Adding Sarcosine to Antipsychotic Treatment in Patients with Stable Schizophrenia Changes the Concentrations of Neuronal and Glial Metabolites in the Left Dorsolateral Prefrontal Cortex

Dominik Strzelecki, Michał Podgórski, Olga Kałużyńska, Ludomir Stefańczyk, Magdalena Kotlicka-Antczak, Agnieszka Gmitrowicz, Piotr Grzelak, Dominik Strzelecki, Michał Podgórski, Olga Kałużyńska, Ludomir Stefańczyk, Magdalena Kotlicka-Antczak, Agnieszka Gmitrowicz, Piotr Grzelak

Abstract

The glutamatergic system is a key point in pathogenesis of schizophrenia. Sarcosine (N-methylglycine) is an exogenous amino acid that acts as a glycine transporter inhibitor. It modulates glutamatergic transmission by increasing glycine concentration around NMDA (N-methyl-d-aspartate) receptors. In patients with schizophrenia, the function of the glutamatergic system in the prefrontal cortex is impaired, which may promote negative and cognitive symptoms. Proton nuclear magnetic resonance (¹H-NMR) spectroscopy is a non-invasive imaging method enabling the evaluation of brain metabolite concentration, which can be applied to assess pharmacologically induced changes. The aim of the study was to evaluate the influence of a six-month course of sarcosine therapy on the concentration of metabolites (NAA, N-acetylaspartate; Glx, complex of glutamate, glutamine and γ-aminobutyric acid (GABA); mI, myo-inositol; Cr, creatine; Cho, choline) in the left dorso-lateral prefrontal cortex (DLPFC) in patients with stable schizophrenia. Fifty patients with schizophrenia, treated with constant antipsychotics doses, in stable clinical condition were randomly assigned to administration of sarcosine (25 patients) or placebo (25 patients) for six months. Metabolite concentrations in DLPFC were assessed with 1.5 Tesla ¹H-NMR spectroscopy. Clinical symptoms were evaluated with the Positive and Negative Syndrome Scale (PANSS). The first spectroscopy revealed no differences in metabolite concentrations between groups. After six months, NAA/Cho, mI/Cr and mI/Cho ratios in the left DLPFC were significantly higher in the sarcosine than the placebo group. In the sarcosine group, NAA/Cr, NAA/Cho, mI/Cr, mI/Cho ratios also significantly increased compared to baseline values. In the placebo group, only the NAA/Cr ratio increased. The addition of sarcosine to antipsychotic therapy for six months increased markers of neurons viability (NAA) and neurogilal activity (mI) with simultaneous improvement of clinical symptoms. Sarcosine, two grams administered daily, seems to be an effective adjuvant in the pharmacotherapy of schizophrenia.

Trial registration: ClinicalTrials.gov NCT01503359.

Keywords: 1H-NMR spectroscopy; NMDA receptor; dorso-lateral prefrontal cortex; glutamate; sarcosine; schizophrenia.

Figures

Figure 1
Figure 1
Correlation between the differences in metabolite ratios (A) NAA/Cho; (B) NAA/Cr; (C) mI/Cho; (D) mI/Cr and differences in negative PANSS subscale score.
Figure 2
Figure 2
Images showing voxel location in the left DLPFC (dorso-lateral prefrontal cortex) area and an example before (white line) and after (red line) fitting. Peak areas for N-acetylaspartate (NAA); creatine (Cr and Cr2); choline (Cho); and myo-inositol (Ins dd1) are labelled.

References

    1. McGrath J., Saha S., Chant D., Welham J. Schizophrenia: A concise overview of incidence, prevalence, and mortality. Epidemiol. Rev. 2008;30:67–76. doi: 10.1093/epirev/mxn001.
    1. Lewis D.A., Lieberman J.A. Catching up on schizophrenia: Natural history and neurobiology. Neuron. 2000;28:325–334. doi: 10.1016/S0896-6273(00)00111-2.
    1. Wahlberg K.E., Wynne L.C., Hakko H., Laksy K., Moring J., Miettunen J., Tienari P. Interaction of genetic risk and adoptive parent communication deviance: Longitudinal prediction of adoptee psychiatric disorders. Psychol. Med. 2004;34:1531–1541. doi: 10.1017/S0033291704002661.
    1. Potkin S.G., Turner J.A., Brown G.G., McCarthy G., Greve D.N., Glover G.H., Manoach D.S., Belger A., Diaz M., Wible C.G., et al. Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophr. Bull. 2009;35:19–31. doi: 10.1093/schbul/sbn162.
    1. Morgane P.J., Galler J.R., Mokler D.J. A review of systems and networks of the limbic forebrain/limbic midbrain. Prog. Neurobiol. 2005;75:143–160. doi: 10.1016/j.pneurobio.2005.01.001.
    1. Mattson D.T., Berk M., Lucas M.D. A neuropsychological study of prefrontal lobe function in the positive and negative subtypes of schizophrenia. J. Genet. Psychol. 1997;158:487–494. doi: 10.1080/00221329709596685.
    1. Alvarez J.A., Emory E. Executive function and the frontal lobes: A meta-analytic review. Neuropsychol. Rev. 2006;16:17–42. doi: 10.1007/s11065-006-9002-x.
    1. Etkin A., Gyurak A., O’Hara R. A neurobiological approach to the cognitive deficits of psychiatric disorders. Dialogues Clin. Neurosci. 2013;15:419–429.
    1. Green M.F., Kern R.S., Heaton R.K. Longitudinal studies of cognition and functional outcome in schizophrenia: Implications for MATRICS. Schizophr. Res. 2004;72:41–51. doi: 10.1016/j.schres.2004.09.009.
    1. Carlsson A., Waters N., Waters S., Carlsson M.L. Network interactions in schizophrenia—Therapeutic implications. Brain Res. Rev. 2000;31:342–349. doi: 10.1016/S0165-0173(99)00050-8.
    1. Coyle J.T. The glutamatergic dysfunction hypothesis for schizophrenia. Harv. Rev. Psychiatry. 1996;3:241–253. doi: 10.3109/10673229609017192.
    1. Olney J.W., Newcomer J.W., Farber N.B. NMDA receptor hypofunction model of schizophrenia. J. Psychiatr. Res. 1999;33:523–533. doi: 10.1016/S0022-3956(99)00029-1.
    1. Kantrowitz J., Javitt D.C. Glutamatergic transmission in schizophrenia: From basic research to clinical practice. Curr. Opin. Psychiatry. 2012;25:96–102. doi: 10.1097/YCO.0b013e32835035b2.
    1. Tsai G., Lane H.Y., Yang P., Chong M.Y., Lange N. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry. 2004;55:452–456. doi: 10.1016/j.biopsych.2003.09.012.
    1. Lane H.Y., Chang Y.C., Liu Y.C., Chiu C.C., Tsai G.E. Sarcosine or d-serine add-on treatment for acute exacerbation of schizophrenia: A randomized, double-blind, placebo-controlled study. Arch. Gen. Psychiatry. 2005;62:1196–1204. doi: 10.1001/archpsyc.62.11.1196.
    1. Lane H.Y., Lin C.H., Huang Y.J., Liao C.H., Chang Y.C., Tsai G.E. A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and d-serine add-on treatment for schizophrenia. Int. J. Neuropsychopharmacol. 2010;13:451–460. doi: 10.1017/S1461145709990939.
    1. Amiaz R., Kent I., Rubinstein K., Sela B.A., Javitt D., Weiser M. Safety, tolerability and pharmacokinetics of open label sarcosine added on to anti-psychotic treatment in schizophrenia–preliminary study. Isr. J. Psychiatry Relat. Sci. 2015;52:12–15.
    1. Singh S.P., Singh V. Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs. 2011;25:859–885. doi: 10.2165/11586650-000000000-00000.
    1. Lane H.Y., Huang C.L., Wu P.L., Liu Y.C., Chang Y.C., Lin P.Y., Chen P.W., Tsai G. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol. Psychiatry. 2006;60:645–649. doi: 10.1016/j.biopsych.2006.04.005.
    1. Lane H.Y., Liu Y.C., Huang C.L., Chang Y.C., Liau C.H., Perng C.H., Tsai G.E. Sarcosine (N-methylglycine) treatment for acute schizophrenia: A randomized, double-blind study. Biol. Psychiatry. 2008;63:9–12. doi: 10.1016/j.biopsych.2007.04.038.
    1. Steen R.G., Hamer R.M., Lieberman J.A. Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: A systematic review and meta-analysis. Neuropsychopharmacology. 2005;30:1949–1962. doi: 10.1038/sj.npp.1300850.
    1. Brugger S., Davis J.M., Leucht S., Stone J.M. Proton magnetic resonance spectroscopy and illness stage in schizophrenia—A systematic review and meta-analysis. Biol. Psychiatry. 2011;69:495–503. doi: 10.1016/j.biopsych.2010.10.004.
    1. Kraguljac N.V., Reid M., White D., Jones R., den Hollander J., Lowman D., Lahti A.C. Neurometabolites in schizophrenia and bipolar disorder—A systematic review and meta-analysis. Psychiatry Res. 2012;203:111–125. doi: 10.1016/j.pscychresns.2012.02.003.
    1. Marsman A., van den Heuvel M.P., Klomp D.W., Kahn R.S., Luijten P.R., Hulshoff Pol H.E. Glutamate in schizophrenia: A focused review and meta-analysis of ¹H-MRS studies. Schizophr. Bull. 2013;39:120–129. doi: 10.1093/schbul/sbr069.
    1. Moffett J.R., Ross B., Arun P., Madhavarao C.N., Namboodiri A.M. N-acetylaspartate in the CNS: From neurodiagnostics to neurobiology. Prog. Neurobiol. 2007;81:89–131. doi: 10.1016/j.pneurobio.2006.12.003.
    1. Meyerhoff D.J., MacKay S., Bachman L., Poole N., Dillon W.P., Weiner M.W., Fein G. Reduced brain N-acetylaspartate suggests neuronal loss in cognitively impaired human immunodeficiency virus-seropositive individuals: In vivo 1H magnetic resonance spectroscopic imaging. Neurology. 1993;43:509–515. doi: 10.1212/WNL.43.3_Part_1.509.
    1. Sager T.N., Topp S., Torup L., Hanson L.G., Egestad B., Moller A. Evaluation of CA1 damage using single-voxel 1H-MRS and un-biased stereology: Can non-invasive measures of N-acetyl-asparate following global ischemia be used as a reliable measure of neuronal damage? Brain Res. 2001;892:166–175. doi: 10.1016/S0006-8993(00)03274-1.
    1. Bustillo J.R., Rowland L.M., Jung R., Brooks W.M., Qualls C., Hammond R., Hart B., Lauriello J. Proton magnetic resonance spectroscopy during initial treatment with antipsychotic medication in schizophrenia. Neuropsychopharmacology. 2008;33:2456–2466. doi: 10.1038/sj.npp.1301631.
    1. Mondino M., Brunelin J., Saoud M. N-acetyl-aspartate level is decreased in the prefrontal cortex in subjects at-risk for schizophrenia. Front. Psychiatry. 2013;4:99. doi: 10.3389/fpsyt.2013.00099.
    1. Fukuzako H., Kodama S., Fukuzako T., Yamada K., Doi W., Sato D., Takigawa M. Subtype-associated metabolite differences in the temporal lobe in schizophrenia detected by proton magnetic resonance spectroscopy. Psychiatry Res. 1999;92:45–56. doi: 10.1016/S0925-4927(99)00035-9.
    1. Fukuzako H. Heritability heightens brain metabolite differences in schizophrenia. J. Neuropsychiatry Clin. Neurosci. 2000;12:95–97. doi: 10.1176/jnp.12.1.95.
    1. Bartha R., Williamson P.C., Drost D.J., Malla A., Carr T.J., Cortese L., Canaran G., Rylett R.J., Neufeld R.W. Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton resonance spectroscopy. Arch. Gen. Psychiatry. 1997;54:959–965. doi: 10.1001/archpsyc.1997.01830220085012.
    1. Bartha R., Al-Semaan Y.M., Williamson P.C., Drost D.J., Malla A.K., Carr T.J., Densmore M., Canaran G., Neufeld R.W. A short echo proton magnetic resonance spectroscopy study of the left mesial-temporal lobe in first-onset schizophrenic patients. Biol. Psychiatry. 1999;45:1403–1411. doi: 10.1016/S0006-3223(99)00007-4.
    1. Bertolino A., Callicott J.H., Mattay V.S., Weidenhammer K.M., Rakow R., Egan M.F., Weinberger D.R. The effect of treatment with antipsychotic drugs on brain N-acetylaspartate measures in patients with schizophrenia. Biol. Psychiatry. 2001;49:39–46. doi: 10.1016/S0006-3223(00)00997-5.
    1. Bustillo J.R., Lauriello J., Rowland L.M., Thomson L.M., Petropoulos H., Hammond R., Hart B., Brooks W.M. Longitudinal follow-up of neurochemical changes during the first year of antipsychotic treatment in schizophrenia patients with minimal previous medication exposure. Schizophr. Res. 2002;58:313–321. doi: 10.1016/S0920-9964(02)00210-4.
    1. Fannon D., Simmons A., Tennakoon L., O’Céallaigh S., Sumich A., Doku V., Shew C., Sharma T. Selective deficit of hippocampal N-acetylaspartate in antipsychotic-naive patients with schizophrenia. Biol. Psychiatry. 2003;54:587–598. doi: 10.1016/S0006-3223(03)00185-9.
    1. Callicot J.H., Bertolino A., Egan M.F., Egan M.F., Mattay V.S., Langheim F.J., Weinberger D.R. Selective relationship between prefrontal N-acetylaspartate measures and negative symptoms in schizophrenia. Am. J. Psychiatry. 2000;157:1646–1651. doi: 10.1176/appi.ajp.157.10.1646.
    1. Delamillieure P., Fernandez J., Constans J.M., Brazo P., Benali K., Abadie P., Vasse T., Thibaut F., Courthéoux P., Petit M., et al. Proton magnetic resonance spectroscopy of the medial prefrontal cortex in patients with deficit schizophrenia: Preliminary report. Am. J. Psychiatry. 2000;157:641–643. doi: 10.1176/appi.ajp.157.4.641.
    1. Tanaka Y., Obata T., Sassa T., Yoshitome E., Asai Y., Ikehira H., Suhara T., Okubo Y., Nishikawa T. Quantitative magnetic resonance spectroscopy of schizophrenia: Relationship between decreased N-acetylaspartate and frontal lobe dysfunction. Psychiatry Clin. Neurosci. 2006;60:365–372. doi: 10.1111/j.1440-1819.2006.01515.x.
    1. Yamasue H.C., Fukui T., Fukuda R., Yamada H., Yamasaki S., Kuroki N., Abe O., Kasai K., Tsujii K., Iwanami A., et al. 1H-MR spectroscopy and gray matter volume of the anterior cingulate cortex in schizophrenia. Neuroreport. 2002;13:2133–2137. doi: 10.1097/00001756-200211150-00029.
    1. Szulc A., Galińska B., Tarasów E., Dzienis W., Kubas B., Konarzewska B., Walecki J., Alathiaki A.S., Czernikiewicz A. The effect of risperidone on metabolite measures in the frontal lobe, temporal lobe, and thalamus in schizophrenic patients: A proton magnetic resonance spectroscopy (1H MRS) Pharmacopsychiatry. 2005;38:214–219. doi: 10.1055/s-2005-873156.
    1. Braus D.F., Ende G., Weber-Fahr W., Demirakca T., Tost H., Henn F.A. Functioning and neuronal viability of the anterior cingulate neurons following antipsychotic treatment: MR-spectroscopic imaging in chronic schizophrenia. Eur. Neuropsychopharmacol. 2002;12:145–152. doi: 10.1016/S0924-977X(02)00003-2.
    1. Braus D.F., Ende G., Weber-Fahr W., Demirakca T., Henn F.A. Favorable effect on neuronal viability in the anterior cingulate gyrus due to long-term treatment with atypical antipsychotics: An MRSI study. Pharmacopsychiatry. 2001;34:251–253. doi: 10.1055/s-2001-18037.
    1. Szulc A., Galińska B., Tarasów E., Kubas B., Dzienis W., Konarzewska B., Poplawska R., Tomczak A.A., Czernikiewicz A., Walecki J. N-acetylaspartate (NAA) levels in selected areas of the brain in patients with chronic schizophrenia treated with typical and atypical neuroleptics: A proton magnetic resonance spectroscopy (1H-MRS) study. Med. Sci. Monit. 2007;13:17–22.
    1. Moreno A., Ross B.D., Bluml S. Direct determination of the N-acetyl-l-aspartate synthesis rate in the human brain by 13C MRS and [1-13C] glucose infusion. J. Neurochem. 2001;77:347–350. doi: 10.1046/j.1471-4159.2001.t01-1-00282.x.
    1. Szulc A., Konarzewska B., Galińska-Skok B., Łazarczyk J., Waszkiewicz N., Tarasów E., Milewski R., Walecki J. Proton magnetic resonance spectroscopy measures related to short-term symptomatic outcome in chronic schizophrenia. Neurosci. Lett. 2013;547:37–41. doi: 10.1016/j.neulet.2013.04.051.
    1. Lisman J.E., Coyle J.T., Green R.W., Javitt D.C., Benes F.M., Heckers S., Grace A.A. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 2008;31:234–242. doi: 10.1016/j.tins.2008.02.005.
    1. Bitanihirwe B.K., Lim M.P., Kelley J.F., Kaneko T., Woo T.U. Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. BMC Psychiatry. 2009;9:71. doi: 10.1186/1471-244X-9-71.
    1. Fox M.D., Raichle M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Neurosci. Rev. 2007;8:700–711. doi: 10.1038/nrn2201.
    1. Gonzalez-Burgos G., Lewis D.A. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical γ oscillations in schizophrenia. Schizophr. Bull. 2012;38:950–957. doi: 10.1093/schbul/sbs010.
    1. Carlén M., Meletis K., Siegle J.H., Cardin J.A., Futai K., Vierling-Claassen D., Rühlmann C., Jones S.R., Deisseroth K., Sheng M., et al. A critical role for NMDA receptors in parvalbumin interneurons for γ rhythm induction and behavior. Mol. Psychiatry. 2012;17:537–548. doi: 10.1038/mp.2011.31.
    1. Kocsis B. Differential role of NR2A and NR2B subunits in N-methyl-d-aspartate receptor antagonist-induced aberrant cortical γ oscillations. Biol. Psychiatry. 2012;71:987–995. doi: 10.1016/j.biopsych.2011.10.002.
    1. Fornito A., Harrison B.J., Zalesky A., Simons J.S. Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection. Proc. Natl. Acad. Sci. USA. 2012;109:12788–12793. doi: 10.1073/pnas.1204185109.
    1. Garrity A.G., Pearlson G.D., McKiernan K., Lloyd D., Kiehl K.A., Calhoun V.D. Aberrant “default mode” functional connectivity in schizophrenia. Am. J. Psychiatry. 2007;164:450–457. doi: 10.1176/appi.ajp.164.3.450.
    1. Landin-Romero R., McKenna P.J., Salgado-Pineda P., Sarró S., Aguirre C., Sarri C., Compte A., Bosque C., Blanch J., Salvador R., et al. Failure of deactivation in the default mode network: A trait marker for schizophrenia? Psychol. Med. 2015;45:1315–1325. doi: 10.1017/S0033291714002426.
    1. Cohen S.M., Tsien R.W., Goff D.C., Halassa M.M. The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr. Res. 2015 doi: 10.1016/j.schres.2014.12.026.
    1. Meda S.A., Ruaño G., Windemuth A., O’Neil K., Berwise C., Dunn S.M., Boccaccio L.E., Narayanan B., Kocherla M., Sprooten E., et al. Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia. Proc. Natl. Acad. Sci. USA. 2014;111:E2066–E2075. doi: 10.1073/pnas.1313093111.
    1. Dodell-Feder D., Delisi L.E., Hooker C.I. The relationship between default mode network connectivity and social functioning in individuals at familial high-risk for schizophrenia. Schizophr. Res. 2014;156:87–95. doi: 10.1016/j.schres.2014.03.031.
    1. Poels E.M.P., Kegeles L.S., Kantrowitz J.T., Javitt D.C., Lieberman J.A., Abi-Dargham A., Girgis R.R. Glutamatergic abnormalities in schizophrenia: A review of proton MRS findings. Schizophr. Res. 2014;152:325–332. doi: 10.1016/j.schres.2013.12.013.
    1. Kegeles L.S., Mao X., Stanford A.D., Girgis R., Ojeil N., Xu X., Gil R., Slifstein M., Abi-Dargham A., Lisanby S.H., et al. Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry. 2012;69:449–459.
    1. Stanley J.A., Williamson P.C., Drost D.J., Rylett R.J., Carr T.J., Malla A., Thompson R.T. An in vivo proton magnetic resonance spectroscopy study of schizophrenia patients. Schizophr. Bull. 1996;22:597–609. doi: 10.1093/schbul/22.4.597.
    1. Goto N., Yoshimura R., Kakeda S., Nishimura J., Moriya J., Hayashi K., Katsuki A., Hori H., Umene-Nakano W., Ikenouchi-Sugita A., et al. Six-month treatment with atypical antipsychotic drugs decreased frontal-lobe levels of glutamate plus glutamine in early-stage first-episode schizophrenia. Neuropsychiatr. Dis. Treat. 2012;8:119–122.
    1. Szulc A., Galińska B., Tarasów E., Waszkiewicz N., Konarzewska B., Poplawska R., Bibułowicz D., Simonienko K., Walecki J. Proton magnetic resonance spectroscopy study of brain metabolite changes after antipsychotic treatment. Pharmacopsychiatry. 2011;44:148–157. doi: 10.1055/s-0031-1279739.
    1. Stone J., Dietrich C., Edden R., Mehta M.A., de Simoni S., Reed L.J., Krystal J.H., Nutt D., Barker G.J. Ketamine effects on brain GABA and glutamate levels with 1H-MRS: Relationship to ketamine-induced psychopathology. Mol. Psychiatry. 2012;17:664–665. doi: 10.1038/mp.2011.171.
    1. Rowland L.M., Bustillo J.R., Mullins P.G., Jung R.E., Lenroot R., Landgraf E., Barrow R., Yeo R., Lauriello J., Brooks W.M. Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: A 4-T proton MRS study. Am. J. Psychiatry. 2005;162:394–396. doi: 10.1176/appi.ajp.162.2.394.
    1. Ohrmann P., Siegmund A., Suslow T., Spitzberg K., Kersting A., Arolt V., Heindel W., Pfleiderer B. Evidence for glutamatergic neuronal dysfunction in the prefrontal cortex in chronic but not in first-episode patients with schizophrenia: A proton magnetic resonance spectroscopy study. Schizophr. Res. 2005;73:153–157. doi: 10.1016/j.schres.2004.08.021.
    1. Yoo S.Y., Yeon S., Choi C.H., Kang D.H., Lee J.M., Shin N.Y., Jung W.H., Choi J.S., Jang D.P., Kwon J.S. Proton magnetic resonance spectroscopy in subjects with high genetic risk of schizophrenia: Investigation of anterior cingulate, dorsolateral prefrontal cortex and thalamus. Schizophr. Res. 2009;111:86–93. doi: 10.1016/j.schres.2009.03.036.
    1. Szulc A., Galińska-Skok B., Tarasów E., Konarzewska B., Waszkiewicz N., Hykiel R., Walecki J. Clinical and cognitive correlates of the proton magnetic resonance spectroscopy measures in chronic schizophrenia. Med. Sci. Monit. 2012;18:CR390–CR398. doi: 10.12659/MSM.882909.
    1. Bustillo J.R. Use of proton magnetic resonance spectroscopy in the treatment of psychiatric disorders: A critical update. Dialogues Clin. Neurosci. 2013;15:329–337.
    1. Wood S.J., Berger G.E., Wellard R.M., Proffitt T., McConchie M., Velakoulis D., McGorry P.D., Pantelis C. A 1H-MRS investigation of the medial temporal lobe in antipsychotic-naive and early-treated first episode psychosis. Schizophr. Res. 2008;102:163–170. doi: 10.1016/j.schres.2008.03.012.
    1. Moraga-Amaro R., Jerez-Baraona J.M., Simon F., Stehberg J. Role of astrocytes in memory and psychiatric disorders. J. Physiol. Paris. 2014;108:240–251. doi: 10.1016/j.jphysparis.2014.08.005.
    1. Marsman A., Mandl R.C.W., Klomp D.W.J., Bohlken M.M., Boer V.O., Andreychenko A., Cahn W., Kahn R.S., Luijten P.R., Hulshoff Pol H.E. GABA and glutamate in schizophrenia: A 7 T 1H-MRS study. NeuroImage Clin. 2014;6:398–407. doi: 10.1016/j.nicl.2014.10.005.
    1. Schwerk A., Alves F.D., Pouwels P.J., van Amelsvoort T. Metabolic alterations associated with schizophrenia: A critical evaluation of proton magnetic resonance spectroscopy studies. J. Neurochem. 2014;128:1–87. doi: 10.1111/jnc.12398.
    1. Singh S.P., Singh V., Kar N., Chan K. Efficacy of antidepressants in treating the negative symptoms of chronic schizophrenia: Meta-analysis. Br. J. Psychiatry. 2010;197:174–179. doi: 10.1192/bjp.bp.109.067710.
    1. Kay S.R., Fiszbein A., Opfer L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987;13:261–276. doi: 10.1093/schbul/13.2.261.

Source: PubMed

Подписаться