Ischemic post-conditioning in acute ischemic stroke thrombectomy: A phase-I duration escalation study

Longfei Wu, Bohao Zhang, Wenbo Zhao, Xunming Ji, Ming Wei, Longfei Wu, Bohao Zhang, Wenbo Zhao, Xunming Ji, Ming Wei

Abstract

Background: Previous experimental studies have found that ischemic post-conditioning exhibits neuroprotective effects by alleviating ischemia-reperfusion injury in an acute ischemic stroke model, and its efficacy is thought to be related to the duration of ischemic post-conditioning. However, ischemic post-conditioning has not been used in patients with acute ischemic stroke. This study aims to determine the safety, tolerability, and maximum tolerable duration of ischemic post-conditioning in patients with acute ischemic stroke receiving mechanical thrombectomy.

Methods: Patients with acute ischemic stroke with unilateral middle cerebral artery M1 segment occlusion eligible for mechanical thrombectomy will be enrolled. We adopt a 3 + 3 dose-escalation design with a duration escalation schedule of 0, 1, 2, 3, 4, and 5 min × 4 cycles for the ischemic post-conditioning study. After successful reperfusion following mechanical thrombectomy, the balloon for ischemic post-conditioning will be inflated at the site proximal to the culprit lesion four times for 0-5 min with low-pressure (3-4 atmospheres) inflations, each separated by 0-5 min of reflow. We pre-defined the major responses (vessel perforation or rupture, reocclusion of the culprit vessel after ischemic post-conditioning, vessel dissection, severe vasospasm, ischemic post-conditioning related thrombotic events, and rupture of the balloon used for ischemic post-conditioning) as the stopping rules. Each patient will undergo a rigorous evaluation to determine the safety, tolerability, and maximum tolerable duration of ischemic post-conditioning.

Discussion: This will be the first clinical study to ascertain the safety and tolerability of ischemic post-conditioning in patients with acute ischemic stroke receiving mechanical thrombectomy. The maximum tolerable duration obtained in this study will also serve as a starting point for future studies on the efficacy of ischemic post-conditioning.

Clinical trial registration: [https://ichgcp.net/clinical-trials-registry/NCT05153655" title="See in ClinicalTrials.gov">NCT05153655].

Keywords: acute ischemic stroke; dose-escalation; ischemia-reperfusion injury; ischemic post-conditioning; mechanical thrombectomy.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Wu, Zhang, Zhao, Ji and Wei.

Figures

FIGURE 1
FIGURE 1
The 3 + 3 dose-escalation trial design. The study starts with three patients. (a) If no major response occurs in any of the three patients, the next duration will be used. (b) If a major response occurs in one patient, then three more patients will be enrolled to further assess the safety and tolerability of the same duration; if no additional major response occurs, the duration will be escalated to the next dose; if an additional major response occurs, the study will be stopped, and the previous dose will be defined as the maximum tolerable duration of ischemic post-conditioning. (c) If a major response happens in 2–3 patients, the study will be stopped, and the previous dose will be defined as the maximum tolerable duration. The incremental schedule of the duration is 0, 1, 2, 3, 4, and 5 min × 4 cycles.

References

    1. Campbell B., Khatri P. (2020). Stroke. Lancet 396 129–142. 10.1016/S0140-6736(20)31179-X
    1. Chhatbar P., Chen R., Deardorff R., Dellenbach B., Kautz S., George M., et al. (2017). Safety and tolerability of transcranial direct current stimulation to stroke patients – A phase I current escalation study. Brain Stimul. 10 553–559. 10.1016/j.brs.2017.02.007
    1. De Meyer S., Denorme F., Langhauser F., Geuss E., Fluri F., Kleinschnitz C. (2016). Thromboinflammation in Stroke Brain Damage. Stroke 47 1165–1172. 10.1161/STROKEAHA.115.011238
    1. Doeppner T., Doehring M., Kaltwasser B., Majid A., Lin F., Bahr M., et al. (2017). Ischemic Post-Conditioning Induces Post-Stroke Neuroprotection via Hsp70-Mediated Proteasome Inhibition and Facilitates Neural Progenitor Cell Transplantation. Mol. Neurobiol. 54 6061–6073. 10.1007/s12035-016-0137-3
    1. Esposito E., Hayakawa K., Maki T., Arai K., Lo E. (2015). Effects of Postconditioning on Neurogenesis and Angiogenesis During the Recovery Phase After Focal Cerebral Ischemia. Stroke 46 2691–2694. 10.1161/STROKEAHA.115.009070
    1. Goyal M., Menon B., van Zwam W., Dippel D., Mitchell P., Demchuk A., et al. (2016). Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 387 1723–1731. 10.1016/S0140-6736(16)00163-X
    1. Han D., Zhang S., Fan B., Wen L., Sun M., Zhang H., et al. (2014). Ischemic postconditioning protects the neurovascular unit after focal cerebral ischemia/reperfusion injury. J. Mol. Neurosci. 53 50–58. 10.1007/s12031-013-0196-0
    1. Hansen A., Graham D., Pond G., Siu L. (2014). Phase 1 trial design: Is 3 + 3 the best? Cancer Control. 21 200–208. 10.1177/107327481402100304
    1. Li Z., Liu B., Yu J., Yang F., Luo Y., Ge P. (2012). Ischaemic postconditioning rescues brain injury caused by focal ischaemia/reperfusion via attenuation of protein oxidization. J. Int. Med. Res. 40 954–966. 10.1177/147323001204000314
    1. Liang J., Luan Y., Lu B., Zhang H., Luo Y., Ge P. (2014). Protection of ischemic postconditioning against neuronal apoptosis induced by transient focal ischemia is associated with attenuation of NF-kappaB/p65 activation. PLoS One 9:e96734. 10.1371/journal.pone.0096734
    1. Mizuma A., You J., Yenari M. (2018). Targeting Reperfusion Injury in the Age of Mechanical Thrombectomy. Stroke 49 1796–1802. 10.1161/STROKEAHA.117.017286
    1. Pignataro G., Meller R., Inoue K., Ordonez A., Ashley M., Xiong Z., et al. (2008). In vivo and in vitro characterization of a novel neuroprotective strategy for stroke: Ischemic postconditioning. J. Cereb. Blood Flow Metab. 28 232–241. 10.1038/sj.jcbfm.9600559
    1. Pinto A., Di Raimondo D., Tuttolomondo A., Fernandez P., Arnao V., Licata G. (2006). Twenty-four hour ambulatory blood pressure monitoring to evaluate effects on blood pressure of physical activity in hypertensive patients. Clin. J. Sport Med. 16 238–243. 10.1097/00042752-200605000-00009
    1. Powers W., Rabinstein A., Ackerson T., Adeoye O., Bambakidis N., Becker K., et al. (2018). 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 49 e46–e110. 10.1161/STR.0000000000000158
    1. Sutherland B., Neuhaus A., Couch Y., Balami J., DeLuca G., Hadley G., et al. (2016). The transient intraluminal filament middle cerebral artery occlusion model as a model of endovascular thrombectomy in stroke. J. Cereb. Blood Flow Metab. 36 363–369. 10.1177/0271678X15606722
    1. Taskapilioglu M., Alkan T., Goren B., Tureyen K., Sahin S., Taskapilioglu O., et al. (2009). Neuronal protective effects of focal ischemic pre- and/or postconditioning on the model of transient focal cerebral ischemia in rats. J. Clin. Neurosci. 16 693–697. 10.1016/j.jocn.2008.07.077
    1. Thuny F., Lairez O., Roubille F., Mewton N., Rioufol G., Sportouch C., et al. (2012). Post-conditioning reduces infarct size and edema in patients with ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 59 2175–2181. 10.1016/j.jacc.2012.03.026
    1. Tuttolomondo A., Di Raimondo D., Pecoraro R., Maida C., Arnao V., Della Corte V., et al. (2016). Early High-dosage Atorvastatin Treatment Improved Serum Immune-inflammatory Markers and Functional Outcome in Acute Ischemic Strokes Classified as Large Artery Atherosclerotic Stroke: A Randomized Trial. Medicine 95:e3186. 10.1097/MD.0000000000003186
    1. Tuttolomondo A., Pecoraro R., Casuccio A., Di Raimondo D., Butta C., Clemente G., et al. (2015). Peripheral frequency of CD4+ CD28- cells in acute ischemic stroke: Relationship with stroke subtype and severity markers. Medicine 94:e813. 10.1097/MD.0000000000000813
    1. Wills M., Ding Y. (2020). Beyond reperfusion: Enhancing endogenous restorative functions after an ischemic stroke. Brain Circulation 6 223–224. 10.4103/bc.bc_72_20
    1. Zaidat O., Yoo A., Khatri P., Tomsick T., von Kummer R., Saver J., et al. (2013). Recommendations on angiographic revascularization grading standards for acute ischemic stroke: A consensus statement. Stroke 44 2650–2663. 10.1161/STROKEAHA.113.001972
    1. Zhao H., Sapolsky R., Steinberg G. (2006). Interrupting reperfusion as a stroke therapy: Ischemic postconditioning reduces infarct size after focal ischemia in rats. J. Cereb. Blood Flow Metab. 26 1114–1121. 10.1038/sj.jcbfm.9600348
    1. Zhao W., Wu C., Dornbos I. D., Li S., Song H., Wang Y., et al. (2020). Multiphase adjuvant neuroprotection: A novel paradigm for improving acute ischemic stroke outcomes. Brain Circulation 6 11–18. 10.4103/bc.bc_58_19
    1. Zhao Z., Corvera J., Halkos M., Kerendi F., Wang N., Guyton R., et al. (2003). Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol. 285 H579–H588. 10.1152/ajpheart.01064.2002

Source: PubMed

Подписаться