Propranolol for familial cerebral cavernous malformation (Treat_CCM): study protocol for a randomized controlled pilot trial

Silvia Lanfranconi, Elisa Scola, Giulio Andrea Bertani, Barbara Zarino, Roberto Pallini, Giorgio d'Alessandris, Emanuela Mazzon, Silvia Marino, Maria Rita Carriero, Emma Scelzo, Giuseppe Faragò, Marco Castori, Carmela Fusco, Antonio Petracca, Leonardo d'Agruma, Laura Tassi, Piergiorgio d'Orio, Maria Grazia Lampugnani, Enrico Bjorn Nicolis, Antonella Vasamì, Deborah Novelli, Valter Torri, Jennifer Marie Theresia Anna Meessen, Rustam Al-Shahi Salman, Elisabetta Dejana, Roberto Latini, Treat-CCM Investigators, R Pallini, G d'Alessandris, F Pignotti, C Sturiale, A Albanese, S Lanfranconi, E Scola, G A Bertani, B Zarino, G Valcamonica, D Ronchi, M R Carriero, E Scelzo, G Faragò, S Pogliani, U de Grazia, C Bossi, E Mazzon, S Marino, R Ciurleo, C Fusco, A Petracca, L D'Agruma, P Raggi, A Simeone, P d'Orio, M G Lampugnani, E Dejana, E B Nicolis, A Vasamì, D Novelli, V Torri, J M T A Meessen, R Latini, G Balconi, A Foresta, M G Buratti, M Carrara, M L Ojeda Fernandez, R Al-Shahi Salman, R Treglia, A P Maggioni, E Beghi, M Tettamanti, C Regna-Gladin, A Prelle, M Mangiavacchi, Marco Poloni, F Lazzaroni, M Malinverno, D Novelli, E B Nicolis, M G Buratti, A Vasami, C Ungaro, F Raucci, M Castori, L Tassi, Silvia Lanfranconi, Elisa Scola, Giulio Andrea Bertani, Barbara Zarino, Roberto Pallini, Giorgio d'Alessandris, Emanuela Mazzon, Silvia Marino, Maria Rita Carriero, Emma Scelzo, Giuseppe Faragò, Marco Castori, Carmela Fusco, Antonio Petracca, Leonardo d'Agruma, Laura Tassi, Piergiorgio d'Orio, Maria Grazia Lampugnani, Enrico Bjorn Nicolis, Antonella Vasamì, Deborah Novelli, Valter Torri, Jennifer Marie Theresia Anna Meessen, Rustam Al-Shahi Salman, Elisabetta Dejana, Roberto Latini, Treat-CCM Investigators, R Pallini, G d'Alessandris, F Pignotti, C Sturiale, A Albanese, S Lanfranconi, E Scola, G A Bertani, B Zarino, G Valcamonica, D Ronchi, M R Carriero, E Scelzo, G Faragò, S Pogliani, U de Grazia, C Bossi, E Mazzon, S Marino, R Ciurleo, C Fusco, A Petracca, L D'Agruma, P Raggi, A Simeone, P d'Orio, M G Lampugnani, E Dejana, E B Nicolis, A Vasamì, D Novelli, V Torri, J M T A Meessen, R Latini, G Balconi, A Foresta, M G Buratti, M Carrara, M L Ojeda Fernandez, R Al-Shahi Salman, R Treglia, A P Maggioni, E Beghi, M Tettamanti, C Regna-Gladin, A Prelle, M Mangiavacchi, Marco Poloni, F Lazzaroni, M Malinverno, D Novelli, E B Nicolis, M G Buratti, A Vasami, C Ungaro, F Raucci, M Castori, L Tassi

Abstract

Background: Cerebral cavernous malformations (CCMs) are vascular malformations characterized by clusters of enlarged leaky capillaries in the central nervous system. They may result in intracranial haemorrhage, epileptic seizure(s), or focal neurological deficits, and potentially lead to severe disability. Globally, CCMs represent the second most common intracranial vascular malformation in humans, and their familial form (FCCMs) accounts for one-fifth of cases. Neurosurgical excision, and perhaps stereotactic radiosurgery, is the only available therapeutic option. Case reports suggest that propranolol might modify disease progression.

Methods: Treat_CCM is a prospective, randomized, open-label, blinded endpoint (PROBE), parallel-group trial involving six Italian clinical centres with central reading of brain magnetic resonance imaging (MRI) and adverse events. Patients with symptomatic FCCMs are randomized (2:1 ratio) either to propranolol (40-80 mg twice daily) in addition to standard care or to standard care alone (i.e. anti-epileptic drugs or headache treatments). The primary outcome is intracranial haemorrhage or focal neurological deficit attributable to CCMs. The secondary outcomes are MRI changes over time (i.e. de novo CCM lesions, CCM size and signal characteristics, iron deposition, and vascular leakage as assessed by quantitative susceptibility mapping and dynamic contrast enhanced permeability), disability, health-related quality of life, depression severity, and anxiety (SF-36, BDI-II, State-Trait Anxiety Inventory).

Discussion: Treat_CCM will evaluate the safety and efficacy of propranolol for CCMs following promising case reports in a randomized controlled trial. The direction of effect on the primary outcome and the consistency of effects on the secondary outcomes (even if none of them yield statistically significant differences) of this external pilot study may lead to a larger sample size in a definitive phase 2 trial.

Trial registration: ClinicalTrails.gov, NCT03589014. Retrospectively registered on 17 July 2018.

Keywords: Cerebral cavernous malformation; Magnetic resonance imaging; Propranolol.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study flow chart. bid twice daily, CCM cerebral cavernous malformation
Fig. 2
Fig. 2
Study plan and timeline according to the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) statement

References

    1. Horne MA, Flemming KD, Su I-C, Stapf C, Jeon JP, Li D, et al. Clinical course of untreated cerebral cavernous malformations: a meta-analysis of individual patient data. Lancet Neurol. 2016;15(2):166–173. doi: 10.1016/S1474-4422(15)00303-8.
    1. Labauge P, Denier C, Bergametti F, Tournier-Lasserve E. Genetics of cavernous angiomas. Lancet Neurol. 2007;6(3):237–244. doi: 10.1016/S1474-4422(07)70053-4.
    1. Zabramski JM, Wascher TM, Spetzler RF, Johnson B, Golfinos J, Drayer BP, et al. The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg. 1994;80(3):422–432. doi: 10.3171/jns.1994.80.3.0422.
    1. Morris Z, Whiteley WN, Longstreth WT, Weber F, Lee Y-C, Tsushima Y, et al. Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2009;339:b3016. doi: 10.1136/bmj.b3016.
    1. Flemming KD, Graff-Radford J, Aakre J, Kantarci K, Lanzino G, Brown RD, et al. Population-based prevalence of cerebral cavernous malformations in older adults: Mayo Clinic Study of Aging. JAMA Neurol. 2017;74(7):801–805. doi: 10.1001/jamaneurol.2017.0439.
    1. Gibson LM, Paul L, Chappell FM, Macleod M, Whiteley WN, Salman RA-S, et al. Potentially serious incidental findings on brain and body magnetic resonance imaging of apparently asymptomatic adults: systematic review and meta-analysis. BMJ. 2018;363:k4577. doi: 10.1136/bmj.k4577.
    1. Morrison L, Akers A, et al. Cerebral cavernous malformation, familial. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Stephens K, et al., editors. GeneReviews® [Internet] Seattle (WA): University of Washington, Seattle; 1993.
    1. Pagenstecher A, Stahl S, Sure U, Felbor U. A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells. Hum Mol Genet. 2009;18(5):911–918. doi: 10.1093/hmg/ddn420.
    1. Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA. Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet. 2009;18(5):919–930. doi: 10.1093/hmg/ddn430.
    1. Gault J, Shenkar R, Recksiek P, Awad IA. Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous malformation lesion. Stroke. 2005;36(4):872–874. doi: 10.1161/01.STR.0000157586.20479.fd.
    1. Labauge P, Laberge S, Brunereau L, Levy C, Tournier-Lasserve E. Hereditary cerebral cavernous angiomas: clinical and genetic features in 57 French families. Société Française de Neurochirurgie. Lancet. 1998;352(9144):1892–1897. doi: 10.1016/S0140-6736(98)03011-6.
    1. Washington CW, McCoy KE, Zipfel GJ. Update on the natural history of cavernous malformations and factors predicting aggressive clinical presentation. Neurosurg Focus. 2010;29(3):E7. doi: 10.3171/2010.5.FOCUS10149.
    1. Gross BA, Du R. Hemorrhage from cerebral cavernous malformations: a systematic pooled analysis. J Neurosurg. 2017;126(4):1079–1087. doi: 10.3171/2016.3.JNS152419.
    1. He Y, Zhang H, Yu L, Gunel M, Boggon TJ, Chen H, et al. Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci Signal. 2010;3(116):ra26. doi: 10.1126/scisignal.2000722.
    1. Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell. 2009;16(2):209–221. doi: 10.1016/j.devcel.2009.01.004.
    1. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498(7455):492–496. doi: 10.1038/nature12207.
    1. Zafar A, Quadri SA, Farooqui M, Ikram A, Robinson M, Hart BL, Mabray MC, Vigil C, Tang AT, Kahn ML, Yonas H, Lawton MT, Kim H, Morrison L. Familial cerebral cavernous malformations. Stroke. 2019;50(5):1294–1301. doi: 10.1161/STROKEAHA.118.022314.
    1. Akers A, Al-Shahi Salman R, A Awad I, Dahlem K, Flemming K, Hart B, et al. Synopsis of Guidelines for the Clinical Management of Cerebral Cavernous Malformations: Consensus Recommendations Based on Systematic Literature Review by the Angioma Alliance Scientific Advisory Board Clinical Experts Panel. Neurosurgery. 2017;80(5):665–680. doi: 10.1093/neuros/nyx091.
    1. Zabramski JM, Kalani MYS, Filippidis AS, Spetzler RF. Propranolol treatment of cavernous malformations with symptomatic hemorrhage. World Neurosurg. 2016;88:631–639. doi: 10.1016/j.wneu.2015.11.003.
    1. Moultrie F, Horne MA, Josephson CB, Hall JM, Counsell CE, Bhattacharya JJ, et al. Outcome after surgical or conservative management of cerebral cavernous malformations. Neurology. 2014;83(7):582–589. doi: 10.1212/WNL.0000000000000684.
    1. Drolet BA, Frommelt PC, Chamlin SL, Haggstrom A, Bauman NM, Chiu YE, et al. Initiation and use of propranolol for infantile hemangioma: report of a consensus conference. Pediatrics. 2013;131(1):128–140. doi: 10.1542/peds.2012-1691.
    1. Hermans DJJ, van Beynum IM, Schultze Kool LJ, van de Kerkhof PCM, Wijnen MHWA, van der Vleuten CJM. Propranolol, a very promising treatment for ulceration in infantile hemangiomas: a study of 20 cases with matched historical controls. J Am Acad Dermatol. 2011;64(5):833–838. doi: 10.1016/j.jaad.2011.01.025.
    1. Prey S, Voisard J-J, Delarue A, Lebbe G, Taïeb A, Leaute-Labreze C, et al. Safety of propranolol therapy for severe infantile hemangioma. JAMA. 2016;315(4):413–415. doi: 10.1001/jama.2015.13969.
    1. Léauté-Labrèze C, Hoeger P, Mazereeuw-Hautier J, Guibaud L, Baselga E, Posiunas G, et al. A randomized, controlled trial of oral propranolol in infantile hemangioma. N Engl J Med. 2015;372(8):735–746. doi: 10.1056/NEJMoa1404710.
    1. Moschovi M, Alexiou GA, Stefanaki K, Tourkantoni N, Prodromou N. Propranolol treatment for a giant infantile brain cavernoma. J Child Neurol. 2010;25(5):653–655. doi: 10.1177/0883073810363917.
    1. Berti I, Marchetti F, Skabar A, Zennaro F, Zanon D, Ventura A. Propranolol for cerebral cavernous angiomatosis: a magic bullet. Clin Pediatr (Phila) 2014;53(2):189–190. doi: 10.1177/0009922813492885.
    1. Miquel J, Bruneau B, Dupuy A. Successful treatment of multifocal intracerebral and spinal hemangiomas with propranolol. J Am Acad Dermatol. 2014;70(4):e83–e84. doi: 10.1016/j.jaad.2013.11.006.
    1. Black JW, Crowther AF, Shanks RG, Smith LH, Dornhorst AC. A new adrenergic betareceptor antagonist. Lancet. 1964;1(7342):1080–1081. doi: 10.1016/S0140-6736(64)91275-9.
    1. Davis MC, Miller BJ, Kalsi JK, Birkner T, Mathis MV. Efficient trial design—FDA approval of valbenazine for tardive dyskinesia. N Engl J Med. 2017;376(26):2503–2506. doi: 10.1056/NEJMp1704898.
    1. Al-Shahi Salman R, Berg MJ, Morrison L, Awad IA. Angioma Alliance Scientific Advisory Board. Hemorrhage from cavernous malformations of the brain: definition and reporting standards. Angioma Alliance Scientific Advisory Board. Stroke. 2008;39(12):3222–3230. doi: 10.1161/STROKEAHA.108.515544.
    1. Mikati AG, Khanna O, Zhang L, Girard R, Shenkar R, Guo X, et al. Vascular permeability in cerebral cavernous malformations. J Cereb Blood Flow Metab. 2015;35(10):1632–1639. doi: 10.1038/jcbfm.2015.98.
    1. Tan H, Liu T, Wu Y, Thacker J, Shenkar R, Mikati AG, et al. Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping. Investig Radiol. 2014;49(7):498–504. doi: 10.1097/RLI.0000000000000043.
    1. Girard R, Fam MD, Zeineddine HA, Tan H, Mikati AG, Shi C, et al. Vascular permeability and iron deposition biomarkers in longitudinal follow-up of cerebral cavernous malformations. J Neurosurg. 2017;127(1):102–110. doi: 10.3171/2016.5.JNS16687.
    1. Girard R, Zeineddine HA, Fam MD, Mayampurath A, Cao Y, Shi C, et al. Plasma biomarkers of inflammation reflect seizures and hemorrhagic activity of cerebral cavernous malformations. Transl Stroke Res. 2018;9(1):34–43. doi: 10.1007/s12975-017-0561-3.
    1. Strub GM, Kirsh AL, Whipple ME, Kuo WP, Keller RB, Kapur RP, et al. Endothelial and circulating C19MC microRNAs are biomarkers of infantile hemangioma. JCI Insight. 2016;1(14):e88856. doi: 10.1172/jci.insight.88856.
    1. Li P, Zhang Q, Wu X, Yang X, Zhang Y, Li Y, et al. Circulating microRNAs serve as novel biological markers for intracranial aneurysms. J Am Heart Assoc. 2014;3(5):e000972.
    1. Yin K-J, Hamblin M, Chen YE. Non-coding RNAs in cerebral endothelial pathophysiology: emerging roles in stroke. Neurochem Int. 2014;77:9–16. doi: 10.1016/j.neuint.2014.03.013.
    1. Tang AT, Choi JP, Kotzin JJ, Yang Y, Hong CC, Hobson N, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017;545(7654):305–310. doi: 10.1038/nature22075.
    1. Tang AT, Sullivan KR, Hong CC, et al. Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation. Sci Transl Med. 2019;11(520):eaaw3521. 10.1126/scitranslmed.aaw3521.
    1. Cocks K, Torgerson DJ. Sample size calculations for pilot randomized trials: a confidence interval approach. J Clin Epidemiol. 2013;66(2):197–201. doi: 10.1016/j.jclinepi.2012.09.002.
    1. Marzi MJ, Ghini F, Cerruti B, de Pretis S, Bonetti P, Giacomelli C, et al. Degradation dynamics of microRNAs revealed by a novel pulse-chase approach. Genome Res. 2016;26(4):554–565. doi: 10.1101/gr.198788.115.
    1. Leon AC, Davis LL, Kraemer HC. The role and interpretation of pilot studies in clinical research. J Psychiatr Res. 2011;45(5):626–629. doi: 10.1016/j.jpsychires.2010.10.008.
    1. Polster SP, Stadnik A, Akers AL, et al. Atorvastatin Treatment of Cavernous Angiomas with Symptomatic Hemorrhage Exploratory Proof of Concept (ATCASH EPOC) Trial. Neurosurgery. 2019;85(6):843–853.
    1. Algra A, Rinkel GJE. Prognosis of cerebral cavernomas: on to treatment decisions. Lancet Neurol. 2016;15(2):129–130. doi: 10.1016/S1474-4422(15)00340-3.

Source: PubMed

Подписаться