.v13.i43.5760.
    1. Chen Y.J., Chen C., Wu D.C., Lee C.H., Wu C.I., Lee J.M., Goan Y.G., Huang S.P., Lin C.C., Li T.C., et al. Interactive effects of lifetime alcohol consumption and alcohol and aldehyde dehydrogenase polymorphisms on esophageal cancer risks. Int. J. Cancer. 2006;119:2827–2831. doi: 10.1002/ijc.22199.
    1. Munaka M., Kohshi K., Kawamoto T., Takasawa S., Nagata N., Itoh H., Oda S., Katoh T. Genetic polymorphisms of tobacco- and alcohol-related metabolizing enzymes and the risk of hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2003;129:355–360. doi: 10.1007/s00432-003-0439-5.
    1. Sakamoto T., Hara M., Higaki Y., Ichiba M., Horita M., Mizuta T., Eguchi Y., Yasutake T., Ozaki I., Yamamoto K., et al. Influence of alcohol consumption and gene polymorphisms of ADH2 and ALDH2 on hepatocellular carcinoma in a Japanese population. Int. J. Cancer. 2006;118:1501–1507. doi: 10.1002/ijc.21505.
    1. Liu W., Tian F., Dai L., Chai Y. Cytochrome p450 2e1 gene polymorphism and alcohol drinking on the risk of hepatocellular carcinoma: A meta-analysis. Mol. Biol. Rep. 2014;41:7645–7650. doi: 10.1007/s11033-014-3655-y.
    1. Rossini A., Rapozo D.C., Soares Lima S.C., Guimaraes D.P., Ferreira M.A., Teixeira R., Kruel C.D., Barros S.G., Andreollo N.A., Acatauassu R., et al. Polymorphisms of gstp1 and gstt1, but not of cyp2a6, cyp2e1 or gstm1, modify the risk for esophageal cancer in a western population. Carcinogenesis. 2007;28:2537–2542. doi: 10.1093/carcin/bgm222.
    1. Yang C.X., Matsuo K., Ito H., Hirose K., Wakai K., Saito T., Shinoda M., Hatooka S., Mizutani K., Tajima K. Esophageal cancer risk by ALDH2 and ADH2 polymorphisms and alcohol consumption: Exploration of gene-environment and gene-gene interactions. Asian Pac. J. Cancer Prev. 2005;6:256–262.
    1. Tsutsumi M., Wang J.S., Takase S., Takada A. Hepatic messenger RNA contents of cytochrome p4502e1 in patients with different p4502e1 genotypes. Alcohol Alcohol. Suppl. 1994;29:29–32. doi: 10.1016/0928-4346(94)90046-9.
    1. Suzuki T., Matsuo K., Hasegawa Y., Hiraki A., Wakai K., Hirose K., Saito T., Sato S., Ueda R., Tajima K. One-carbon metabolism-related gene polymorphisms and risk of head and neck squamous cell carcinoma: Case-control study. Cancer Sci. 2007;98:1439–1446. doi: 10.1111/j.1349-7006.2007.00533.x.
    1. Yang C.X., Matsuo K., Ito H., Shinoda M., Hatooka S., Hirose K., Wakai K., Saito T., Suzuki T., Maeda T., et al. Gene-environment interactions between alcohol drinking and the mthfr c677t polymorphism impact on esophageal cancer risk: Results of a case-control study in Japan. Carcinogenesis. 2005;26:1285–1290. doi: 10.1093/carcin/bgi076.
    1. Wang J., Gajalakshmi V., Jiang J., Kuriki K., Suzuki S., Nagaya T., Nakamura S., Akasaka S., Ishikawa H., Tokudome S. Associations between 5,10-methylenetetrahydrofolate reductase codon 677 and 1298 genetic polymorphisms and environmental factors with reference to susceptibility to colorectal cancer: A case-control study in an Indian population. Int. J. Cancer. 2006;118:991–997. doi: 10.1002/ijc.21438.
    1. Frosst P., Blom H.J., Milos R., Goyette P., Sheppard C.A., Matthews R.G., Boers G.J., den Heijer M., Kluijtmans L.A., van den Heuvel L.P., et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 1995;10:111–113. doi: 10.1038/ng0595-111.
    1. Platek M.E., Shields P.G., Marian C., McCann S.E., Bonner M.R., Nie J., Ambrosone C.B., Millen A.E., Ochs-Balcom H.M., Quick S.K., et al. Alcohol consumption and genetic variation in methylenetetrahydrofolate reductase and 5-methyltetrahydrofolate-homocysteine methyltransferase in relation to breast cancer risk. Cancer Epidemiol. Prev. Biomark. 2009;18:2453–2459. doi: 10.1158/1055-9965.EPI-09-0159.
    1. Saffroy R., Pham P., Chiappini F., Gross-Goupil M., Castera L., Azoulay D., Barrier A., Samuel D., Debuire B., Lemoine A. The mthfr 677c >T polymorphism is associated with an increased risk of hepatocellular carcinoma in patients with alcoholic cirrhosis. Carcinogenesis. 2004;25:1443–1448. doi: 10.1093/carcin/bgh147.
    1. Haorah J., Ramirez S.H., Floreani N., Gorantla S., Morsey B., Persidsky Y. Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radic. Biol. Med. 2008;45:1542–1550. doi: 10.1016/j.freeradbiomed.2008.08.030.
    1. Wu W.S. The signaling mechanism of ros in tumor progression. Cancer Metastasis Rev. 2006;25:695–705. doi: 10.1007/s10555-006-9037-8.
    1. Morgan M.J., Liu Z.G. Crosstalk of reactive oxygen species and nf-kappab signaling. Cell Res. 2011;21:103–115. doi: 10.1038/cr.2010.178.
    1. Wang F., Yang J.L., Yu K.K., Xu M., Xu Y.Z., Chen L., Lu Y.M., Fang H.S., Wang X.Y., Hu Z.Q., et al. Activation of the nf-kappab pathway as a mechanism of alcohol enhanced progression and metastasis of human hepatocellular carcinoma. Mol. Cancer. 2015;14:10. doi: 10.1186/s12943-014-0274-0.
    1. Shinohara M., Adachi Y., Mitsushita J., Kuwabara M., Nagasawa A., Harada S., Furuta S., Zhang Y., Seheli K., Miyazaki H., et al. Reactive oxygen generated by nadph oxidase 1 (nox1) contributes to cell invasion by regulating matrix metalloprotease-9 production and cell migration. J. Biol. Chem. 2010;285:4481–4488. doi: 10.1074/jbc.M109.071779.
    1. Sanchez-Alvarez R., Martinez-Outschoorn U.E., Lin Z., Lamb R., Hulit J., Howell A., Sotgia F., Rubin E., Lisanti M.P. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: Implications for breast cancer prevention. Cell Cycle. 2013;12:289–301. doi: 10.4161/cc.23109.
    1. Filaire E., Dupuis C., Galvaing G., Aubreton S., Laurent H., Richard R., Filaire M. Lung cancer: What are the links with oxidative stress, physical activity and nutrition. Lung Cancer. 2013;82:383–389. doi: 10.1016/j.lungcan.2013.09.009.
    1. Paschos A., Pandya R., Duivenvoorden W.C., Pinthus J.H. Oxidative stress in prostate cancer: Changing research concepts towards a novel paradigm for prevention and therapeutics. Prostate Cancer Prostatic Dis. 2013;16:217–225. doi: 10.1038/pcan.2013.13.
    1. Wang X.D. Alcohol, vitamin a, and cancer. Alcohol. 2005;35:251–258. doi: 10.1016/j.alcohol.2005.04.006.
    1. Tang X.H., Gudas L.J. Retinoids, retinoic acid receptors, and cancer. Annu. Rev. Pathol. 2011;6:345–364. doi: 10.1146/annurev-pathol-011110-130303.
    1. Chen K.C., Hsueh W.T., Ou C.Y., Huang C.C., Lee W.T., Fang S.Y., Tsai S.T., Huang J.S., Wong T.Y., Wu J.L., et al. Alcohol drinking obliterates the inverse association between serum retinol and risk of head and neck cancer. Medicine. 2015;94:e1064. doi: 10.1097/MD.0000000000001064.
    1. Chung J., Liu C., Smith D.E., Seitz H.K., Russell R.M., Wang X.D. Restoration of retinoic acid concentration suppresses ethanol-enhanced c-jun expression and hepatocyte proliferation in rat liver. Carcinogenesis. 2001;22:1213–1219. doi: 10.1093/carcin/22.8.1213.
    1. Bakiri L., Wagner E.F. Mouse models for liver cancer. Mol. Oncol. 2013;7:206–223. doi: 10.1016/j.molonc.2013.01.005.
    1. Uehara T., Ainslie G.R., Kutanzi K., Pogribny I.P., Muskhelishvili L., Izawa T., Yamate J., Kosyk O., Shymonyak S., Bradford B.U., et al. Molecular mechanisms of fibrosis-associated promotion of liver carcinogenesis. Toxicol. Sci. 2013;132:53–63. doi: 10.1093/toxsci/kfs342.
    1. Ambade A., Satishchandran A., Gyongyosi B., Lowe P., Szabo G. Adult mouse model of early hepatocellular carcinoma promoted by alcoholic liver disease. World J. Gastroenterol. 2016;22:4091–4108. doi: 10.3748/wjg.v22.i16.4091.
    1. Luo M., Yang F., Huang S.X., Kuang Z.P., Luo X.L., Li Y.D., Wu J.N., Xie Y.A. Two-stage model of chemically induced hepatocellular carcinoma in mouse. Oncol. Res. 2013;20:517–528. doi: 10.3727/096504013X13747716581336.
    1. Vargo-Gogola T., Rosen J.M. Modelling breast cancer: One size does not fit all. Nat. Rev. Cancer. 2007;7:659–672. doi: 10.1038/nrc2193.
    1. Furukawa F., Nishikawa A., Lee I.S., Son H.Y., Nakamura H., Miyauchi M., Takahashi M., Hirose M. Inhibition by methionine of pancreatic carcinogenesis in hamsters after initiation with N-nitrosobis(2-oxopropyl) amine. Cancer Lett. 2000;152:163–167. doi: 10.1016/S0304-3835(99)00448-6.
    1. Z’Graggen K., Warshaw A.L., Werner J., Graeme-Cook F., Jimenez R.E., Fernandez-Del Castillo C. Promoting effect of a high-fat/high-protein diet in dmba-induced ductal pancreatic cancer in rats. Ann. Surg. 2001;233:688–695. doi: 10.1097/00000658-200105000-00013.
    1. Schuller H.M., Jorquera R., Reichert A., Castonguay A. Transplacental induction of pancreas tumors in hamsters by ethanol and the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res. 1993;53:2498–2501.
    1. Wendt L.R., Osvaldt A.B., Bersch V.P., Schumacher Rde C., Edelweiss M.I., Rohde L. Pancreatic intraepithelial neoplasia and ductal adenocarcinoma induced by dmba in mice: Effects of alcohol and caffeine. Acta Cir. Bras. 2007;22:202–209. doi: 10.1590/S0102-86502007000300008.
    1. Tanaka T. Colorectal carcinogenesis: Review of human and experimental animal studies. J. Carcinog. 2009;8:5. doi: 10.4103/1477-3163.49014.
    1. Niwa K., Tanaka T., Sugie S., Shinoda T., Kato K., Tamaya T., Mori H. Enhancing effect of ethanol or sake on methylazoxymethanol acetate-initiated large bowel carcinogenesis in aci/n rats. Nutr. Cancer. 1991;15:229–237. doi: 10.1080/01635589109514131.
    1. Hayashi N., Tsutsumi M., Fukura M., Yano H., Tsuchishima M., Takase S. Effect of chronic dietary ethanol consumption on colonic cancer in rats induced by 1,1-dimethylhydrazine. Alcohol. Clin. Exp. Res. 2007;31:S72–S76. doi: 10.1111/j.1530-0277.2006.00290.x.
    1. Frese K.K., Tuveson D.A. Maximizing mouse cancer models. Nat. Rev. Cancer. 2007;7:645–658. doi: 10.1038/nrc2192.
    1. Valentine J.L., Lee S.S., Seaton M.J., Asgharian B., Farris G., Corton J.C., Gonzalez F.J., Medinsky M.A. Reduction of benzene metabolism and toxicity in mice that lack cyp2e1 expression. Toxicol. Appl. Pharmacol. 1996;141:205–213. doi: 10.1016/S0041-008X(96)80026-3.
    1. Wong F.W., Chan W.Y., Lee S.S. Resistance to carbon tetrachloride-induced hepatotoxicity in mice which lack cyp2e1 expression. Toxicol. Appl. Pharmacol. 1998;153:109–118. doi: 10.1006/taap.1998.8547.
    1. Skarnes W.C., Rosen B., West A.P., Koutsourakis M., Bushell W., Iyer V., Mujica A.O., Thomas M., Harrow J., Cox T., et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474:337–342. doi: 10.1038/nature10163.
    1. Stagos D., Chen Y., Brocker C., Donald E., Jackson B.C., Orlicky D.J., Thompson D.C., Vasiliou V. Aldehyde dehydrogenase 1b1: Molecular cloning and characterization of a novel mitochondrial acetaldehyde-metabolizing enzyme. Drug Metab. Dispos. 2010;38:1679–1687. doi: 10.1124/dmd.110.034678.
    1. Lassen N., Bateman J.B., Estey T., Kuszak J.R., Nees D.W., Piatigorsky J., Duester G., Day B.J., Huang J., Hines L.M., et al. Multiple and additive functions of aldh3a1 and aldh1a1: Cataract phenotype and ocular oxidative damage in aldh3a1(-/-)/aldh1a1(-/-) knock-out mice. J. Biol. Chem. 2007;282:25668–25676. doi: 10.1074/jbc.M702076200.
    1. Chen Y., Krishan M., Nebert D.W., Shertzer H.G. Glutathione-deficient mice are susceptible to tcdd-induced hepatocellular toxicity but resistant to steatosis. Chem. Res. Toxicol. 2012;25:94–100. doi: 10.1021/tx200242a.
    1. McConnachie L.A., Mohar I., Hudson F.N., Ware C.B., Ladiges W.C., Fernandez C., Chatterton-Kirchmeier S., White C.C., Pierce R.H., Kavanagh T.J. Glutamate cysteine ligase modifier subunit deficiency and gender as determinants of acetaminophen-induced hepatotoxicity in mice. Toxicol. Sci. 2007;99:628–636. doi: 10.1093/toxsci/kfm165.
    1. Chen Y., Johansson E., Yang Y., Miller M.L., Shen D., Orlicky D.J., Shertzer H.G., Vasiliou V., Nebert D.W., Dalton T.P. Oral n-acetylcysteine rescues lethality of hepatocyte-specific gclc-knockout mice, providing a model for hepatic cirrhosis. J. Hepatol. 2010;53:1085–1094. doi: 10.1016/j.jhep.2010.05.028.
    1. Aguirre A.J., Bardeesy N., Sinha M., Lopez L., Tuveson D.A., Horner J., Redston M.S., DePinho R.A. Activated kras and ink4a/arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes. Dev. 2003;17:3112–3126. doi: 10.1101/gad.1158703.
    1. Tuveson D.A., Zhu L., Gopinathan A., Willis N.A., Kachatrian L., Grochow R., Pin C.L., Mitin N.Y., Taparowsky E.J., Gimotty P.A., et al. Mist1-krasg12d knock-in mice develop mixed differentiation metastatic exocrine pancreatic carcinoma and hepatocellular carcinoma. Cancer Res. 2006;66:242–247. doi: 10.1158/0008-5472.CAN-05-2305.
    1. Kojima K., Vickers S.M., Adsay N.V., Jhala N.C., Kim H.G., Schoeb T.R., Grizzle W.E., Klug C.A. Inactivation of smad4 accelerates kras(g12d)-mediated pancreatic neoplasia. Cancer Res. 2007;67:8121–8130. doi: 10.1158/0008-5472.CAN-06-4167.
    1. De Minicis S., Marzioni M., Benedetti A., Svegliati-Baroni G. New insights in hepatocellular carcinoma: From bench to bedside. Ann. Transl. Med. 2013;1:15.
    1. Heindryckx F., Colle I., Van Vlierberghe H. Experimental mouse models for hepatocellular carcinoma research. Int. J. Exp. Pathol. 2009;90:367–386. doi: 10.1111/j.1365-2613.2009.00656.x.
    1. Urnov F.D., Miller J.C., Lee Y.L., Beausejour C.M., Rock J.M., Augustus S., Jamieson A.C., Porteus M.H., Gregory P.D., Holmes M.C. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005;435:646–651. doi: 10.1038/nature03556.
    1. Zhang S., Li L., Kendrick S.L., Gerard R.D., Zhu H. Talen-mediated somatic mutagenesis in murine models of cancer. Cancer Res. 2014;74:5311–5321. doi: 10.1158/0008-5472.CAN-14-0529.
    1. Mou H., Kennedy Z., Anderson D.G., Yin H., Xue W. Precision cancer mouse models through genome editing with crispr-cas9. Genome Med. 2015;7:53. doi: 10.1186/s13073-015-0178-7.
    1. Hutmacher D.W., Horch R.E., Loessner D., Rizzi S., Sieh S., Reichert J.C., Clements J.A., Beier J.P., Arkudas A., Bleiziffer O., et al. Translating tissue engineering technology platforms into cancer research. J. Cell. Mol. Med. 2009;13:1417–1427. doi: 10.1111/j.1582-4934.2009.00853.x.
    1. Sun F.X., Tang Z.Y., Lui K.D., Ye S.L., Xue Q., Gao D.M., Ma Z.C. Establishment of a metastatic model of human hepatocellular carcinoma in nude mice via orthotopic implantation of histologically intact tissues. Int. J. Cancer. 1996;66:239–243. doi: 10.1002/(SICI)1097-0215(19960410)66:2<239::AID-IJC17>;2-7.
    1. Busby B., Tan W., Covington J., Young E., Gu J.-W. Chronic alcohol consumption increases tumor growth and angiogenesis of breast cancer in female mice. FASEB J. 2007;21:A527.
    1. Garrido-Laguna I., Uson M., Rajeshkumar N.V., Tan A.C., de Oliveira E., Karikari C., Villaroel M.C., Salomon A., Taylor G., Sharma R., et al. Tumor engraftment in nude mice and enrichment in stroma- related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin. Cancer Res. 2011;17:5793–5800. doi: 10.1158/1078-0432.CCR-11-0341.
    1. Schreiber R.D., Old L.J., Smyth M.J. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–1570. doi: 10.1126/science.1203486.
    1. Jeong W.I., Park O., Gao B. Abrogation of the antifibrotic effects of natural killer cells/interferon-gamma contributes to alcohol acceleration of liver fibrosis. Gastroenterology. 2008;134:248–258. doi: 10.1053/j.gastro.2007.09.034.
    1. Jeong W.I., Gao B. Innate immunity and alcoholic liver fibrosis. J. Gastroenterol. Hepatol. 2008;23(Suppl. 1):S112–S118. doi: 10.1111/j.1440-1746.2007.05274.x.
    1. Zhang H., Meadows G.G. Exogenous il-15 in combination with il-15r alpha rescues natural killer cells from apoptosis induced by chronic alcohol consumption. Alcohol. Clin. Exp. Res. 2009;33:419–427. doi: 10.1111/j.1530-0277.2008.00852.x.
    1. Gallucci R.M., Pfister L.J., Meadows G.G. Effects of ethanol consumption on enriched natural killer cells from c57bl/6 mice. Alcohol. Clin. Exp. Res. 1994;18:625–631. doi: 10.1111/j.1530-0277.1994.tb00921.x.
    1. Wu W.J., Wolcott R.M., Pruett S.B. Ethanol decreases the number and activity of splenic natural killer cells in a mouse model for binge drinking. J. Pharmacol. Exp. Ther. 1994;271:722–729.
    1. Ben-Eliyahu S., Page G.G., Yirmiya R., Taylor A.N. Acute alcohol intoxication suppresses natural killer cell activity and promotes tumor metastasis. Nat. Med. 1996;2:457–460. doi: 10.1038/nm0496-457.
    1. Baskic D., Vujanovic L., Arsenijevic N., Whiteside T.L., Myers E.N., Vujanovic N.L. Suppression of natural killer-cell and dendritic-cell apoptotic tumoricidal activity in patients with head and neck cancer. Head Neck. 2013;35:388–398. doi: 10.1002/hed.22968.
    1. Santos M.F., Mannam V.K., Craft B.S., Puneky L.V., Sheehan N.T., Lewis R.E., Cruse J.M. Comparative analysis of innate immune system function in metastatic breast, colorectal, and prostate cancer patients with circulating tumor cells. Exp. Mol. Pathol. 2014;96:367–374. doi: 10.1016/j.yexmp.2014.04.001.
    1. Zimmermann H.W., Seidler S., Gassler N., Nattermann J., Luedde T., Trautwein C., Tacke F. Interleukin-8 is activated in patients with chronic liver diseases and associated with hepatic macrophage accumulation in human liver fibrosis. PLoS ONE. 2011;6:e21381. doi: 10.1371/journal.pone.0021381.
    1. Kiecolt-Glaser J.K., Preacher K.J., MacCallum R.C., Atkinson C., Malarkey W.B., Glaser R. Chronic stress and age-related increases in the proinflammatory cytokine il-6. Proc. Natl. Acad. Sci. USA. 2003;100:9090–9095. doi: 10.1073/pnas.1531903100.
    1. Strobel O., Dor Y., Alsina J., Stirman A., Lauwers G., Trainor A., Castillo C.F., Warshaw A.L., Thayer S.P. In vivo lineage tracing defines the role of acinar-to-ductal transdifferentiation in inflammatory ductal metaplasia. Gastroenterology. 2007;133:1999–2009. doi: 10.1053/j.gastro.2007.09.009.
    1. Uemura N., Okamoto S., Yamamoto S., Matsumura N., Yamaguchi S., Yamakido M., Taniyama K., Sasaki N., Schlemper R.J. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 2001;345:784–789. doi: 10.1056/NEJMoa001999.
    1. Eaden J.A., Abrams K.R., Mayberry J.F. The risk of colorectal cancer in ulcerative colitis: A meta-analysis. Gut. 2001;48:526–535. doi: 10.1136/gut.48.4.526.
    1. Jankowski J.A., Harrison R.F., Perry I., Balkwill F., Tselepis C. Barrett’s metaplasia. Lancet. 2000;356:2079–2085. doi: 10.1016/S0140-6736(00)03411-5.
    1. Ninomiya T., Akbar S.M., Masumoto T., Horiike N., Onji M. Dendritic cells with immature phenotype and defective function in the peripheral blood from patients with hepatocellular carcinoma. J. Hepatol. 1999;31:323–331. doi: 10.1016/S0168-8278(99)80231-1.
    1. Szabo G., Dolganiuc A. Subversion of plasmacytoid and myeloid dendritic cell functions in chronic HCV infection. Immunobiology. 2005;210:237–247. doi: 10.1016/j.imbio.2005.05.018.
    1. Szabo G., Dolganiuc A., Mandrekar P., White B. Inhibition of antigen-presenting cell functions by alcohol: Implications for hepatitis c virus infection. Alcohol. 2004;33:241–249. doi: 10.1016/j.alcohol.2004.07.003.
    1. Dolganiuc A., Kodys K., Kopasz A., Marshall C., Mandrekar P., Szabo G. Additive inhibition of dendritic cell allostimulatory capacity by alcohol and hepatitis c is not restored by dc maturation and involves abnormal il-10 and il-2 induction. Alcohol. Clin. Exp. Res. 2003;27:1023–1031. doi: 10.1111/j.1530-0277.2003.tb04431.x.
    1. Dolganiuc A., Kodys K., Kopasz A., Marshall C., Do T., Romics L., Jr., Mandrekar P., Zapp M., Szabo G. Hepatitis c virus core and nonstructural protein 3 proteins induce pro- and anti-inflammatory cytokines and inhibit dendritic cell differentiation. J. Immunol. 2003;170:5615–5624. doi: 10.4049/jimmunol.170.11.5615.
    1. Erdag G., Schaefer J.T., Smolkin M.E., Deacon D.H., Shea S.M., Dengel L.T., Patterson J.W., Slingluff C.L., Jr. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res. 2012;72:1070–1080. doi: 10.1158/0008-5472.CAN-11-3218.
    1. Fridman W.H., Pages F., Sautes-Fridman C., Galon J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer. 2012;12:298–306. doi: 10.1038/nrc3245.
    1. Eyles J., Puaux A.L., Wang X., Toh B., Prakash C., Hong M., Tan T.G., Zheng L., Ong L.C., Jin Y., et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Investig. 2010;120:2030–2039. doi: 10.1172/JCI42002.
    1. Song G., Wang X., Jia J., Yuan Y., Wan F., Zhou X., Yang H., Ren J., Gu J., Lyerly H.K. Elevated level of peripheral cd8(+)cd28(-) t lymphocytes are an independent predictor of progression-free survival in patients with metastatic breast cancer during the course of chemotherapy. Cancer Immunol. Immunother. 2013;62:1123–1130. doi: 10.1007/s00262-013-1424-8.
    1. Liu T., Peng L., Yu P., Zhao Y., Shi Y., Mao X., Chen W., Cheng P., Wang T., Chen N., et al. Increased circulating th22 and th17 cells are associated with tumor progression and patient survival in human gastric cancer. J. Clin. Immunol. 2012;32:1332–1339. doi: 10.1007/s10875-012-9718-8.
    1. Hunt J.D., Robert E.G., Zieske A.W., Bautista A.P., Bukara M., Lei D., Shellito J.E., Nelson S., Kolls J.K., Skrepnik N. Orthotopic human lung carcinoma xenografts in balb/c mice immunosuppressed with anti-cd4 monoclonal antibodies and chronic alcohol consumption. Cancer. 2000;88:468–479. doi: 10.1002/(SICI)1097-0142(20000115)88:2<468::AID-CNCR30>;2-#.
    1. Zhang H., Meadows G.G. Chronic alcohol consumption enhances myeloid-derived suppressor cells in b16bl6 melanoma-bearing mice. Cancer Immunol. Immunother. 2010;59:1151–1159. doi: 10.1007/s00262-010-0837-x.
    1. Zhang H., Zhu Z., Meadows G.G. Chronic alcohol consumption impairs distribution and compromises circulation of b cells in b16bl6 melanoma-bearing mice. J. Immunol. 2012;189:1340–1348. doi: 10.4049/jimmunol.1200442.
    1. Zhu B., Bando Y., Xiao S., Yang K., Anderson A.C., Kuchroo V.K., Khoury S.J. Cd11b+ly-6c(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J. Immunol. 2007;179:5228–5237. doi: 10.4049/jimmunol.179.8.5228.
    1. DiLillo D.J., Yanaba K., Tedder T.F. B cells are required for optimal cd4+ and cd8+ t cell tumor immunity: Therapeutic b cell depletion enhances b16 melanoma growth in mice. J. Immunol. 2010;184:4006–4016. doi: 10.4049/jimmunol.0903009.
    1. Inoue S., Leitner W.W., Golding B., Scott D. Inhibitory effects of b cells on antitumor immunity. Cancer Res. 2006;66:7741–7747. doi: 10.1158/0008-5472.CAN-05-3766.
    1. Ruddell A., Harrell M.I., Furuya M., Kirschbaum S.B., Iritani B.M. B lymphocytes promote lymphogenous metastasis of lymphoma and melanoma. Neoplasia. 2011;13:748–757. doi: 10.1593/neo.11756.
    1. Horikawa M., Minard-Colin V., Matsushita T., Tedder T.F. Regulatory b cell production of il-10 inhibits lymphoma depletion during cd20 immunotherapy in mice. J. Clin. Investig. 2011;121:4268–4280. doi: 10.1172/JCI59266.
    1. Parekh V.V., Lalani S., Kim S., Halder R., Azuma M., Yagita H., Kumar V., Wu L., Kaer L.V. Pd-1/pd-l blockade prevents anergy induction and enhances the anti-tumor activities of glycolipid-activated invariant nkt cells. J. Immunol. 2009;182:2816–2826. doi: 10.4049/jimmunol.0803648.
    1. Vasiliou V., Zakhari S., Seitz H.K., Hoek J.B. Biological Basis of Alcohol-Induced Cancer. 1st ed. Springer International Publishing; Basel, Switzerland: 2015.

Source: PubMed

Подписаться