Tinnitus: pathology of synaptic plasticity at the cellular and system levels

Matthieu J Guitton, Matthieu J Guitton

Abstract

Despite being more and more common, and having a high impact on the quality of life of sufferers, tinnitus does not yet have a cure. This has been mostly the result of limited knowledge of the biological mechanisms underlying this adverse pathology. However, the last decade has witnessed tremendous progress in our understanding on the pathophysiology of tinnitus. Animal models have demonstrated that tinnitus is a pathology of neural plasticity, and has two main components: a molecular, peripheral component related to the initiation phase of tinnitus; and a system-level, central component-related to the long-term maintenance of tinnitus. Using the most recent experimental data and the molecular/system dichotomy as a framework, we describe here the biological basis of tinnitus. We then discuss these mechanisms from an evolutionary perspective, highlighting similarities with memory. Finally, we consider how these discoveries can translate into therapies, and we suggest operative strategies to design new and effective combined therapeutic solutions using both pharmacological (local and systemic) and behavioral tools (e.g., using tele-medicine and virtual reality settings).

Keywords: NMDA receptors; anxiety; clinical transfer; cochlea; memory; noise-induced tinnitus; virtual reality.

Figures

Figure 1
Figure 1
Modulation of the perceived intensity of tinnitus by anxiety. Phase 1: Tinnitus exists below the threshold of perception, in an unperceived state. Phase 2: The occurrence of a stressful event lowers the threshold of perception. Tinnitus thus gets unmasked, and begins to be perceived. Phase 3: Tinnitus triggers anxiety, which in turn reinforce the perception of tinnitus, leading to a “vicious circle.”
Figure 2
Figure 2
Tinnitus and memory. Analogies between the consolidation process occurring in memory and the translocation of the engram from the medio-temporal lobe to complex cortical networks; and the putative consolidation-like process which may lead to the translocation of tinnitus from the cochlea to complex neuronal networks.
Figure 3
Figure 3
Conceptual framework to design therapeutic strategies to cure tinnitus.

References

    1. Apergis-Schoute A. M., Debiec J., Doyère V., LeDoux J. E., Schafe G. E. (2005). Auditory fear conditioning and long-term potentiation in the lateral amygdala require ERK/MAP kinase signaling in the auditory thalamus: a role for presynaptic plasticity in the fear system. J. Neurosci. 25, 5730–5739. 10.1523/JNEUROSCI.0096-05.2005
    1. Avan P., Wit H. P., Guitton M., Mom T., Bonfils B. (2000). On the spectral periodicity of transient-evoked otoacoustic emissions from normal and damaged cochleas. J. Acoust. Soc. Am. 108, 1117–1127. 10.1121/1.1288936
    1. Belli S., Belli H., Bahcebasi T., Ozcetin A., Alpay E., Ertem U. (2008). Assessment of psychopathological aspects and psychiatric comorbidities in patients affected by tinnitus. Eur. Arch. Otorhinolaryngol. 265, 279–285. 10.1007/s00405-007-0440-8
    1. Ben Mamou C., Gamache K., Nader K. (2006). NMDA receptors are critical for unleashing consolidated auditory fear memories. Nat. Neurosci. 9, 1237–1239. 10.1038/nn1778
    1. Berman D. E., Dudai Y. (2001). Memory extinction, learning anew, and learning the new: dissociations in the molecular machinery of learning in cortex. Science 291, 2417–2419. 10.1126/science.1058165
    1. Bledsoe S. C., Jr., Shore S. E., Guitton M. J. (2003). Spatial representation of cortifugal input in the inferior colliculus: a multicontact silicon probe approach. Exp. Brain Res. 221, 530–542. 10.1007/s00221-003-1671-6
    1. Casado M., Ascher P. (1998). Opposite modulation of NMDA receptors by lysophospolipids and arachidonic acid: common features with mechanosensitivity. J. Physiol. (Lond.) 513, 317–330. 10.1111/j.1469-7793.1998.317bb.x
    1. Cazals Y. (2000). Auditory sensori-neural alterations induced by salicylate. Prog. Neurobiol. 62, 583–631. 10.1016/S0301-0082(00)00027-7
    1. d'Aldin C. G., Ruel J., Assié R., Pujol R., Puel J. L. (1997). Implication of NMDA type glutamate receptors in neural regeneration and neoformation of synapses after excitotoxic injury in the guinea pig cochlea. Int. J. Dev. Neurosci. 15, 619–629. 10.1016/S0736-5748(96)00116-5
    1. Dudai Y. (2004). The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol. 55, 51–86. 10.1146/annurev.psych.55.090902.142050
    1. Dudai Y. (2006). Reconsolidation: the advantage of being refocused. Curr. Opin. Neurobiol. 16, 174–178. 10.1016/j.conb.2006.03.010
    1. Eggermont J. J. (2006). Cortical tonotopic map reorganization and its implications for treatment of tinnitus. Acta Otolaryngol. Suppl. 556, 9–12. 10.1080/03655230600895259
    1. Eggermont J. J., Roberts L. E. (2004). The neuroscience of tinnitus. Trends Neurosci. 27, 676–682. 10.1016/j.tins.2004.08.010
    1. Engineer N. D., Riley J. R., Seale J. D., Vrana W. A., Shetake J. A., Sudanagunta S. P., Borland M. S., Kilgard M. P. (2011). Reversing pathological neural activity using targeted plasticity. Nature 470, 101–104. 10.1038/nature09656
    1. Guitton M. J. (2006). Tinnitus and anxiety: more than meet the ears. Curr. Psychiatry Rev. 2, 333–338.
    1. Guitton M. J. (2009). Tinnitus-provoking salicylate-treatment triggers social impairments in mice. J. Psychosom. Res. 67, 273–276. 10.1016/j.jpsychores.2008.10.017
    1. Guitton M. J. (2010). Cross-modal compensation between name and visual aspect in socially active avatars. Comp. Hum. Behav. 26, 1772–1776.
    1. Guitton M. J., Caston J., Ruel J., Johnson R. M., Pujol R., Puel J. L. (2003). Salicylate induces tinnitus through cochlear NMDA receptors. J. Neurosci. 23, 3944–3952.
    1. Guitton M. J., Dudai Y. (2007). Blockade of cochlear NMDA receptors prevents long-term tinnitus during a brief consolidation window after acoustic trauma. Neural Plast. 2007, 80904. 10.1155/2007/80904
    1. Guitton M. J., Klin Y., Dudai Y. (2008). Taste-dependent sociophobia: when food and company do not mix. Behav. Brain Res. 191, 148–152. 10.1016/j.bbr.2008.03.022
    1. Guitton M. J., Puel J. L. (2004). Cochlear NMDA receptors and tinnitus. Audiol. Med. 2, 3–7.
    1. Guitton M. J., Pujol R., Puel J. L. (2005). m-Chlorophenylpiperazine exacerbates perception of salicylate-induced tinnitus in rats. Eur. J. Neurosci. 22, 2675–2678. 10.1016/S0378-5955(02)00343-X
    1. Heffner H. E., Harrington I. (2002). Tinnitus in hamsters following exposure to intense sound. Hear. Res. 170, 83–95. 10.1016/S0378-5955(02)00343-X
    1. Heffner H. E., Koay G. (2005). Tinnitus and hearing loss in hamsters (Mesocricetus auratus) exposed to loud sound. Behav. Neurosci. 119, 734–742. 10.1037/0735-7044.119.3.734
    1. Kaltenbach J. A., Zacharek M. A., Zhang J., Frederick S. (2004). Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neurosci. Lett. 355, 121–125. 10.1016/j.neulet.2003.10.038
    1. Kimura M., Eggermont J. J. (1999). Effects of acute pure tone induced hearing loss on response properties in three auditory cortical fields in cat. Hear. Res. 135, 146–162. 10.1016/S0378-5955(99)00104-5
    1. Kossowski M., Mom T., Guitton M., Poncet J. L., Bonfils P., Avan P. (2001). Fine alterations of distortion-product otoacoustic emissions after moderate acoustic overexposure in guinea pigs. Audiology 40, 113–122.
    1. Ladrech S., Guitton M., Saido T., Lenoir M. (2004). Calpain activity in the amikacin damaged rat cochlea. J. Comp. Neurol. 477, 149–160. 10.1002/cne.20252
    1. Ladrech S., Lenoir M. (2002). Changes in MAP2 and tyrosinated alpha-tubulin expression in cochlear inner hair cells after amikacin treatment in the rat. J. Comp. Neurol. 451, 70–78. 10.1002/cne.10334
    1. Le Prell C. G., Yamashita D., Minami S. B., Yamasoba T., Miller J. M. (2006). Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear. Res. 226, 22–43. 10.1016/j.heares.2006.10.006
    1. Lobarinas E., Dalby-Brown W., Stolzberg D., Mirza N. R., Allman B. L., Salvi R. (2011). Effects of the potassium ion channel modulators BMS-204352 Maxipost and its R-enantiomer on salicylate-induced tinnitus in rats. Physiol. Behav. 104, 873–879. 10.1016/j.physbeh.2011.05.022
    1. Loeb M., Smith R. P. (1967). Relation of induced tinnitus to physical characteristics of the inducing stimuli. J. Acoust. Soc. Am. 42, 453–455. 10.1121/1.1910600
    1. Lortie C. L., Guitton M. J. (2011). Social organization in virtual settings depends on proximity to human visual aspect. Comp. Hum. Behav. 27, 1258–1261.
    1. Mahlke C., Wallhäusser-Franke E. (2004). Evidence for tinnitus-related plasticity in the auditory and limbic system, demonstrated by arg3.1 and c-fos immunocytochemistry. Hear. Res. 195, 17–34. 10.1016/j.heares.2004.03.005
    1. Milbrandt J. C., Holder T. M., Wilson M. C., Salvi R. J., Caspary D. M. (2000). GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hear. Res. 147, 251–260. 10.1016/S0378-5955(00)00135-0
    1. Miller B., Sarantis M., Traynelis S. F., Attwell D. (1992). Potentiation of NMDA receptor currents by arachidonic acid. Nature 355, 722–725. 10.1038/355722a0
    1. Muluk N. B., Oguzturk O. (2008). Occupational noise-induced tinnitus: does it affect workers' quality of life? J. Otolaryngol. Head Neck Surg. 37, 65–71.
    1. Nicolas-Puel C., Lloyd Faulconbridge R., Guitton M. J., Puel J. L., Mondain M., Uziel A. (2002). Characteristics of tinnitus and etiology of associated hearing loss: a study of 123 patients. Int. Tinnitus J. 8, 37–44.
    1. Nicoll R. A., Malenka R. C. (1995). Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118. 10.1038/377115a0
    1. Nondahl D. M., Cruickshanks K. J., Dalton D. S., Klein B. E., Klein R., Schubert C. R., Tweed T. S., Wiley T. L. (2007). The impact of tinnitus on quality of life in older adults. J. Am. Acad. Audiol. 18, 257–266.
    1. Noreña A. J., Gourévitch B., Aizawa N., Eggermont J. J. (2006). Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex. Nat. Neurosci. 9, 932–939. 10.1038/nn1720
    1. Ohlemiller K. K. (2008). Recent findings and emerging questions in cochlear noise injury. Hear. Res. 245, 5–17. 10.1016/j.heares.2008.08.007
    1. Panford-Walsh R., Singer W., Rüttiger L., Hadjab S., Tan J., Geisler H. S., Zimmermann U., Köpschall I., Rohbock K., Vieljans A., Oestreicher E., Knipper M. (2008). Midazolam reverses salicylate-induced changes in brain-derived neurotrophic factor and arg3.1 expression: implications for tinnitus perception and auditory plasticity. Mol. Pharmacol. 74, 595–604. 10.1124/mol.108.046375
    1. Peng B. G., Chen S., Lin X. (2003). Aspirin selectively augmented N-methyl-D-aspartate responses in cultured spiral ganglion neurons of mice. Neurosci. Lett. 343, 21–24. 10.1016/S0304-3940(03)00296-9
    1. Puel J. L., Guitton M. J. (2007). Salicylate-induced tinnitus: molecular mechanisms and modulation by anxiety. Prog. Brain Res. 166, 141–146. 10.1016/S0079-6123(07)66012-9
    1. Reijmers L. G., Perkins B. L., Matsuo N., Mayford M. (2007). Localization of a stable neural correlate of associative memory. Science 317, 1230–1233. 10.1126/science.1143839
    1. Rosenblum K., Dudai Y., Richter-Levin G. (1996). Long-term potentiation increases tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit 2B in rat dentate gyrus in vivo. Proc. Natl. Acad. Sci. U.S.A. 93, 10457–10460.
    1. Ruel J., Chabbert C., Nouvian R., Bendris R., Eybalin M., Leger C. L., Bourien J., Mersel M., Puel J. L. (2008). Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses. J. Neurosci. 28, 7313–7323. 10.1523/JNEUROSCI.5335-07.2008
    1. Shimizu E., Tang Y. P., Rampon C., Tsien J. Z. (2000). NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 290, 1170–1174.
    1. Singer W., Panford-Walsh R., Watermann D., Hendrich O., Zimmermann U., Köpschall I., Rohbock K., Knipper M. (2008). Salicylate alters the expression of calcium response transcription factor 1 in the cochlea: implications for brain-derived neurotrophic factor transcriptional regulation. Mol. Pharmacol. 73, 1085–1091. 10.1124/mol.107.041814
    1. Sotres-Bayon F., Bush D. E., LeDoux J. E. (2007). Acquisition of fear extinction requires activation of NR2B-containing NMDA receptors in the lateral amygdala. Neuropsychopharmacology 32, 1929–1940. 10.1038/sj.npp.1301316
    1. Suga N., Gao E., Zhang Y., Ma X., Olsen J. F. (2000). The corticofugal system for hearing: recent progress. Proc. Natl. Acad. Sci. U.S.A. 97, 1180–11814. 10.1073/pnas.97.22.11807
    1. Takehara-Nishiuchi K., Nakao K., Kawahara S., Matsuki N., Kirino Y. (2006). Systems consolidation requires postlearning activation of NMDA receptors in the medial prefrontal cortex in trace eyeblink conditioning. J. Neurosci. 26, 5049–5058. 10.1523/JNEUROSCI.4381-05.2006
    1. Wallhäusser-Franke E., Mahlke C., Oliva R., Braun S., Wenz G., Langner G. (2003). Expression of c-fos in auditory and non-auditory brain regions of the gerbil after manipulations that induce tinnitus. Exp. Brain Res. 153, 649–654. 10.1007/s00221-003-1614-2
    1. Willott J. F., Lu S. M. (1982). Noise-induced hearing loss can alter neural coding and increase excitability in the central nervous system. Science 216, 1331–1334. 10.1126/science.7079767

Source: PubMed

Подписаться