Focused electromagnetic high-energetic extracorporeal shockwave (ESWT) reduces pain levels in the nodular state of Dupuytren's disease-a randomized controlled trial (DupuyShock)

Karsten Knobloch, Marie Hellweg, Heiko Sorg, Tomas Nedelka, Karsten Knobloch, Marie Hellweg, Heiko Sorg, Tomas Nedelka

Abstract

Dupuytren's disease is a progressive fibroproliferative disorder of the hand. In the nodular stage of Dupuytren's disease, pain might limit daily hand activities and progress to finger contractures. Focused electromagnetic high-energetic extracorporeal shockwave therapy (ESWT) may reduce pain in Dupuytren's nodules (Tubiana N). In this prospective, randomized, blinded, placebo-controlled single center trial, we enrolled 52 patients (mean age, 58.2 ± 9.2) with painful nodular Dupuytren disease Tubiana N. Randomization was done to either (group A) 3 treatments with focused electromagnetic high-energetic ESWT (2000 shots, 3 Hz, 0.35 mmJ/mm2/hand, Storz Duolith SD1, n = 27) or (group B) placebo ESWT (2000 shots, 3 Hz, 0.01 mJ/mm2/hand, n = 25) in a weekly interval. Primary outcome was the level of pain on a visual analogue scale (VAS 0-10) at 3/6/12/18 months, secondary outcomes were patient-related outcome measures (DASH score, MHQ score, URAM scale), grip strength, patient's satisfaction, and Dupuytren's disease progression over 18 months follow-up. Focused ESWT significantly improved outcomes. Pain was reduced from 3.6 ± 1.8 to 1.9 ± 1.2 at three, to 1.4 ± 0.7 at six, to 1.7 ± 1.6 after 12 months and 1.9 ± 0.8 after 18 months in the intervention group (47% reduction, p < 0.05). In the placebo group, pain on VAS increased from 2.2 ± 1.4 to 3.4 ± 1.7 at three, to 3.4 ± 1.8 at six, to 3.4 ± 1.4 at 12 and 3.1 ± 1.1 at 18 months (35% increase, p < 0.05). Quality-of-life score tended to improve in the intervention group (MHQ, 77 ± 19 to 83 ± 12; DASH, 12 ± 18 to 10 ± 9) while it deteriorated in the placebo group as Dupuytren's disease was progressing (MHQ, 79 ± 15 to 73 ± 17; DASH, 6 ± 10 to 14 ± 13). The strength of the affected hand and fingers did not change significantly in either of the groups. Patients' satisfaction was higher in the intervention group for symptom improvement (56% vs. 12%) and reduction of disease progression (59% vs. 24%). Any Dupuytren-related intervention was performed in 26% in the intervention group and in 36% in the placebo group within 18 months of follow-up (n.s.). Focused electromagnetic high-energetic ESWT can significantly reduce pain in painful nodules in Dupuytren's disease in an 18-month perspective. ( ClinicalTrials.gov Identifier: NCT01184586).

Keywords: Dupuytren; ESWT; Nodule; Pain; Shockwave; Therapy.

Conflict of interest statement

MK, HS, and TN have nothing to declare. KK received honoraries for lectures for Storz Medical AG after completion of the trial, which do not have any impact on the results presented herein.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
CONSORT flow chart
Fig. 2
Fig. 2
Schematic pressure profile of a focused extracorporeal shockwave (ESWT)
Fig. 3
Fig. 3
Energy flux densities (EFD measured in mJ/mm2) as low energetic (<0.1 mJ/mm2), medium energetic (0.1–0.25 mJ/mm2), and high energetic (>0.25 mJ/mm2)
Fig. 4
Fig. 4
Group A with three consecutive sessions of high-energetic focused electromagnetic extracorporeal shock wave therapy (focused ESWT) vs. group B with three sessions of SHAM-ESWT on a weekly base
Fig. 5
Fig. 5
Change of pain level on visual analogue scale (VAS) after 3, 6, 12, and 18 months in the high-energetic electromagnetic focused ESWT group A (white, 0.35 mJ/mm2, 3 sessions) vs. SHAM-ESWT group B (black, 0.01 mJ/mm2, 3 sessions)
Fig. 6
Fig. 6
Change of DASH scores after 3, 6, 12, and 18 months in the high-energetic electromagnetic focused ESWT group A (white, 0.35 mJ/mm2, 3 sessions) vs. SHAM-ESWT group B (black, 0.01 mJ/mm2, 3 sessions)
Fig. 7
Fig. 7
Change of MHQ scores after 3, 6, 12, and 18 months in the high-energetic electromagnetic focused ESWT group A (white, 0.35 mJ/mm2, 3 sessions) vs. SHAM-ESWT group B (black, 0.01 mJ/mm2, 3 sessions)
Fig. 8
Fig. 8
Potential antifibrotic effect of focused EWST modulating the TGF-beta receptor which drives the pro-fibrotic pathway via the Smad 2/3 pathway

References

    1. Knobloch K. Knuckle pads and therapeutic options. MMW Fortschr Med. 2012;154(19):41–42.
    1. Carloni R, Gandolfi S, Elbaz B, Bonmarchand A, Beccari R, Auguit-Auckbur I. Dorsal Dupuytren’s disease: a systematic review of published cases and treatment options. J Hand Surg Eur Vol. 2019;44(9):963–971.
    1. Knobloch K. Ledderhose’s disease – an update on therapeutic options. MMW Fortschr Med. 2012;154(19):43–44.
    1. Haase SC, Chung KC. Bringing it all together: a practical approach to the treatment of Dupuytren’s disease. Hand Clin. 2018;34(3):427–436.
    1. Dias JJ, Aziz S. Fasciectomy for Dupuytren contracture. Hand Clin. 2018;34(3):351–366.
    1. Elzinga KE, Morhart MJ. Needle aponeurotomy for Dupuytren disease. Hand Clin. 2018;34(3):331–344.
    1. Badalamente MA, Hurst LC. Development of collagenase treatment for Dupuytren disease. Hand Clin. 2018;34(3):345–349.
    1. Reichert B, Baringer M. Preferred treatment options of German hand surgeons in Dupuytren disease. Handchir Mikrochir Plast Chir. 2018;50(3):196–201.
    1. Sefton AK, Smith BJ, Stewart DA. Cost comparison of collagenase clostridium histolyticum and fasciectomy for treatment of Dupuytren’s contracture in the Australian Health System. J Hand Surg Asian Pac Vol. 2018;23(3):336–341.
    1. Carr L, Michelotti B, Brgoch M, Hauck R, Ingraham J. Dupuytren disease management trends: a survey of hand surgeons. Hand (N Y) 2018;15(1):97–102.
    1. Werker PMN, Degreef I. Alternative and adjunctive treatments for Dupuytren disease. Hand Clin. 2018;34(3):367–375.
    1. Leibovic SJ. Normal and pathologic anatomy of Dupuytren disease. Hand Clin. 2018;34(3):315–329.
    1. Zhang AY, Kargel JS. The basic science of Dupuytren disease. Hand Clin. 2018;34(3):301–305.
    1. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-ß: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325–338.
    1. Stecco C, Macchi V, Barbieri A, Tiengo C, Prozionato A, De Caro R. Hand fasciae innervation: the palmar aponeurosis. Clin Anat. 2018;31(5):677–683.
    1. Chaussy C, Brendel W, Schmiedt E. Extracorporeally induced destruction of kidney stones by shock waves. Lancet. 1980;2(8207):1265–1268.
    1. Knobloch K, Kuehn M, Vogt PM. Focused ESWT in Dupuytren’s disease – a hypothesis. Med Hypotheses. 2011;76(5):635–637.
    1. Knobloch K, Vogt PM. High-energy focused ESWT reduces pain in plantar fibromatosis (Ledderhose’s disease) BMC Res Notes. 2012;5:542.
    1. Hatzichristodoulou G, Meisner C, Gschwend JE, Stenzl A, Lahme S. ESWT in Peyronie’s disease: results of a placebo-controlled, prospective, randomized, single-blind study. J Sex Med. 2013;10(11):2815–2821.
    1. Palmieri A, Imbimbo C, Longo N, Fusco F, Verze P, Mangiapia F, Creta M, Mirone V. A first prospective, randomized, double-blind, placebo-controlled clinical trial evaluating ESWT for the treatment of Peyronie’s disease. Eur Urol. 2009;56(2):363–369.
    1. Gao L, Qian S, Tang Z, Li J, Yuan J. A meta-analysis of ESWT for Peyronie’s disease. Int J Impot Res. 2016;28(5):161–166.
    1. Abdulsalam AJ, Shehab D, Elhardy AA, Abraham M. High-energy focused ESWT relieved pain in Dupuytren’s disease: a series of seven hands. Eur J Phys Rehabil Med. 2019;55(6):862–864.
    1. Brunelli S, Bonanni C, Traballesi M, Foti C. Radial ESWT: a novel approach for the treatment of Dupuytren’s contractures: a case report. Medicine (Baltimore) 2020;99(24):e20587.
    1. Tubiana R, Michon J. Classification de la maladie de Dupuytren. Mem Acad Chir. 1961;87:886–887.
    1. Perez C, Chen H, Matula TJ, Karzova M, Khoklova VA. Acoustic field characterization of the Duolith: measurements and modeling of a clinical shockwave therapy device. J Acoust Soc Am. 2013;134(2):1663–1674.
    1. Eisenberger F, Chaussy C. Contact-free renal stone fragmentation with shock waves. Urol Res. 1978;6(3):111.
    1. Eisenberger F, Rassweiler J. Current status of ESWL in the management of renal calculus disease. Contrib Nephrol. 1987;58:236–252.
    1. Soo-Hoo NF, McDonald AP, Seiler JG, McGillivrary GR. Evaluation of construct validity of the DASH questionnaire by correlation to SF-36. J Hand Surg. 2002;27-A(3):537–541.
    1. Beaton DE, Davis AM, Hudak P, McConnell S. The DASH (Disabilities of the Arm, Shoulder and Hand) outcome measure: what do we know about it now? Br J Hand Ther. 2001;6(4):109–118.
    1. Chung KC, Pillsbury MS, Walters MR, Hayward RA. Reliability and validity testing of the Michigan Hand Outcomes Questionnaire. J Hand Surg. 1998;23A:575–587.
    1. Chung KC, Hamill JB, Walters MR, Hayward RA. The Michigan Hand Outcomes Questinnaire (MHQ): assessment of responsiveness to clinical change. Ann Plast Surg. 1999;42(6):619–622.
    1. Bernabé B, Lasbleiz S, Gerber RA, Cappelleri JC, Yelnik A, Orcel P, Bardin T, Beaudreuil J. URAM scale for functional assessment in Dupuytren’s disease: a comparative study of its properties. Joint Bone Spine. 2014;81(5):441–444.
    1. Germann G, Harth A, Wind G, Demir E. Standardisation and validation of the German version 2.0 of the Disability of Arm, Shoulder, Hand questionnaire (DASH) Unfallchirurg. 2003;106(1):13–19.
    1. Knobloch K, Kühn M, Papst S, Kraemer R, Vogt PM. German standardized translation of the Michigan Hand Outcomes questionnaire for patient-related outcome measurement in Dupuytren’s disease. Plast Reconstr Surg. 2011;128(1):39e–40e.
    1. Knobloch K, Kühn M, Sorg H, Vogt PM. German version of the unite rhumatologique des affections de la main (URAM) scale in Dupuytren’s disease: the need for a uniform definition of recurrence. Arthritis Care Res. 2012;64(5):793.
    1. Eberlein B, Biedermann T. To remember: radiotherapy – a successful treatment for early Dupuytren’s disease. J Eur Acad Drmatol Venerol. 2016;30(10):1694–1699.
    1. Costas B, Coleman S, Kaufman G, James R, Cohen B, Gaston RG. Efficacy and safety of collagenase clostridium histolyticum for Dupuytren disease nodule: a randomized controlled trial. BMC Muskuloskelet Disord. 2017;18(1):374.
    1. Cheng JH, Wang CJ, Chou WY, Hsu SL, Chen JH, Hsu TC. Comparison efficacy of ESWT and Wharton’s jelly mesenchymal stem cell in early osteoarthritis of rat knee. Am J Transl Res. 2019;11(2):586–598.
    1. Hashimoto S, Ichinose T, Ohsawa T, Koibuchi N, Chikuda H. ESWT accelerates the healing of a meniscal tear in the avascular region in a rat model. Am J Sports Med. 2019;10:2216–2228.
    1. Jeon SH, Zhu GQ, Kwon EB, Lee KW, Cho HJ, Ha US, Hong SH, Lee JY, Bae WJ, Kim SW. ESWT decreases COX-2 by inhibiting TLR4-NfkB pathway in a prostatitis rat model. Prostate. 2019;79(13):1498–1504.
    1. Ochiai N, Ohtori S, Sasho T, Nakagawa K, Takahashi K, Takahashi N, Murata R, Takahashi K, Moriya H, Wada Y, Saisu T. Extracorporeal shock wave therapy improves motor dysfunction and pain originating from knee osteoarthritis in rats. Osteoarthr Cartil. 2007;15(9):1093–1096.
    1. Isaka Y. Targeting TGF-beta signaling in kidney fibrosis. Int J Mol Sci. 2018;19(9):2532.
    1. Cui HS, Hong AR, Kim JB, You JH, Cho Y, Joo SY, Seo CH. Extracorporeal shock wave therapy alters the expression of fibrosis-related molecules in fibroblast derived from human hypertrophic scar. Int J Mol Sci. 2018;19(19):E124.
    1. Hsiao CC, Huang WH, Cheng KH, Lee CT. Low energy extracorporeal shock wave therapy ameliorates kidney function in diabetic nephropathy. Oxidative Med Cell Longev. 2019;2019:8259645.
    1. Fischer S, Mueller W, Schulte M, Kiefer J, Hirche C, Heimer S, Köllensperger E, Germann G, Reichenberger MA. Multiple extracorporeal shockwave therapy degrades capsular fibrosis after insertion of silicone implants. Ultrasound Med Biol. 2015;41(3):781–789.
    1. Heine N, Prantol L, Eisenmann-Klein M. Extracorporeal shock wave treatment of capsular fibrosis after mammary augmentation – preliminary results. J Cosmet Laser Ther. 2013;15(6):330–333.
    1. Chen YL, Lin YP, Sun CK, Huang TH, Yip HK, Chen YT. ESWT against inflammation mediated by GPR120 receptor in cyclophosphamide-induced rat cystitis model. Mol Med. 2018;24(1):60.
    1. Sukubo NG, Tibalt E, Respizzi S, Locati M, d’Agostino C. Effect of shock waves on macrophages: a possible role in tissue regeneration and remodeling. Int J Surg. 2015;24(Pt B):124–130.
    1. Myerl C, Del Frari B, Parson W, Boeck G, Piza-Katzer H, Wick G, Wolfram D. Characterization of the inflammatory response to Dupuytren’s disease. J Plast Hand Surg. 2016;50(3):171–179.
    1. Murata R, Ohtori S, Ochiai N, Takahashi N, Saisu T, Moriya H, Takahashi K, Wada Y. Extracorporeal shockwaves induce the expression of ATF3 and GAP-43 in rat dorsal root ganglion neurons. Auton Neurosci. 2006;128(1–2):96–100.
    1. Hausdorf J, Lemmens MA, Kaplan S, Marangoz C, Milz S, Odaci E, Korr H, Schmitz C, Maier M. ESWT to the distal femur of rabbits diminishes the number of neurons immunoreactive for substance P in dorsal root ganglia L5. Brain Res. 2008;1207:96–101.
    1. Franchignoni F, Vercelli S, Giordano A, Sartorio F, Bravini E, Ferriero G. Minimal clinically important difference of the disabilities of the arm, shoulder and hand outcome measure (DASH) and its shortened version (QuickDASH) J Orthop Sports Phys Ther. 2014;44(1):30–39.
    1. Shauver MJ, Chung KC. The minimal clinically important difference of the Michigan hand outcomes questionnaire. J Hand Surg [Am] 2009;34(3):509–514.

Source: PubMed

Подписаться