Effect of N-acetylcysteine in COPD patients with different microsomal epoxide hydrolase genotypes

Jian-Qing Zhang, Jia-Qiang Zhang, Hua Liu, Zhi-Huan Zhao, Li-Zhou Fang, Ling Liu, Wei-Ping Fu, Jing-Kui Shu, Jia-Gang Feng, Lu-Ming Dai, Jian-Qing Zhang, Jia-Qiang Zhang, Hua Liu, Zhi-Huan Zhao, Li-Zhou Fang, Ling Liu, Wei-Ping Fu, Jing-Kui Shu, Jia-Gang Feng, Lu-Ming Dai

Abstract

Background: The role of the antioxidant N-acetylcysteine (NAC) in the treatment of chronic obstructive pulmonary disease (COPD) has not been clarified as yet. In early studies, we found that the proportion of smokers with COPD having extremely slow/slow microsomal epoxide hydrolase (EPHX1) enzyme activity is significantly higher than that in healthy smokers. The purpose of this study was to evaluate whether different EPHX1 enzyme activity is related to differential therapeutic effects of treatment with NAC in COPD.

Methods: A total of 219 patients with COPD were randomly allocated to an extremely slow/slow EPHX1 enzyme activity group (n=157) or a fast/normal EPHX1 enzyme activity group (n=62) according to their EPHX1 enzyme activity. Both groups were treated with NAC 600 mg twice daily for one year. The main study parameters, including forced expiratory volume in one second (FEV1), St George's Respiratory Questionnaire (SGRQ), and yearly exacerbation rate, were measured at baseline and at 6-month intervals for one year.

Results: Both FEV1 and SGRQ symptom scores were improved after treatment with NAC in the slow activity group when compared with the fast activity group. Further, changes in FEV1 and SGRQ symptom score in patients with mild-to-moderate COPD were more significant than those in patients with severe-to-very severe COPD. The yearly exacerbation rates were reduced in both groups, but the reduction in the slow activity group was significantly lower than in the fast activity group.

Conclusion: NAC treatment in COPD patients with extremely slow/slow EPHX1 enzyme activity improves FEV1 and the SGRQ symptom score, especially in those with mild-to-moderate COPD, and polymorphism in the EPHX1 gene may have a significant role in differential responses to treatment with NAC in patients with COPD.

Keywords: N-acetylcysteine; chronic obstructive pulmonary disease; microsomal epoxide hydrolase; polymorphism.

Figures

Figure 1
Figure 1
FEV1 versus NAC treatment in the two groups. Abbreviations: FEV1, forced expiratory volume in one second; NAC, N- acetylcysteine.
Figure 2
Figure 2
FEV1 versus NAC treatment in the two subgroups of the slow activity group. Abbreviations: FEV1, forced expiratory volume in one second; GOLD, Global Initiative for Chronic Obstructive Lung Disease stage; NAC, N-acetylcysteine.

References

    1. MacNee W. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(1):50–60.
    1. Spruit MA, Singh SJ, Garvey C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013;188(8):e13–e64.
    1. Vestbo J, Hurd SS, Agusti AG, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–365.
    1. Zhong L, Zhang YP, Fu WP, Dai LM, Sun C, Wang YQ. The relationship between GSTP1 I105V polymorphism and COPD: a reappraisal. Am J Respir Crit Care Med. 2010;181(7):763–765.
    1. Zhong L, Fu WP, Sun C, Dai LM, Zhang YP. Absence of association between SERPINE2 genetic polymorphisms and chronic obstructive pulmonary disease in Han Chinese: a case-control cohort study. BMC Med Genet. 2009;10:66.
    1. Fu WP, Sun C, Dai LM, Yang LF, Zhang YP. Relationship between COPD and polymorphisms of HOX-1 and mEPH in a Chinese population. Oncol Rep. 2007;17(2):483–488.
    1. Li H, Fu WP, Hong ZH. Microsomal epoxide hydrolase gene polymorphisms and risk of chronic obstructive pulmonary disease: a comprehensive meta-analysis. Oncol Lett. 2013;5(3):1022–1030.
    1. Dekhuijzen PN. Antioxidant properties of N-acetylcysteine: their relevance in relation to chronic obstructive pulmonary disease. Eur Respir J. 2004;23(4):629–636.
    1. Ueno T, Yamada M, Igarashi Y, Ogawa T. N-acetyl cysteine protects osteoblastic function from oxidative stress. J Biomed Mater Res A. 2011;99(4):523–531.
    1. van Overveld FJ, Demkow U, Gorecka D, de Backer WA, Zielinski J. New developments in the treatment of COPD: comparing the effects of inhaled corticosteroids and N-acetylcysteine. J Physiol Pharmacol. 2005;56(Suppl 4):135–142.
    1. Gerrits CM, Herings RM, Leufkens HG, Lammers JW. N-acetylcysteine reduces the risk of re-hospitalisation among patients with chronic obstructive pulmonary disease. Eur Respir J. 2003;21(5):795–798.
    1. Pela R, Calcagni AM, Subiaco S, Isidori P, Tubaldi A, Sanguinetti CM. N-acetylcysteine reduces the exacerbation rate in patients with moderate to severe COPD. Respiration. 1999;66(6):495–500.
    1. Tse HN, Raiteri L, Wong KY, et al. High-dose N-acetylcysteine in stable COPD: the 1-year, double-blind, randomized, placebo-controlled HIACE study. Chest. 2013;144(1):106–118.
    1. Zheng JP, Wen FQ, Bai CX, et al. Twice daily N-acetylcysteine 600 mg for exacerbations of chronic obstructive pulmonary disease (PANTHEON): a randomised, double-blind placebo-controlled trial. Lancet Respir Med. 2014;2(3):187–194.
    1. Stav D, Raz M. Effect of N-acetylcysteine on air trapping in COPD: a randomized placebo-controlled study. Chest. 2009;136(2):381–386.
    1. Schermer T, Chavannes N, Dekhuijzen R, et al. Fluticasone and N-acetylcysteine in primary care patients with COPD or chronic bronchitis. Respir Med. 2009;103(4):542–551.
    1. Decramer M, Rutten-van Molken M, Dekhuijzen PN, et al. Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomised placebo-controlled trial. Lancet. 2005;365(9470):1552–1560.
    1. Smith CA, Harrison DJ. Association between polymorphism in gene for microsomal epoxide hydrolase and susceptibility to emphysema. Lancet. 1997;350(9078):630–633.
    1. American Thoracic Society Standardization of Spirometry, 1994 Update. Am J Respir Crit Care Med. 1995;152(3):1107–1136.
    1. Park JY, Chen L, Wadhwa N, Tockman MS. Polymorphisms for microsomal epoxide hydrolase and genetic susceptibility to COPD. Int J Mol Med. 2005;15(3):443–448.
    1. Rodriguez F, Jardi R, Costa X, et al. Detection of polymorphisms at exons 3 (Tyr113 – >His) and 4 (His139 – >Arg) of the microsomal epoxide hydrolase gene using fluorescence PCR method combined with melting curves analysis. Anal Biochem. 2002;308(1):120–126.
    1. Sandford AJ, Chagani T, Weir TD, Connett JE, Anthonisen NR, Pare PD. Susceptibility genes for rapid decline of lung function in the lung health study. Am J Respir Crit Care Med. 2001;163(2):469–473.
    1. Yoshikawa M, Hiyama K, Ishioka S, Maeda H, Maeda A, Yamakido M. Microsomal epoxide hydrolase genotypes and chronic obstructive pulmonary disease in Japanese. Int J Mol Med. 2000;5(1):49–53.
    1. Maekawa K, Itoda M, Hanioka N, et al. Non-synonymous single nucleotide alterations in the microsomal epoxide hydrolase gene and their functional effects. Xenobiotica. 2003;33(3):277–287.
    1. Hassett C, Aicher L, Sidhu JS, Omiecinski CJ. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet. 1994;3(3):421–428.
    1. De Backer J, Vos W, Van Holsbeke C, et al. Effect of high-dose N-acetylcysteine on airway geometry, inflammation, and oxidative stress in COPD patients. Int J Chron Obstruct Pulmon Dis. 2013;8:569–579.
    1. Shen Y, Cai W, Lei S, Zhang Z. Effect of high/low dose N-acetylcysteine on chronic obstructive pulmonary disease: a systematic review and meta-analysis. COPD. 2014;11(3):351–358.
    1. Stey C, Steurer J, Bachmann S, Medici TC, Tramer MR. The effect of oral N-acetylcysteine in chronic bronchitis: a quantitative systematic review. Eur Respir J. 2000;16(2):253–262.
    1. Sutherland ER, Crapo JD, Bowler RP. N-acetylcysteine and exacerbations of chronic obstructive pulmonary disease. COPD. 2006;3(4):195–202.
    1. Zuin R, Palamidese A, Negrin R, Catozzo L, Scarda A, Balbinot M. High-dose N-acetylcysteine in patients with exacerbations of chronic obstructive pulmonary disease. Clin Drug Invest. 2005;25(6):401–408.
    1. Lomas DA, Silverman EK. The genetics of chronic obstructive pulmonary disease. Respir Res. 2001;2(1):20–26.
    1. Sampsonas F, Karkoulias K, Kaparianos A, Spiropoulos K. Genetics of chronic obstructive pulmonary disease, beyond a1-antitrypsin deficiency. Curr Med Chem. 2006;13(24):2857–2873.
    1. Zheng JP, Kang J, Huang SG, et al. Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE Study): a randomised placebo-controlled study. Lancet. 2008;371(9629):2013–2018.

Source: PubMed

Подписаться