Neutrophil Adaptations upon Recruitment to the Lung: New Concepts and Implications for Homeostasis and Disease

Vincent D Giacalone, Camilla Margaroli, Marcus A Mall, Rabindra Tirouvanziam, Vincent D Giacalone, Camilla Margaroli, Marcus A Mall, Rabindra Tirouvanziam

Abstract

Neutrophils have a prominent role in all human immune responses against any type of pathogen or stimulus. The lungs are a major neutrophil reservoir and neutrophilic inflammation is a primary response to both infectious and non-infectious challenges. While neutrophils are well known for their essential role in clearance of bacteria, they are also equipped with specific mechanisms to counter viruses and fungi. When these defense mechanisms become aberrantly activated in the absence of infection, this commonly results in debilitating chronic lung inflammation. Clearance of bacteria by phagocytosis is the hallmark role of neutrophils and has been studied extensively. New studies on neutrophil biology have revealed that this leukocyte subset is highly adaptable and fulfills diverse roles. Of special interest is how these adaptations can impact the outcome of an immune response in the lungs due to their potent capacity for clearing infection and causing damage to host tissue. The adaptability of neutrophils and their propensity to influence the outcome of immune responses implicates them as a much-needed target of future immunomodulatory therapies. This review highlights the recent advances elucidating the mechanisms of neutrophilic inflammation, with a focus on the lung environment due to the immense and growing public health burden of chronic lung diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), and acute lung inflammatory diseases such as transfusion-related acute lung injury (TRALI).

Keywords: margination; metabolism; scavenging; stress response; transcription.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Overview of neutrophil recruitment and response in the lung. As a major neutrophil reservoir, the lungs are an important environment in the study of neutrophil biology, both at homeostasis and in responding to inflammatory stimuli. (a) Endothelial cells upregulate P-selectin to bind P-selectin glycoprotein ligand-1 on circulating naive neutrophils. Upon slowing down, neutrophil β2 integrin binds with higher affinity to ICAM-1 on the endothelial cell surface followed by extravasation into the tissue. (b) Recruited neutrophils recognize pathogen-associated molecular patterns from all types of pathogens by surface pattern recognition receptors. Phagocytosed pathogens are degraded internally by fusion of the granules with the phagosome. (c) Neutrophils quickly apoptose and are cleared by tissue macrophages. (d) Neutrophil recruitment can also lead to alternate fates. Dysregulated neutrophil responses in diseases such as CF and COPD include the GRIM (granule releasing, immunomodulatory, and metabolically active) phenotype which exhibits active degranulation but impaired pathogen clearance. The release of NE damages host tissue while sustained CXCL8 production drives further neutrophil recruitment. Neutrophils can also expel their DNA through NETosis, but may survive and retain phagocytic capability.
Figure 2
Figure 2
Neutrophil responses to viral infection. Neutrophils have an important role in antiviral immunity. (a) Neutrophils are recruited to sites of viral infection in the lung via signaling through MyD88 and TRIF. Interleukin-1β production by the NLRP3 inflammasome in resident antigen presenting cells drives recruitment. (b) once in the tissue, MAVS signaling initiates neutrophil activation and production of inflammatory mediators. Neutrophils engulf antibody-bound virions via surface Fc receptors. (c) The inhibitory receptor LAIR-1 binds collagen and suppresses neutrophil activity. (d) Transcriptional regulators such as BCL6 suppress apoptosis and represent a potential target for enhancing neutrophil-mediated antiviral immunity.

References

    1. Segal A.W. How neutrophils kill microbes. Annu. Rev. Immunol. 2005;23:197–223. doi: 10.1146/annurev.immunol.23.021704.115653.
    1. Gazendam R.P., van de Geer A., Roos D., van den Berg T.K., Kuijpers T.W. How neutrophils kill fungi. Immunol. Rev. 2016;273:299–311. doi: 10.1111/imr.12454.
    1. Jenne C.N., Wong C.H., Zemp F.J., McDonald B., Rahman M.M., Forsyth P.A., McFadden G., Kubes P. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe. 2013;13:169–180. doi: 10.1016/j.chom.2013.01.005.
    1. Ingersoll S.A., Laval J., Forrest O.A., Preininger M., Brown M.R., Arafat D., Gibson G., Tangpricha V., Tirouvanziam R. Mature cystic fibrosis airway neutrophils suppress T cell function: Evidence for a role of arginase 1 but not programmed death-ligand 1. J. Immunol. 2015;194:5520–5528. doi: 10.4049/jimmunol.1500312.
    1. Sippel T.R., White J., Nag K., Tsvankin V., Klaassen M., Kleinschmidt-DeMasters B.K., Waziri A. Neutrophil degranulation and immunosuppression in patients with GBM: Restoration of cellular immune function by targeting arginase I. Clin. Cancer Res. 2011;17:6992–7002. doi: 10.1158/1078-0432.CCR-11-1107.
    1. Domon H., Nagai K., Maekawa T., Oda M., Yonezawa D., Takeda W., Hiyoshi T., Tamura H., Yamaguchi M., Kawabata S., et al. Neutrophil elastase subverts the immune response by cleaving Toll-like receptors and cytokines in pneumococcal pneumonia. Front. Immunol. 2018;9:732. doi: 10.3389/fimmu.2018.00732.
    1. Doring G., Frank F., Boudier C., Herbert S., Fleischer B., Bellon G. Cleavage of lymphocyte surface antigens CD2, CD4, and CD8 by polymorphonuclear leukocyte elastase and cathepsin G in patients with cystic fibrosis. J. Immunol. 1995;154:4842–4850.
    1. Folds J.D., Prince H., Spitznagel J.K. Limited cleavage of human immunoglobulins by elastase of human neutrophil polymorphonuclear granulocytes. Possible modulator of immune complex disease. Lab. Investig. 1978;39:313–321.
    1. Silvestre-Roig C., Fridlender Z.G., Glogauer M., Scapini P. Neutrophil diversity in health and disease. Trends Immunol. 2019;40:565–583. doi: 10.1016/j.it.2019.04.012.
    1. Geng S., Zhang Y., Lee C., Li L. Novel reprogramming of neutrophils modulates inflammation resolution during atherosclerosis. Sci. Adv. 2019;5:eaav2309. doi: 10.1126/sciadv.aav2309.
    1. Margaroli C., Tirouvanziam R. Neutrophil plasticity enables the development of pathological microenvironments: Implications for cystic fibrosis airway disease. Mol. Cell Pediatr. 2016;3:38. doi: 10.1186/s40348-016-0066-2.
    1. Laval J., Ralhan A., Hartl D. Neutrophils in cystic fibrosis. Biol. Chem. 2016;397:485–496. doi: 10.1515/hsz-2015-0271.
    1. Hogg J.C., Doerschuk C.M., Wiggs B., Minshall D. Neutrophil retention during a single transit through the pulmonary circulation. J. Appl. Physiol. 1992;73:1683–1685. doi: 10.1152/jappl.1992.73.4.1683.
    1. Sibille Y., Reynolds H.Y. Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am. Rev. Respir. Dis. 1990;141:471–501. doi: 10.1164/ajrccm/141.2.471.
    1. GBD 2015 Chronic Respiratory Disease Collaborators Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017;5:691–706. doi: 10.1016/S2213-2600(17)30293-X.
    1. Sapey E., Patel J.M., Greenwood H.L., Walton G.M., Hazeldine J., Sadhra C., Parekh D., Dancer R.C.A., Nightingale P., Lord J.M., et al. Pulmonary infections in the elderly lead to impaired neutrophil targeting, which is improved by simvastatin. Am. J. Respir. Crit. Care Med. 2017;196:1325–1336. doi: 10.1164/rccm.201704-0814OC.
    1. Garratt L.W., Sutanto E.N., Ling K.M., Looi K., Iosifidis T., Martinovich K.M., Shaw N.C., Kicic-Starcevich E., Knight D.A., Ranganathan S., et al. Matrix metalloproteinase activation by free neutrophil elastase contributes to bronchiectasis progression in early cystic fibrosis. Eur. Respir. J. 2015;46:384–394. doi: 10.1183/09031936.00212114.
    1. Sly P.D., Gangell C.L., Chen L., Ware R.S., Ranganathan S., Mott L.S., Murray C.P., Stick S.M., Investigators A.C. Risk factors for bronchiectasis in children with cystic fibrosis. N. Engl. J. Med. 2013;368:1963–1970. doi: 10.1056/NEJMoa1301725.
    1. Mall M.A., Hartl D. CFTR: Cystic fibrosis and beyond. Eur. Respir. J. 2014;44:1042–1054. doi: 10.1183/09031936.00228013.
    1. Zhu B., Zhang R., Li C., Jiang L., Xiang M., Ye Z., Kita H., Melnick A.M., Dent A.L., Sun J. BCL6 modulates tissue neutrophil survival and exacerbates pulmonary inflammation following influenza virus infection. Proc. Natl. Acad. Sci. USA. 2019;116:11888–11893. doi: 10.1073/pnas.1902310116.
    1. Casulli J., Fife M.E., Houston S.A., Rossi S., Dow J., Williamson E.D., Clark G.C., Hussell T., D’Elia R.V., Travis M.A. CD200R deletion promotes a neutrophil niche for Francisella tularensis and increases infectious burden and mortality. Nat. Commun. 2019;10:2121. doi: 10.1038/s41467-019-10156-6.
    1. Kulkarni U., Zemans R.L., Smith C.A., Wood S.C., Deng J.C., Goldstein D.R. Excessive neutrophil levels in the lung underlie the age-associated increase in influenza mortality. Mucosal Immunol. 2019;12:545–554. doi: 10.1038/s41385-018-0115-3.
    1. Devi S., Wang Y., Chew W.K., Lima R., A-González N., Mattar C.N., Chong S.Z., Schlitzer A., Bakocevic N., Chew S., et al. Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. J. Exp. Med. 2013;210:2321–2336. doi: 10.1084/jem.20130056.
    1. Griffiths J.S., Thompson A., Stott M., Benny A., Lewis N.A., Taylor P.R., Forton J., Herrick S., Orr S.J., McGreal E.P. Differential susceptibility of Dectin-1 isoforms to functional inactivation by neutrophil and fungal proteases. FASEB J. 2018;32:3385–3397. doi: 10.1096/fj.201701145R.
    1. Adams L., Franco M.C., Estevez A.G. Reactive nitrogen species in cellular signaling. Exp. Biol. Med. 2015;240:711–717. doi: 10.1177/1535370215581314.
    1. Verbrugge A., de Ruiter T., Geest C., Coffer P.J., Meyaard L. Differential expression of leukocyte-associated Ig-like receptor-1 during neutrophil differentiation and activation. J. Leukoc. Biol. 2006;79:828–836. doi: 10.1189/jlb.0705370.
    1. Kumawat K., Geerdink R.J., Hennus M.P., Roda M.A., van Ark I., Leusink-Muis T., Folkerts G., van Oort-Jansen A., Mazharian A., Watson S.P., et al. LAIR-1 limits neutrophilic airway inflammation. Front. Immunol. 2019;10:842. doi: 10.3389/fimmu.2019.00842.
    1. Van Dalen C.J., Whitehouse M.W., Winterbourn C.C., Kettle A.J. Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem. J. 1997;327:487–492. doi: 10.1042/bj3270487.
    1. Chakrabarti S., Patel K.D. Matrix metalloproteinase-2 (MMP-2) and MMP-9 in pulmonary pathology. Exp. Lung Res. 2005;31:599–621. doi: 10.1080/019021490944232.
    1. Hilliard T.N., Regamey N., Shute J.K., Nicholson A.G., Alton E.W., Bush A., Davies J.C. Airway remodelling in children with cystic fibrosis. Thorax. 2007;62:1074–1080. doi: 10.1136/thx.2006.074641.
    1. Andrewes F.W. The Croonian lectures on the behaviour of the leucocytes in infection and immunity. Lancet. 1910;175:1737–1743. doi: 10.1016/S0140-6736(01)55765-7.
    1. Cartwright G.E., Athens J.W., Wintrobe M.M. The kinetics of granulopoiesis in normal man. Blood. 1964;24:780–803. doi: 10.1182/blood.V24.6.780.780.
    1. Doerschuk C.M., Allard M.F., Martin B.A., MacKenzie A., Autor A.P., Hogg J.C. Marginated pool of neutrophils in rabbit lungs. J. Appl. Physiol. (1985) 1987;63:1806–1815. doi: 10.1152/jappl.1987.63.5.1806.
    1. Martin B.A., Wright J.L., Thommasen H., Hogg J.C. Effect of pulmonary blood flow on the exchange between the circulating and marginating pool of polymorphonuclear leukocytes in dog lungs. J. Clin. Investig. 1982;69:1277–1285. doi: 10.1172/JCI110567.
    1. Schwab A.J., Salamand A., Merhi Y., Simard A., Dupuis J. Kinetic analysis of pulmonary neutrophil retention in vivo using the multiple-indicator-dilution technique. J. Appl. Physiol. (1985) 2003;95:279–291. doi: 10.1152/japplphysiol.00783.2001.
    1. Lien D.C., Wagner W.W., Jr., Capen R.L., Haslett C., Hanson W.L., Hofmeister S.E., Henson P.M., Worthen G.S. Physiological neutrophil sequestration in the lung: Visual evidence for localization in capillaries. J. Appl. Physiol. (1985) 1987;62:1236–1243. doi: 10.1152/jappl.1987.62.3.1236.
    1. Wiggs B.R., English D., Quinlan W.M., Doyle N.A., Hogg J.C., Doerschuk C.M. Contributions of capillary pathway size and neutrophil deformability to neutrophil transit through rabbit lungs. J. Appl. Physiol. (1985) 1994;77:463–470. doi: 10.1152/jappl.1994.77.1.463.
    1. Downey G.P., Worthen G.S. Neutrophil retention in model capillaries: Deformability, geometry, and hydrodynamic forces. J. Appl. Physiol. (1985) 1988;65:1861–1871. doi: 10.1152/jappl.1988.65.4.1861.
    1. Downey G.P., Doherty D.E., Schwab B., 3rd, Elson E.L., Henson P.M., Worthen G.S. Retention of leukocytes in capillaries: Role of cell size and deformability. J. Appl. Physiol. (1985) 1990;69:1767–1778. doi: 10.1152/jappl.1990.69.5.1767.
    1. Dimasi D., Sun W.Y., Bonder C.S. Neutrophil interactions with the vascular endothelium. Int. Immunopharmacol. 2013;17:1167–1175. doi: 10.1016/j.intimp.2013.05.034.
    1. Permutt S., Bromberger-Barnea B., Bane H.N. Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med. Thorac. 1962;19:239–260. doi: 10.1159/000192224.
    1. Permutt S., Riley R.L. Hemodynamics of collapsible vessels with tone: The vascular waterfall. J. Appl. Physiol. 1963;18:924–932. doi: 10.1152/jappl.1963.18.5.924.
    1. Yoder M.C., Checkley L.L., Giger U., Hanson W.L., Kirk K.R., Capen R.L., Wagner W.W., Jr. Pulmonary microcirculatory kinetics of neutrophils deficient in leukocyte adhesion-promoting glycoproteins. J. Appl. Physiol. (1985) 1990;69:207–213. doi: 10.1152/jappl.1990.69.1.207.
    1. Doyle N.A., Bhagwan S.D., Meek B.B., Kutkoski G.J., Steeber D.A., Tedder T.F., Doerschuk C.M. Neutrophil margination, sequestration, and emigration in the lungs of L-selectin-deficient mice. J. Clin. Investig. 1997;99:526–533. doi: 10.1172/JCI119189.
    1. Kuebler W.M., Kuhnle G.E., Groh J., Goetz A.E. Contribution of selectins to leucocyte sequestration in pulmonary microvessels by intravital microscopy in rabbits. J. Physiol. 1997;50:375–386. doi: 10.1111/j.1469-7793.1997.375bn.x.
    1. Singh N.R., Johnson A., Peters A.M., Babar J., Chilvers E.R., Summers C. Acute lung injury results from failure of neutrophil de-priming: A new hypothesis. Eur. J. Clin. Investig. 2012;42:1342–1349. doi: 10.1111/j.1365-2362.2012.02720.x.
    1. Ekpenyong A.E., Toepfner N., Fiddler C., Herbig M., Li W., Cojoc G., Summers C., Guck J., Chilvers E.R. Mechanical deformation induces depolarization of neutrophils. Sci. Adv. 2017;3:e1602536. doi: 10.1126/sciadv.1602536.
    1. Summers C., Singh N.R., White J.F., Mackenzie I.M., Johnston A., Solanki C., Balan K.K., Peters A.M., Chilvers E.R. Pulmonary retention of primed neutrophils: A novel protective host response, which is impaired in the acute respiratory distress syndrome. Thorax. 2014;69:623–629. doi: 10.1136/thoraxjnl-2013-204742.
    1. Kim J.H., Podstawka J., Lou Y., Li L., Lee E.K.S., Divangahi M., Petri B., Jirik F.R., Kelly M.M., Yipp B.G. Aged polymorphonuclear leukocytes cause fibrotic interstitial lung disease in the absence of regulation by B cells. Nat. Immunol. 2018;19:192–201. doi: 10.1038/s41590-017-0030-x.
    1. Granton E., Kim J.H., Podstawka J., Yipp B.G. The lung microvasculature is a functional immune niche. Trends Immunol. 2018;39:890–899. doi: 10.1016/j.it.2018.09.002.
    1. Amulic B., Cazalet C., Hayes G.L., Metzler K.D., Zychlinsky A. Neutrophil function: From mechanisms to disease. Annu. Rev. Immunol. 2012;30:459–489. doi: 10.1146/annurev-immunol-020711-074942.
    1. Naumenko V., Turk M., Jenne C.N., Kim S.J. Neutrophils in viral infection. Cell Tissue Res. 2018;371:505–516. doi: 10.1007/s00441-017-2763-0.
    1. Galani I.E., Andreakos E. Neutrophils in viral infections: Current concepts and caveats. J. Leukoc. Biol. 2015;98:557–564. doi: 10.1189/jlb.4VMR1114-555R.
    1. Diaz-Godinez C., Carrero J.C. The state of art of neutrophil extracellular traps in protozoan and helminthic infections. Biosci. Rep. 2019;39 doi: 10.1042/BSR20180916.
    1. Lei B., Minor D., Feng W., Jerome M., Quinn M.T., Jutila M.A., Liu M. Tissue tropism in Streptococcal infection: Wild-type M1T1 group A Streptococcus is efficiently cleared by neutrophils using an NADPH oxidase-dependent mechanism in the lung but not in the skin. Infect. Immun. 2019 doi: 10.1128/IAI.00527-19.
    1. Snelgrove R.J., Goulding J., Didierlaurent A.M., Lyonga D., Vekaria S., Edwards L., Gwyer E., Sedgwick J.D., Barclay A.N., Hussell T. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat. Immunol. 2008;9:1074–1083. doi: 10.1038/ni.1637.
    1. Hoetzenecker W., Echtenacher B., Guenova E., Hoetzenecker K., Woelbing F., Bruck J., Teske A., Valtcheva N., Fuchs K., Kneilling M., et al. ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat. Med. 2011;18:128–134. doi: 10.1038/nm.2557.
    1. Vlahos R., Stambas J., Selemidis S. Suppressing production of reactive oxygen species (ROS) for influenza A virus therapy. Trends Pharmacol. Sci. 2012;33:3–8. doi: 10.1016/j.tips.2011.09.001.
    1. Subramaniam R., Barnes P.F., Fletcher K., Boggaram V., Hillberry Z., Neuenschwander P., Shams H. Protecting against post-influenza bacterial pneumonia by increasing phagocyte recruitment and ROS production. J. Infect. Dis. 2014;209:1827–1836. doi: 10.1093/infdis/jit830.
    1. Khan Z., Shen X.Z., Bernstein E.A., Giani J.F., Eriguchi M., Zhao T.V., Gonzalez-Villalobos R.A., Fuchs S., Liu G.Y., Bernstein K.E. Angiotensin-converting enzyme enhances the oxidative response and bactericidal activity of neutrophils. Blood. 2017;130:328–339. doi: 10.1182/blood-2016-11-752006.
    1. Yang W., Tao Y., Wu Y., Zhao X., Ye W., Zhao D., Fu L., Tian C., Yang J., He F., et al. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat. Commun. 2019;10:1076. doi: 10.1038/s41467-019-09046-8.
    1. Wright C.D., Mulsch A., Busse R., Osswald H. Generation of nitric oxide by human neutrophils. Biochem. Biophys. Res. Commun. 1989;160:813–819. doi: 10.1016/0006-291X(89)92506-0.
    1. Ichinose M., Sugiura H., Yamagata S., Koarai A., Shirato K. Increase in reactive nitrogen species production in chronic obstructive pulmonary disease airways. Am. J. Respir. Crit. Care Med. 2000;162:701–706. doi: 10.1164/ajrccm.162.2.9908132.
    1. Wheeler M.A., Smith S.D., Garcia-Cardena G., Nathan C.F., Weiss R.M., Sessa W.C. Bacterial infection induces nitric oxide synthase in human neutrophils. J. Clin. Investig. 1997;99:110–116. doi: 10.1172/JCI119121.
    1. Palmer R.M., Ashton D.S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333:664–666. doi: 10.1038/333664a0.
    1. Chang C.I., Liao J.C., Kuo L. Arginase modulates nitric oxide production in activated macrophages. Am. J. Physiol. 1998;274:H342–H348. doi: 10.1152/ajpheart.1998.274.1.H342.
    1. Rotondo R., Barisione G., Mastracci L., Grossi F., Orengo A.M., Costa R., Truini M., Fabbi M., Ferrini S., Barbieri O. IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. Int. J. Cancer. 2009;125:887–893. doi: 10.1002/ijc.24448.
    1. Kumar S., Gupta E., Srivastava V.K., Kaushik S., Saxena J., Goyal L.K., Mehta S., Jyoti A. Nitrosative stress and cytokines are linked with the severity of sepsis and organ dysfunction. Br. J. Biomed. Sci. 2019;76:29–34. doi: 10.1080/09674845.2018.1543160.
    1. Shelton J.L., Wang L., Cepinskas G., Sandig M., Scott J.A., North M.L., Inculet R., Mehta S. Inducible NO synthase (iNOS) in human neutrophils but not pulmonary microvascular endothelial cells (PMVEC) mediates septic protein leak in vitro. Microvasc. Res. 2007;74:23–31. doi: 10.1016/j.mvr.2007.02.008.
    1. Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287.
    1. Zhang F., Liu A.L., Gao S., Ma S., Guo S.B. Neutrophil dysfunction in sepsis. Chin. Med. J. (Engl.) 2016;129:2741–2744. doi: 10.4103/0366-6999.193447.
    1. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–1535. doi: 10.1126/science.1092385.
    1. Sorensen O.E., Borregaard N. Neutrophil extracellular traps—The dark side of neutrophils. J. Clin. Investig. 2016;126:1612–1620. doi: 10.1172/JCI84538.
    1. Hamam H.J., Khan M.A., Palaniyar N. Histone acetylation promotes neutrophil extracellular trap formation. Biomolecules. 2019;9:32. doi: 10.3390/biom9010032.
    1. Claushuis T.A.M., van der Donk L.E.H., Luitse A.L., van Veen H.A., van der Wel N.N., van Vught L.A., Roelofs J., de Boer O.J., Lankelma J.M., Boon L., et al. Role of peptidylarginine deiminase 4 in neutrophil extracellular trap formation and host defense during Klebsiella pneumoniae-induced pneumonia-derived sepsis. J. Immunol. 2018;201:1241–1252. doi: 10.4049/jimmunol.1800314.
    1. Guiducci E., Lemberg C., Kung N., Schraner E., Theocharides A.P.A., LeibundGut-Landmann S. Candida albicans-induced NETosis is independent of peptidylarginine deiminase 4. Front. Immunol. 2018;9:1573. doi: 10.3389/fimmu.2018.01573.
    1. Yipp B.G., Petri B., Salina D., Jenne C.N., Scott B.N., Zbytnuik L.D., Pittman K., Asaduzzaman M., Wu K., Meijndert H.C., et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 2012;18:1386–1393. doi: 10.1038/nm.2847.
    1. Krishnamoorthy N., Douda D.N., Bruggemann T.R., Ricklefs I., Duvall M.G., Abdulnour R.E., Martinod K., Tavares L., Wang X., Cernadas M., et al. Neutrophil cytoplasts induce Th17 differentiation and skew inflammation toward neutrophilia in severe asthma. Sci. Immunol. 2018;3 doi: 10.1126/sciimmunol.aao4747.
    1. Desai J., Mulay S.R., Nakazawa D., Anders H.J. Matters of life and death. How neutrophils die or survive along NET release and is “NETosis” = necroptosis? Cell Mol. Life Sci. 2016;73:2211–2219. doi: 10.1007/s00018-016-2195-0.
    1. Yousefi S., Stojkov D., Germic N., Simon D., Wang X., Benarafa C., Simon H.U. Untangling “NETosis” from NETs. Eur. J. Immunol. 2019;49:221–227. doi: 10.1002/eji.201747053.
    1. Mikacenic C., Moore R., Dmyterko V., West T.E., Altemeier W.A., Liles W.C., Lood C. Neutrophil extracellular traps (NETs) are increased in the alveolar spaces of patients with ventilator-associated pneumonia. Crit. Care. 2018;22:358. doi: 10.1186/s13054-018-2290-8.
    1. Sharma N.S., Lal C.V., Li J.D., Lou X.Y., Viera L., Abdallah T., King R.W., Sethi J., Kanagarajah P., Restrepo-Jaramillo R., et al. The neutrophil chemoattractant peptide proline-glycine-proline is associated with acute respiratory distress syndrome. Am. J. Physiol. Lung Cell Mol. Physiol. 2018;315:L653–L661. doi: 10.1152/ajplung.00308.2017.
    1. Chandler J.D., Margaroli C., Horati H., Kilgore M.B., Veltman M., Liu H.K., Taurone A.J., Peng L., Guglani L., Uppal K., et al. Myeloperoxidase oxidation of methionine associates with early cystic fibrosis lung disease. Eur. Respir. J. 2018;52 doi: 10.1183/13993003.01118-2018.
    1. Dickerhof N., Pearson J.F., Hoskin T.S., Berry L.J., Turner R., Sly P.D., Kettle A.J., Arest C.F. Oxidative stress in early cystic fibrosis lung disease is exacerbated by airway glutathione deficiency. Free Radic. Biol. Med. 2017;113:236–243. doi: 10.1016/j.freeradbiomed.2017.09.028.
    1. Khan M.A., Palaniyar N. Transcriptional firing helps to drive NETosis. Sci. Rep. 2017;7:41749. doi: 10.1038/srep41749.
    1. Pylaeva E., Bordbari S., Spyra I., Decker A.S., Haussler S., Vybornov V., Lang S., Jablonska J. Detrimental effect of type I IFNs during acute lung infection with Pseudomonas aeruginosa is mediated through the stimulation of neutrophil NETosis. Front. Immunol. 2019;10:2190. doi: 10.3389/fimmu.2019.02190.
    1. Galani I.E., Triantafyllia V., Eleminiadou E.E., Koltsida O., Stavropoulos A., Manioudaki M., Thanos D., Doyle S.E., Kotenko S.V., Thanopoulou K., et al. Interferon-lambda mediates non-redundant front-line antiviral protection against influenza virus infection without compromising host fitness. Immunity. 2017;46:875–890 e6. doi: 10.1016/j.immuni.2017.04.025.
    1. Lim K., Hyun Y.M., Lambert-Emo K., Capece T., Bae S., Miller R., Topham D.J., Kim M. Neutrophil trails guide influenza-specific CD8(+) T cells in the airways. Science. 2015;349:aaa4352. doi: 10.1126/science.aaa4352.
    1. Niu J., Wu S., Chen M., Xu K., Guo Q., Lu A., Zhao L., Sun B., Meng G. Hyperactivation of the NLRP3 inflammasome protects mice against influenza A virus infection via IL-1beta mediated neutrophil recruitment. Cytokine. 2019;120:115–124. doi: 10.1016/j.cyto.2019.04.019.
    1. Keeler S.P., Agapov E.V., Hinojosa M.E., Letvin A.N., Wu K., Holtzman M.J. Influenza A virus infection causes chronic lung disease linked to sites of active viral RNA remnants. J. Immunol. 2018;201:2354–2368. doi: 10.4049/jimmunol.1800671.
    1. Kirsebom F.C.M., Kausar F., Nuriev R., Makris S., Johansson C. Neutrophil recruitment and activation are differentially dependent on MyD88/TRIF and MAVS signaling during RSV infection. Mucosal Immunol. 2019 doi: 10.1038/s41385-019-0190-0.
    1. Russell C.D., Unger S.A., Walton M., Schwarze J. The human immune response to respiratory syncytial virus infection. Clin. Microbiol. Rev. 2017;30:481–502. doi: 10.1128/CMR.00090-16.
    1. Schonrich G., Raftery M.J. Neutrophil extracellular traps go viral. Front. Immunol. 2016;7:366. doi: 10.3389/fimmu.2016.00366.
    1. Branzk N., Papayannopoulos V. Molecular mechanisms regulating NETosis in infection and disease. Semin. Immunopathol. 2013;35:513–530. doi: 10.1007/s00281-013-0384-6.
    1. Muraro S.P., De Souza G.F., Gallo S.W., Da Silva B.K., De Oliveira S.D., Vinolo M.A.R., Saraiva E.M., Porto B.N. Respiratory Syncytial Virus induces the classical ROS-dependent NETosis through PAD-4 and necroptosis pathways activation. Sci. Rep. 2018;8:14166. doi: 10.1038/s41598-018-32576-y.
    1. Saitoh T., Komano J., Saitoh Y., Misawa T., Takahama M., Kozaki T., Uehata T., Iwasaki H., Omori H., Yamaoka S., et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12:109–116. doi: 10.1016/j.chom.2012.05.015.
    1. Narasaraju T., Yang E., Samy R.P., Ng H.H., Poh W.P., Liew A.A., Phoon M.C., van Rooijen N., Chow V.T. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am. J. Pathol. 2011;179:199–210. doi: 10.1016/j.ajpath.2011.03.013.
    1. Zhu L., Liu L., Zhang Y., Pu L., Liu J., Li X., Chen Z., Hao Y., Wang B., Han J., et al. High Level of Neutrophil extracellular traps correlates with poor prognosis of severe influenza A infection. J. Infect. Dis. 2018;217:428–437. doi: 10.1093/infdis/jix475.
    1. Toussaint M., Jackson D.J., Swieboda D., Guedan A., Tsourouktsoglou T.D., Ching Y.M., Radermecker C., Makrinioti H., Aniscenko J., Bartlett N.W., et al. Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat. Med. 2017;23:681–691. doi: 10.1038/nm.4332.
    1. Moran G., Uberti B., Ortloff A., Folch H. Aspergillus fumigatus-sensitive IgE is associated with bronchial hypersensitivity in a murine model of neutrophilic airway inflammation. J. Mycol. Med. 2018;28:128–136. doi: 10.1016/j.mycmed.2017.11.005.
    1. Alflen A., Prufer S., Ebner K., Reuter S., Aranda Lopez P., Scharrer I., Banno F., Stassen M., Schild H., Jurk K., et al. ADAMTS-13 regulates neutrophil recruitment in a mouse model of invasive pulmonary aspergillosis. Sci. Rep. 2017;7:7184. doi: 10.1038/s41598-017-07340-3.
    1. Gazendam R.P., van Hamme J.L., Tool A.T., Hoogenboezem M., van den Berg J.M., Prins J.M., Vitkov L., van de Veerdonk F.L., van den Berg T.K., Roos D., et al. Human neutrophils use different mechanisms to kill Aspergillus fumigatus conidia and hyphae: Evidence from phagocyte defects. J. Immunol. 2016;196:1272–1283. doi: 10.4049/jimmunol.1501811.
    1. Park S.J., Burdick M.D., Mehrad B. Neutrophils mediate maturation and efflux of lung dendritic cells in response to Aspergillus fumigatus germ tubes. Infect. Immun. 2012;80:1759–1765. doi: 10.1128/IAI.00097-12.
    1. Engel T.G.P., Slabbers L., de Jong C., Melchers W.J.G., Hagen F., Verweij P.E., Merkus P., Meis J.F., Dutch Cystic Fibrosis Fungal Collection Consortium Prevalence and diversity of filamentous fungi in the airways of cystic fibrosis patients—A Dutch, multicentre study. J. Cyst. Fibros. 2019;18:221–226. doi: 10.1016/j.jcf.2018.11.012.
    1. Tirouvanziam R., Gernez Y., Conrad C.K., Moss R.B., Schrijver I., Dunn C.E., Davies Z.A., Herzenberg L.A., Herzenberg L.A. Profound functional and signaling changes in viable inflammatory neutrophils homing to cystic fibrosis airways. Proc. Natl. Acad. Sci. USA. 2008;105:4335–4339. doi: 10.1073/pnas.0712386105.
    1. Taylor P.R., Brown G.D., Reid D.M., Willment J.A., Martinez-Pomares L., Gordon S., Wong S.Y. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol. 2002;169:3876–3882. doi: 10.4049/jimmunol.169.7.3876.
    1. Brown G.D. Dectin-1: A signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 2006;6:33–43. doi: 10.1038/nri1745.
    1. Meyer K.C., Zimmerman J. Neutrophil mediators, Pseudomonas, and pulmonary dysfunction in cystic fibrosis. J. Lab. Clin. Med. 1993;121:654–661.
    1. McKelvey M.C., Weldon S., McAuley D.F., Mall M.A., Taggart C.C. Targeting proteases in cystic fibrosis lung disease: Paradigms, progress, and potential. Am. J. Respir. Crit. Care Med. 2019 doi: 10.1164/rccm.201906-1190PP.
    1. Cowley A.C., Thornton D.J., Denning D.W., Horsley A. Aspergillosis and the role of mucins in cystic fibrosis. Pediatr. Pulmonol. 2017;52:548–555. doi: 10.1002/ppul.23618.
    1. Grunwell J.R., Giacalone V.D., Stephenson S., Margaroli C., Dobosh B.S., Brown M.R., Fitzpatrick A.M., Tirouvanziam R. Neutrophil dysfunction in the airways of children with acute respiratory failure due to lower respiratory tract viral and bacterial coinfections. Sci. Rep. 2019;9:2874. doi: 10.1038/s41598-019-39726-w.
    1. Tsai Y.F., Hwang T.L. Neutrophil elastase inhibitors: A patent review and potential applications for inflammatory lung diseases (2010–2014) Expert. Opin Ther. Pat. 2015;25:1145–1158. doi: 10.1517/13543776.2015.1061998.
    1. Hoenderdos K., Condliffe A. The neutrophil in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2013;48:531–539. doi: 10.1165/rcmb.2012-0492TR.
    1. Tsuda Y., Takahashi H., Kobayashi M., Hanafusa T., Herndon D.N., Suzuki F. Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity. 2004;21:215–226. doi: 10.1016/j.immuni.2004.07.006.
    1. Guglani L. Changing the paradigm-treating the basic defect in cystic fibrosis. Indian J. Pediatr. 2015;82:727–736. doi: 10.1007/s12098-015-1786-3.
    1. Forrest O.A., Ingersoll S.A., Preininger M.K., Laval J., Limoli D.H., Brown M.R., Lee F.E., Bedi B., Sadikot R.T., Goldberg J.B., et al. Frontline Science: Pathological conditioning of human neutrophils recruited to the airway milieu in cystic fibrosis. J. Leukoc. Biol. 2018;104:665–675. doi: 10.1002/JLB.5HI1117-454RR.
    1. Mitchell T.C. A GRIM fate for human neutrophils in airway disease. J. Leukoc. Biol. 2018;104:657–659. doi: 10.1002/JLB.5CE0418-162R.
    1. Margaroli C., Garratt L.W., Horati H., Dittrich A.S., Rosenow T., Montgomery S.T., Frey D.L., Brown M.R., Schultz C., Guglani L., et al. Elastase exocytosis by airway neutrophils is associated with early lung damage in children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2019;199:873–881. doi: 10.1164/rccm.201803-0442OC.
    1. Gehrig S., Duerr J., Weitnauer M., Wagner C.J., Graeber S.Y., Schatterny J., Hirtz S., Belaaouaj A., Dalpke A.H., Schultz C., et al. Lack of neutrophil elastase reduces inflammation, mucus hypersecretion, and emphysema, but not mucus obstruction, in mice with cystic fibrosis-like lung disease. Am. J. Respir. Crit. Care Med. 2014;189:1082–1092. doi: 10.1164/rccm.201311-1932OC.
    1. Guerra M., Frey D., Hagner M., Dittrich S., Paulsen M., Mall M.A., Schultz C. Cathepsin G activity as a new marker for detecting airway inflammation by microscopy and flow cytometry. ACS Cent. Sci. 2019;5:539–548. doi: 10.1021/acscentsci.8b00933.
    1. Davis P.B. Cystic fibrosis since 1938. Am. J. Respir. Crit. Care Med. 2006;173:475–482. doi: 10.1164/rccm.200505-840OE.
    1. Makam M., Diaz D., Laval J., Gernez Y., Conrad C.K., Dunn C.E., Davies Z.A., Moss R.B., Herzenberg L.A., Herzenberg L.A., et al. Activation of critical, host-induced, metabolic and stress pathways marks neutrophil entry into cystic fibrosis lungs. Proc. Natl. Acad. Sci. USA. 2009;106:5779–5783. doi: 10.1073/pnas.0813410106.
    1. Laval J., Touhami J., Herzenberg L.A., Conrad C., Taylor N., Battini J.L., Sitbon M., Tirouvanziam R. Metabolic adaptation of neutrophils in cystic fibrosis airways involves distinct shifts in nutrient transporter expression. J. Immunol. 2013;190:6043–6050. doi: 10.4049/jimmunol.1201755.
    1. Buller C.L., Loberg R.D., Fan M.H., Zhu Q., Park J.L., Vesely E., Inoki K., Guan K.L., Brosius F.C., 3rd A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. Am. J. Physiol. Cell Physiol. 2008;295:C836–C843. doi: 10.1152/ajpcell.00554.2007.
    1. Baker E.H., Clark N., Brennan A.L., Fisher D.A., Gyi K.M., Hodson M.E., Philips B.J., Baines D.L., Wood D.M. Hyperglycemia and cystic fibrosis alter respiratory fluid glucose concentrations estimated by breath condensate analysis. J. Appl. Physiol. (1985) 2007;102:1969–1975. doi: 10.1152/japplphysiol.01425.2006.
    1. Forrest O.A., Chopyk D.M., Gernez Y., Brown M.R., Conrad C.K., Moss R.B., Tangpricha V., Peng L., Tirouvanziam R. Resistin is elevated in cystic fibrosis sputum and correlates negatively with lung function. J. Cyst. Fibros. 2019;18:64–70. doi: 10.1016/j.jcf.2018.05.018.
    1. Park H.K., Kwak M.K., Kim H.J., Ahima R.S. Linking resistin, inflammation, and cardiometabolic diseases. Korean J. Intern. Med. 2017;32:239–247. doi: 10.3904/kjim.2016.229.
    1. Miller L., Singbartl K., Chroneos Z.C., Ruiz-Velasco V., Lang C.H., Bonavia A. Resistin directly inhibits bacterial killing in neutrophils. Intensive Care Med. Exp. 2019;7:30. doi: 10.1186/s40635-019-0257-y.
    1. Aleman F., Lim H.F., Nair P. Eosinophilic endotype of asthma. Immunol. Allergy Clin. North. Am. 2016;36:559–568. doi: 10.1016/j.iac.2016.03.006.
    1. McGrath K.W., Icitovic N., Boushey H.A., Lazarus S.C., Sutherland E.R., Chinchilli V.M., Fahy J.V., Asthma Clinical Research Network of the National Heart, Lung, and Blood Institute A large subgroup of mild-to-moderate asthma is persistently noneosinophilic. Am. J. Respir. Crit. Care Med. 2012;185:612–619. doi: 10.1164/rccm.201109-1640OC.
    1. Ray A., Kolls J.K. Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol. 2017;38:942–954. doi: 10.1016/j.it.2017.07.003.
    1. Patel K.K., Vicencio A.G., Du Z., Tsirilakis K., Salva P.S., Webley W.C. Infectious Chlamydia pneumoniae is associated with elevated interleukin-8 and airway neutrophilia in children with refractory asthma. Pediatr. Infect. Dis. J. 2010;29:1093–1098. doi: 10.1097/INF.0b013e3181eaebdc.
    1. Patel K.K., Webley W.C. Respiratory Chlamydia infection induce release of hepoxilin a3 and histamine production by airway neutrophils. Front. Immunol. 2018;9:2357. doi: 10.3389/fimmu.2018.02357.
    1. Tang F.S., Van Ly D., Spann K., Reading P.C., Burgess J.K., Hartl D., Baines K.J., Oliver B.G. Differential neutrophil activation in viral infections: Enhanced TLR-7/8-mediated CXCL8 release in asthma. Respirology. 2016;21:172–179. doi: 10.1111/resp.12657.
    1. Merckx J., Ducharme F.M., Martineau C., Zemek R., Gravel J., Chalut D., Poonai N., Quach C., Pediatric Emergency Research Canada (PERC) DOORWAY Team Respiratory viruses and treatment failure in children with asthma exacerbation. Pediatrics. 2018;142 doi: 10.1542/peds.2017-4105.
    1. Simpson J.L., Powell H., Boyle M.J., Scott R.J., Gibson P.G. Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am. J. Respir. Crit. Care Med. 2008;177:148–155. doi: 10.1164/rccm.200707-1134OC.
    1. Seys S.F., Lokwani R., Simpson J.L., Bullens D.M.A. New insights in neutrophilic asthma. Curr. Opin. Pulm. Med. 2019;25:113–120. doi: 10.1097/MCP.0000000000000543.
    1. Dragonieri S., Lacedonia D., Scioscia G., Palladino G.P., Quaranta V.N., Carratu P., Resta O., Foschino Barbaro M.P., Carpagnano G.E. Assessment of induced sputum cellularity in COPD patients belonging to two different classes of air pollution exposure. Arch. Bronconeumol. 2019 doi: 10.1016/j.arbres.2019.06.016.
    1. Chang W.A., Tsai M.J., Jian S.F., Sheu C.C., Kuo P.L. Systematic analysis of transcriptomic profiles of COPD airway epithelium using next-generation sequencing and bioinformatics. Int. J. Chron. Obstruct. Pulmon. Dis. 2018;13:2387–2398. doi: 10.2147/COPD.S173206.
    1. Russell D.W., Wells J.M., Blalock J.E. Disease phenotyping in chronic obstructive pulmonary disease: The neutrophilic endotype. Curr. Opin. Pulm. Med. 2016;22:91–99. doi: 10.1097/MCP.0000000000000238.
    1. Thulborn S.J., Mistry V., Brightling C.E., Moffitt K.L., Ribeiro D., Bafadhel M. Neutrophil elastase as a biomarker for bacterial infection in COPD. Respir. Res. 2019;20:170. doi: 10.1186/s12931-019-1145-4.
    1. Contoli M., Baraldo S., Conti V., Gnesini G., Marku B., Casolari P., Scrigner P., Morelli P., Saetta M., Spanevello A., et al. Airway inflammatory profile is correlated with symptoms in stable COPD: A longitudinal proof-of-concept cohort study. Respirology. 2019 doi: 10.1111/resp.13607.
    1. Butler A., Walton G.M., Sapey E. Neutrophilic inflammation in the pathogenesis of chronic obstructive pulmonary disease. COPD. 2018;15:392–404. doi: 10.1080/15412555.2018.1476475.
    1. Chrysanthopoulou A., Mitroulis I., Apostolidou E., Arelaki S., Mikroulis D., Konstantinidis T., Sivridis E., Koffa M., Giatromanolaki A., Boumpas D.T., et al. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J. Pathol. 2014;233:294–307. doi: 10.1002/path.4359.
    1. Genschmer K.R., Russell D.W., Lal C., Szul T., Bratcher P.E., Noerager B.D., Abdul Roda M., Xu X., Rezonzew G., Viera L., et al. Activated PMN exosomes: Pathogenic entities causing matrix destruction and disease in the lung. Cell. 2019;176:113–126 e115. doi: 10.1016/j.cell.2018.12.002.
    1. Garratt L.W., Sutanto E.N., Ling K.M., Looi K., Iosifidis T., Martinovich K.M., Shaw N.C., Buckley A.G., Kicic-Starcevich E., Lannigan F.J., et al. Alpha-1 antitrypsin mitigates the inhibition of airway epithelial cell repair by neutrophil elastase. Am. J. Respir Cell Mol. Biol. 2016;54:341–349. doi: 10.1165/rcmb.2015-0074OC.
    1. DiCamillo S.J., Carreras I., Panchenko M.V., Stone P.J., Nugent M.A., Foster J.A., Panchenko M.P. Elastase-released epidermal growth factor recruits epidermal growth factor receptor and extracellular signal-regulated kinases to down-regulate tropoelastin mRNA in lung fibroblasts. J. Biol. Chem. 2002;277:18938–18946. doi: 10.1074/jbc.M200243200.
    1. Cosgrove S., Chotirmall S.H., Greene C.M., McElvaney N.G. Pulmonary proteases in the cystic fibrosis lung induce interleukin 8 expression from bronchial epithelial cells via a heme/meprin/epidermal growth factor receptor/Toll-like receptor pathway. J. Biol. Chem. 2011;286:7692–7704. doi: 10.1074/jbc.M110.183863.
    1. Hwang J.H., Lyes M., Sladewski K., Enany S., McEachern E., Mathew D.P., Das S., Moshensky A., Bapat S., Pride D.T., et al. Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria. J. Mol. Med. (Berl.) 2016;94:667–679. doi: 10.1007/s00109-016-1378-3.
    1. Zhang Y., Geng S., Prasad G.L., Li L. Suppression of neutrophil antimicrobial functions by total particulate matter from cigarette smoke. Front. Immunol. 2018;9:2274. doi: 10.3389/fimmu.2018.02274.
    1. Higham A., Rattray N.J., Dewhurst J.A., Trivedi D.K., Fowler S.J., Goodacre R., Singh D. Electronic cigarette exposure triggers neutrophil inflammatory responses. Respir. Res. 2016;17:56. doi: 10.1186/s12931-016-0368-x.
    1. Reidel B., Radicioni G., Clapp P.W., Ford A.A., Abdelwahab S., Rebuli M.E., Haridass P., Alexis N.E., Jaspers I., Kesimer M. E-Cigarette use causes a unique innate immune response in the lung, involving increased neutrophilic activation and altered mucin secretion. Am. J. Respir. Crit. Care Med. 2018;197:492–501. doi: 10.1164/rccm.201708-1590OC.
    1. Muller J.Y. Nobel prize and the history of blood transfusion. Transfus. Clin. Biol. 2019;26:135–143. doi: 10.1016/j.tracli.2019.06.189.
    1. Knopfelmacher A.M. Transfusion-related acute lung injury (TRALI) In: Nates J.L., Price K.J., editors. Oncologic Critical Care. Springer International Publishing; Cham, Switzerland: 2020. pp. 1191–1196.
    1. Popovsky M.A., Abel M.D., Moore S.B. Transfusion-related acute lung injury associated with passive transfer of antileukocyte antibodies. Am. Rev. Respir. Dis. 1983;128:185–189. doi: 10.1164/arrd.1983.128.1.185.
    1. Silliman C.C., Voelkel N.F., Allard J.D., Elzi D.J., Tuder R.M., Johnson J.L., Ambruso D.R. Plasma and lipids from stored packed red blood cells cause acute lung injury in an animal model. J. Clin. Investig. 1998;101:1458–1467. doi: 10.1172/JCI1841.
    1. Toy P., Gajic O., Bacchetti P., Looney M.R., Gropper M.A., Hubmayr R., Lowell C.A., Norris P.J., Murphy E.L., Weiskopf R.B., et al. Transfusion-related acute lung injury: Incidence and risk factors. Blood. 2012;119:1757–1767. doi: 10.1182/blood-2011-08-370932.
    1. Popovsky M.A. Transfusion-related acute lung injury: Three decades of progress but miles to go before we sleep. Transfusion. 2015;55:930–934. doi: 10.1111/trf.13064.
    1. Rebetz J., Semple J.W., Kapur R. The pathogenic involvement of neutrophils in acute respiratory distress syndrome and transfusion-related acute lung injury. Transfus. Med. Hemother. 2018;45:290–298. doi: 10.1159/000492950.
    1. Silliman C.C., Curtis B.R., Kopko P.M., Khan S.Y., Kelher M.R., Schuller R.M., Sannoh B., Ambruso D.R. Donor antibodies to HNA-3a implicated in TRALI reactions prime neutrophils and cause PMN-mediated damage to human pulmonary microvascular endothelial cells in a two-event in vitro model. Blood. 2007;109:1752–1755. doi: 10.1182/blood-2006-05-025106.
    1. Ussov W.Y., Peters A.M., Savill J., Pusey C.D., Gaskin G., Hodgson H.J., Goldman J.M., Hughes J.M. Relationship between granulocyte activation, pulmonary granulocyte kinetics and alveolar permeability in extrapulmonary inflammatory disease. Clin. Sci. (Lond.) 1996;91:329–335. doi: 10.1042/cs0910329.
    1. Kapur R., Kim M., Aslam R., McVey M.J., Tabuchi A., Luo A., Liu J., Li Y., Shanmugabhavananthan S., Speck E.R., et al. T regulatory cells and dendritic cells protect against transfusion-related acute lung injury via IL-10. Blood. 2017;129:2557–2569. doi: 10.1182/blood-2016-12-758185.
    1. Looney M.R., Nguyen J.X., Hu Y., Van Ziffle J.A., Lowell C.A., Matthay M.A. Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury. J. Clin. Investig. 2009;119:3450–3461. doi: 10.1172/JCI38432.
    1. Curtis B.R., McFarland J.G. Mechanisms of transfusion-related acute lung injury (TRALI): Anti-leukocyte antibodies. Crit. Care Med. 2006;34:S118–S123. doi: 10.1097/01.CCM.0000214293.72918.D8.
    1. Sachs U.J., Wasel W., Bayat B., Bohle R.M., Hattar K., Berghofer H., Reil A., Bux J., Bein G., Santoso S., et al. Mechanism of transfusion-related acute lung injury induced by HLA class II antibodies. Blood. 2011;117:669–677. doi: 10.1182/blood-2010-05-286146.
    1. Vlaar A.P., Hofstra J.J., Determann R.M., Veelo D.P., Paulus F., Kulik W., Korevaar J., de Mol B.A., Koopman M.M., Porcelijn L., et al. The incidence, risk factors, and outcome of transfusion-related acute lung injury in a cohort of cardiac surgery patients: A prospective nested case-control study. Blood. 2011;117:4218–4225. doi: 10.1182/blood-2010-10-313973.
    1. Peters A.L., Van Stein D., Vlaar A.P. Antibody-mediated transfusion-related acute lung injury; from discovery to prevention. Br. J. Haematol. 2015;170:597–614. doi: 10.1111/bjh.13459.
    1. Peters A.L., van Hezel M.E., Juffermans N.P., Vlaar A.P. Pathogenesis of non-antibody mediated transfusion-related acute lung injury from bench to bedside. Blood Rev. 2015;29:51–61. doi: 10.1016/j.blre.2014.09.007.
    1. Alexander P.E., Barty R., Fei Y., Vandvik P.O., Pai M., Siemieniuk R.A., Heddle N.M., Blumberg N., McLeod S.L., Liu J., et al. Transfusion of fresher vs older red blood cells in hospitalized patients: A systematic review and meta-analysis. Blood. 2016;127:400–410. doi: 10.1182/blood-2015-09-670950.
    1. Peters A.L., van Hezel M.E., Cortjens B., Tuip-de Boer A.M., van Bruggen R., de Korte D., Jonkers R.E., Bonta P.I., Zeerleder S.S., Lutter R., et al. Transfusion of 35-day stored RBCs in the presence of endotoxemia does not result in lung injury in humans. Crit. Care Med. 2016;44:e412–e419. doi: 10.1097/CCM.0000000000001614.
    1. Maslanka K., Smolenska-Sym G., Michur H., Wrobel A., Lachert E., Brojer E. Lysophosphatidylcholines: Bioactive lipids generated during storage of blood components. Arch. Immunol. Ther. Exp. (Warsz.) 2012;60:55–60. doi: 10.1007/s00005-011-0154-x.
    1. Tzounakas V.L., Kriebardis A.G., Papassideri I.S., Antonelou M.H. Donor-variation effect on red blood cell storage lesion: A close relationship emerges. Proteom. Clin. Appl. 2016;10:791–804. doi: 10.1002/prca.201500128.
    1. Chasse M., McIntyre L., English S.W., Tinmouth A., Knoll G., Wolfe D., Wilson K., Shehata N., Forster A., van Walraven C., et al. Effect of blood donor characteristics on transfusion outcomes: A systematic review and meta-analysis. Transfus. Med. Rev. 2016;30:69–80. doi: 10.1016/j.tmrv.2016.01.002.
    1. Zimring J.C., Smith N., Stowell S.R., Johnsen J.M., Bell L.N., Francis R.O., Hod E.A., Hendrickson J.E., Roback J.D., Spitalnik S.L. Strain-specific red blood cell storage, metabolism, and eicosanoid generation in a mouse model. Transfusion. 2014;54:137–148. doi: 10.1111/trf.12264.
    1. Jongerius I., Porcelijn L., van Beek A.E., Semple J.W., van der Schoot C.E., Vlaar A.P.J., Kapur R. The role of complement in transfusion-related acute lung injury. Transfus. Med. Rev. 2019;33:236–242. doi: 10.1016/j.tmrv.2019.09.002.
    1. Kapur R., Kim M., Rebetz J., Hallstrom B., Bjorkman J.T., Takabe-French A., Kim N., Liu J., Shanmugabhavananthan S., Milosevic S., et al. Gastrointestinal microbiota contributes to the development of murine transfusion-related acute lung injury. Blood Adv. 2018;2:1651–1663. doi: 10.1182/bloodadvances.2018018903.
    1. Kapur R., Kasetty G., Rebetz J., Egesten A., Semple J.W. Osteopontin mediates murine transfusion-related acute lung injury via stimulation of pulmonary neutrophil accumulation. Blood. 2019;134:74–84. doi: 10.1182/blood.2019000972.
    1. Finlayson J., Grey D., Kavanagh L., Witt C. Transfusion-related acute lung injury in a neutropenic patient. Intern. Med. J. 2011;41:638–641. doi: 10.1111/j.1445-5994.2010.02366.x.
    1. Danielson C., Benjamin R.J., Mangano M.M., Mills C.J., Waxman D.A. Pulmonary pathology of rapidly fatal transfusion-related acute lung injury reveals minimal evidence of diffuse alveolar damage or alveolar granulocyte infiltration. Transfusion. 2008;48:2401–2408. doi: 10.1111/j.1537-2995.2008.01879.x.
    1. Bayat B., Tjahjono Y., Sydykov A., Werth S., Hippenstiel S., Weissmann N., Sachs U.J., Santoso S. Anti-human neutrophil antigen-3a induced transfusion-related acute lung injury in mice by direct disturbance of lung endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2013;33:2538–2548. doi: 10.1161/ATVBAHA.113.301206.
    1. Sly P.D., Brennan S., Gangell C., de Klerk N., Murray C., Mott L., Stick S.M., Robinson P.J., Robertson C.F., Ranganathan S.C., et al. Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am. J. Respir. Crit. Care Med. 2009;180:146–152. doi: 10.1164/rccm.200901-0069OC.
    1. Balazs A., Mall M.A. Mucus obstruction and inflammation in early cystic fibrosis lung disease: Emerging role of the IL-1 signaling pathway. Pediatr. Pulmonol. 2019;54(Suppl. 3):S5–S12. doi: 10.1002/ppul.24462.

Source: PubMed

Подписаться