Dietary polyunsaturated fatty acids and incidence of end-stage renal disease in the Southern Community Cohort Study

Rakesh Malhotra, Kerri L Cavanaugh, William J Blot, T Alp Ikizler, Loren Lipworth, Edmond K Kabagambe, Rakesh Malhotra, Kerri L Cavanaugh, William J Blot, T Alp Ikizler, Loren Lipworth, Edmond K Kabagambe

Abstract

Background: Whether polyunsaturated fatty acids (PUFA) are associated with end-stage renal disease (ESRD) in populations with a high burden of risk factors for kidney disease is unknown. We sought to determine whether PUFA intake is associated with ESRD.

Methods: We conducted a nested case-control study of ESRD within the Southern Community Cohort Study (SCCS), a prospective cohort of low-income blacks and whites in the southeastern US (2002-2009). Through 2012, 1,074 incident ESRD cases were identified by linkage with the United States Renal Data System and matched to 3,230 controls by age, sex and race. Dietary intake of total, n-3 or n-6 PUFA was assessed from a validated food frequency questionnaire administered at baseline. Odds ratios (ORs) and 95 % confidence intervals (CIs) were computed from logistic regression models that included matching variables, body mass index, smoking, diabetes, hypertension, education, income, total energy intake and percent energy from protein and saturated fat.

Results: The mean (SD) age of participants was 55 (9) years. Most participants were women (55 %), black (87 %), with hypertension (67 %) and on average obtained 8 % of their energy from PUFA. Higher PUFA intake was marginally associated with a lower risk of ESRD in adjusted analyses. The adjusted odds ratios (95 % confidence intervals) for ESRD for the 5th vs. 1st quintile of PUFA were 0.79 (0.60-1.05; P trend = 0.06) for total PUFA, 0.81 (0.61-1.06; P trend = 0.04) for n-6 PUFA and 0.93 (0.71-1.21; P trend = 0.45) for n-3 PUFA.

Conclusions: We observed a marginally significant inverse trend between dietary PUFA intake and ESRD incidence, mainly driven by n-6 fatty acid intake. Our findings require replication but suggest that a diet rich in n-6 PUFA may prevent ESRD development in a population with a high burden of kidney disease risk factors.

Keywords: End-stage renal disease; Polyunsaturated fatty acids.

References

    1. Hallan SI, Coresh J, Astor BC, et al. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. Clin J Am Soc Nephrol. 2006;17(8):2275–2284. doi: 10.1681/ASN.2005121273.
    1. Levey AS, Atkins R, Coresh J, et al. Chronic kidney disease as a global public health problem: approaches and initiatives - a position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007;72(3):247–259. doi: 10.1038/sj.ki.5002343.
    1. van der Velde M, Matsushita K, Coresh J, et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011;79(12):1341–1352. doi: 10.1038/ki.2010.536.
    1. Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260–272. doi: 10.1016/S0140-6736(13)60687-X.
    1. Kdoqi KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49(2 Suppl 2):S12–154.
    1. Kazancioglu R. Risk factors for chronic kidney disease: an update. Kidney Int Suppl. 2013;3(4):368–371. doi: 10.1038/kisup.2013.79.
    1. Tsioufis C, Tatsis I, Thomopoulos C, et al. Effects of hypertension, diabetes mellitus, obesity and other factors on kidney haemodynamics. Curr Vasc Pharmacol. 2014;12(3):537–548. doi: 10.2174/157016111203140518173700.
    1. Horowitz B, Miskulin D, Zager P. Epidemiology of hypertension in CKD. Adv Chronic Kidney Dis. 2015;22(2):88–95. doi: 10.1053/j.ackd.2014.09.004.
    1. Yang B, Ding F, Yan J, et al. Exploratory serum fatty acid patterns associated with blood pressure in community-dwelling middle-aged and elderly Chinese. Lipids Health Dis. 2016;15(1):58. doi: 10.1186/s12944-016-0226-3.
    1. Guess N, Perreault L, Kerege A, Strauss A, Bergman BC. Dietary fatty acids differentially associate with fasting versus 2-hour glucose homeostasis: implications for the management of subtypes of prediabetes. PLoS One. 2016;11(3):e0150148. doi: 10.1371/journal.pone.0150148.
    1. Higashiyama A, Kubota Y, Marumo M, et al. Association between serum long-chain n-3 and n-6 polyunsaturated fatty acid profiles and glomerular filtration rate assessed by serum creatinine and cystatin C levels in Japanese community-dwellers. J Epidemiol. 2015;25(4):303–311. doi: 10.2188/jea.JE20140093.
    1. Hsu CC, Jhang HR, Chang WT, et al. Associations between dietary patterns and kidney function indicators in type 2 diabetes. Clin Nutr. 2014;33(1):98–105. doi: 10.1016/j.clnu.2013.04.010.
    1. Gopinath B, Harris DC, Flood VM, Burlutsky G, Mitchell P. Consumption of long-chain n-3 PUFA, alpha-linolenic acid and fish is associated with the prevalence of chronic kidney disease. Br J Nutr. 2011;105(9):1361–1368. doi: 10.1017/S0007114510005040.
    1. Lauretani F, Semba RD, Bandinelli S, et al. Plasma polyunsaturated fatty acids and the decline of renal function. Clin Chem. 2008;54(3):475–481. doi: 10.1373/clinchem.2007.095521.
    1. Huang X, Stenvinkel P, Qureshi AR, et al. Essential polyunsaturated fatty acids, inflammation and mortality in dialysis patients. Nephrol Dial Transplant. 2012;27(9):3615–3620. doi: 10.1093/ndt/gfs132.
    1. Miller ER, 3rd, Juraschek SP, Appel LJ, et al. The effect of n-3 long-chain polyunsaturated fatty acid supplementation on urine protein excretion and kidney function: meta-analysis of clinical trials. Am J Clin Nutr. 2009;89(6):1937–1945. doi: 10.3945/ajcn.2008.26867.
    1. Huang X, Lindholm B, Stenvinkel P, Carrero JJ. Dietary fat modification in patients with chronic kidney disease: n-3 fatty acids and beyond. J Nephrol. 2013;26(6):960–974. doi: 10.5301/jn.5000284.
    1. Grande JP, Walker HJ, Holub BJ, et al. Suppressive effects of fish oil on mesangial cell proliferation in vitro and in vivo. Kidney Int. 2000;57(3):1027–1040. doi: 10.1046/j.1523-1755.2000.00930.x.
    1. Chaudhary A, Mishra A, Sethi S. Oxidized omega-3 fatty acids inhibit pro-inflammatory responses in glomerular endothelial cells. Nephron Exp Nephrol. 2004;97(4):e136–145. doi: 10.1159/000079178.
    1. Perreault M, Roke K, Badawi A, et al. Plasma levels of 14:0, 16:0, 16:1n-7, and 20:3n-6 are positively associated, but 18:0 and 18:2n-6 are inversely associated with markers of inflammation in young healthy adults. Lipids. 2014;49(3):255–263. doi: 10.1007/s11745-013-3874-3.
    1. Kaikkonen JE, Kresanov P, Ahotupa M, et al. High serum n6 fatty acid proportion is associated with lowered LDL oxidation and inflammation: the Cardiovascular Risk in Young Finns Study. Free Radic Res. 2014;48(4):420–426. doi: 10.3109/10715762.2014.883071.
    1. Sundaram S, Bukowski MR, Lie WR, Picklo MJ, Yan L. High-Fat diets containing different amounts of n3 and n6 polyunsaturated fatty acids modulate inflammatory cytokine production in mice. Lipids. 2016;51(5):571–582. doi: 10.1007/s11745-015-4093-x.
    1. Wiese DM, Horst SN, Brown CT, et al. Serum fatty acids Are correlated with inflammatory cytokines in ulcerative colitis. PLoS One. 2016;11(5):e0156387. doi: 10.1371/journal.pone.0156387.
    1. Nyirenda CK, Kabagambe EK, Koethe JR, et al. Plasma fatty acids in Zambian adults with HIV/AIDS: relation to dietary intake and cardiovascular risk factors. J Nutr Metab. 2015;2015:635817. doi: 10.1155/2015/635817.
    1. Zhao G, Etherton TD, Martin KR, West SG, Gillies PJ, Kris-Etherton PM. Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J Nutr. 2004;134(11):2991–2997.
    1. Egert S, Stehle P. Impact of n-3 fatty acids on endothelial function: results from human interventions studies. Curr Opin Clin Nutr Metab Care. 2011;14(2):121–131. doi: 10.1097/MCO.0b013e3283439622.
    1. Wang DD, Li Y, Chiuve SE, et al. Association of specific dietary fats with total and cause-specific mortality. JAMA Intern Med. 2016;176(8):1134–1145. doi: 10.1001/jamainternmed.2016.2417.
    1. Kabagambe EK, Tsai MY, Hopkins PN, et al. Erythrocyte fatty acid composition and the metabolic syndrome: a National Heart, Lung, and Blood Institute GOLDN study. Clin Chem. 2008;54(1):154–162. doi: 10.1373/clinchem.2007.095059.
    1. Muka T, Kiefte-de Jong JC, Hofman A, Dehghan A, Rivadeneira F, Franco OH. Polyunsaturated fatty acids and serum C-reactive protein: the Rotterdam study. Am J Epidemiol. 2015;181(11):846–856. doi: 10.1093/aje/kwv021.
    1. USDA and UDHHS. Report of the Dietary Guidelines Advisory Committee on the dietary guidelines for Americans. 2015.
    1. Jain AP, Aggarwal KK, Zhang PY. Omega-3 fatty acids and cardiovascular disease. Eur Rev Med Pharmacol Sci. 2015;19(3):441–445.
    1. Morin C, Rousseau E, Blier PU, Fortin S. Effect of docosahexaenoic acid monoacylglyceride on systemic hypertension and cardiovascular dysfunction. Am J Physiol Heart Circ Physiol. 2015;309(1):H93–H102. doi: 10.1152/ajpheart.00823.2014.
    1. NKF-DOQI clinical practice guidelines for nutrition in chronic renal failure. American Journal of Kidney Diseases 2000;35(S2):S17-S104.
    1. Lipworth L, Mumma MT, Cavanaugh KL, et al. Incidence and predictors of end stage renal disease among low-income blacks and whites. PLoS One. 2012;7(10):e48407. doi: 10.1371/journal.pone.0048407.
    1. Signorello LB, Hargreaves MK, Blot WJ. The Southern Community Cohort Study: investigating health disparities. J Health Care Poor Underserved. 2010;21(1 Suppl):26–37. doi: 10.1353/hpu.0.0245.
    1. Lipworth L, Fazio S, Kabagambe EK, et al. A prospective study of statin use and mortality among 67,385 blacks and whites in the Southeastern United States. Clin Epidemiol. 2014;6:15–25.
    1. Kiage JN, Sampson UK, Lipworth L, et al. Intake of polyunsaturated fat in relation to mortality among statin users and non-users in the Southern Community Cohort Study. Nutr Metab Cardiovasc Dis. 2015;25(11):1016–1024. doi: 10.1016/j.numecd.2015.07.006.
    1. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344–349. doi: 10.1016/j.jclinepi.2007.11.008.
    1. U S Renal Data System, USRDS Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. 2012.
    1. Signorello LB, Munro HM, Buchowski MS, et al. Estimating nutrient intake from a food frequency questionnaire: incorporating the elements of race and geographic region. Am J Epidemiol. 2009;170(1):104–111. doi: 10.1093/aje/kwp098.
    1. Hoogeveen EK, Geleijnse JM, Kromhout D, et al. Effect of omega-3 fatty acids on kidney function after myocardial infarction: the Alpha Omega Trial. Clin J Am Soc Nephrol. 2014;9(10):1676–1683. doi: 10.2215/CJN.10441013.
    1. Eide IA, Jenssen T, Hartmann A, et al. Plasma levels of marine n-3 polyunsaturated fatty acids and renal allograft survival. Nephrol Dial Transplant. 2016;31(1):160–167. doi: 10.1093/ndt/gfv339.
    1. Sabbatini M, Apicella L, Cataldi M, et al. Effects of a diet rich in N-3 polyunsaturated fatty acids on systemic inflammation in renal transplant recipients. J Am Coll Nutr. 2013;32(6):375–383. doi: 10.1080/07315724.2013.826482.
    1. Miller ER, 3rd, Juraschek SP, Anderson CA, et al. The effects of n-3 long-chain polyunsaturated fatty acid supplementation on biomarkers of kidney injury in adults with diabetes: results of the GO-FISH trial. Diabetes Care. 2013;36(6):1462–1469. doi: 10.2337/dc12-1940.
    1. Das UN. Long-chain polyunsaturated fatty acids interact with nitric oxide, superoxide anion, and transforming growth factor-beta to prevent human essential hypertension. Eur J Clin Nutr. 2004;58(2):195–203. doi: 10.1038/sj.ejcn.1601766.
    1. Food and Nutrition Board IoMMaHD . Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) Washington: The National Academies Press; 2002. pp. 609–696.
    1. Kiage JN, Merrill PD, Robinson CJ, et al. Intake of trans fat and all-cause mortality in the Reasons for Geographical and Racial Differences in Stroke (REGARDS) cohort. Am J Clin Nutr. 2013;97(5):1121–1128. doi: 10.3945/ajcn.112.049064.

Source: PubMed

Подписаться