Potential uses, limitations, and basic procedures of micronuclei and nuclear abnormalities in buccal cells

Olivia Torres-Bugarín, María Guadalupe Zavala-Cerna, Arnulfo Nava, Aurelio Flores-García, María Luisa Ramos-Ibarra, Olivia Torres-Bugarín, María Guadalupe Zavala-Cerna, Arnulfo Nava, Aurelio Flores-García, María Luisa Ramos-Ibarra

Abstract

The use of biomarkers as tools to evaluate genotoxicity is increasing recently. Methods that have been used previously to evaluate genomic instability are frequently expensive, complicated, and invasive. The micronuclei (MN) and nuclear abnormalities (NA) technique in buccal cells offers a great opportunity to evaluate in a clear and precise way the appearance of genetic damage whether it is present as a consequence of occupational or environmental risk. This technique is reliable, fast, relatively simple, cheap, and minimally invasive and causes no pain. So, it is well accepted by patients; it can also be used to assess the genotoxic effect derived from drug use or as a result of having a chronic disease. Furthermore the beneficial effects derived from changes in life style or taking additional supplements can also be evaluated. In the present paper, we aim to focus on the explanation of MN test and its usefulness as a biomarker; we further give details about procedures to perform and interpret the results of the test and review some factors that could have an influence on the results of the technique.

Figures

Figure 1
Figure 1
(a) Cells with normal nucleus. (b) Micronucleated cell (MN), (c) binucleated cells (BN), and (d) karyorrhexis (KR). Photomicrographs stained with acridine orange viewed at 1000 magnification under fluorescence with an IVFL filter (450–490 nm). Binocular Microscope Carl Zeiss (Axiostar Plus).
Figure 2
Figure 2
(a) Condensed chromatin (CC), (b) pyknotic nuclei, arrow (PN), (c) karyolysis (KL), and (d) typical nuclear buds (NBUDs). Photomicrographs stained with acridine orange viewed at 1000 magnification under fluorescence with an IVFL filter (450–490 nm). Binocular Microscope Carl Zeiss (Axiostar Plus).
Figure 3
Figure 3
Typical and atypical nuclear buds (NBUDs). Photomicrographs stained with acridine orange viewed at 1000 magnification under fluorescence with an IVFL filter (450–490 nm). Binocular Microscope Carl Zeiss (Axiostar Plus).

References

    1. Kumar MS. Biomarkers of disease in medicine. Current Trends in Science. 2009:403–417.
    1. Fry Tl, Dunbar MR. A review of biomarkers used for wildlife damage and disease management. Proceedings of the Wildlife Damage Management Conference; 2007. pp. 217–222.
    1. Bonassi S, Coskun E, Ceppi M, et al. The HUman MicroNucleus project on eXfoLiated buccal cells (HUMNXL): the role of life-style, host factors, occupational exposures, health status, and assay protocol. Mutation Research. 2011;728(3):88–97.
    1. Torres-Bugarin O, Zavala-Cerna MG, Flores-Garcia A, Ramos-Ibarra ML. Procedimientos básicos de la prueba de micronúcleos y anormalidades nucleares en células exfoliadas de mucosa oral. El Residente. 2013;1:4–11.
    1. Holland N, Bolognesi C, Kirsch-Volders M, et al. The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: the HUMN project perspective on current status and knowledge gaps. Mutation Research. 2008;659(1-2):93–108.
    1. Thomas P, Holland N, Bolognesi C, et al. Buccal micronucleus cytome assay. Nature Protocols. 2009;4(6):825–837.
    1. Fenech M, Bonassi S. The effect of age, gender, diet and lifestyle on DNA damage measured using micronucleus frequency in human peripheral blood lymphocytes. Mutagenesis. 2011;26(1):43–49.
    1. Fenech MF. Dietary reference values of individual micronutrients and nutriomes for genome damage prevention: current status and a road map to the future. American Journal of Clinical Nutrition. 2010;91(5):1438S–1454S.
    1. Fenech L, Rinaldi J. The relationship between micronuclei in human lymphocytes and plasma levels of vitamin C, vitamin E, vitamin B12 and folic acid. Carcinogenesis. 1994;15(7):1405–1411.
    1. Titenko-Holland N, Jacob RA, Shang N, Balaraman A, Smith MT. Micronuclei in lymphocytes and exfoliated buccal cells of postmenopausal women with dietary changes in folate. Mutation Research. 1998;417(2-3):101–114.
    1. Schneider M, Diemer K, Engelhart K, Zankl H, Trommer WE, Biesalski HK. Protective effects of vitamins C and E on the numbers of micronuclei in lymphocytes in smokers and their role in ascorbate free radical formation in plasma. Free Radical Research. 2001;34(3):209–219.
    1. Fenech M, Baghurst P, Luderer W, et al. Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, β-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability—results from a dietary intake and micronucleus index survey in South Australia. Carcinogenesis. 2005;26(5):991–999.
    1. Huang P, Huang B, Weng H, Nakayama K, Morimoto K. Effects of lifestyle on micronuclei frequency in human lymphocytes in Japanese hard-metal workers. Preventive Medicine. 2009;48(4):383–388.
    1. Reichhold S, Neubauer O, Ehrlich V, Knasmuller S, Wagner KH. No acute and persistent DNA damage after an Ironman triathlon. Cancer Epidemiology, Biomarkers & Prevention. 2008;17(8):1913–1919.
    1. Hartmann A, Pfuhler S, Dennog C, Germadnik D, Pilger A, Speit G. Exercise-induced DNA effects in human leukocytes are not accompanied by increased formation of 8-hydroxy-2’-deoxyguanosine or induction of micronuclei. Free Radical Biology and Medicine. 1998;24(2):245–251.
    1. Schiffl C, Zieres C, Zankl H. Exhaustive physical exercise increases frequency of micronuclei. Mutation Research. 1997;389(2-3):243–246.
    1. Umegaki K, Higuchi M, Inoue K, Esashi T. Influence of one bout of intensive running on lymphocyte micronucleus frequencies in endurance-trained and untrained men. International Journal of Sports Medicine. 1998;19(8):581–585.
    1. Schmid W. The micronucleus test. Mutation Research. 1975;31(1):9–15.
    1. Migliore L, Cocchi L, Scarpato R. Detection of the centromere in micronuclei by fluorescence in situ hybridization: its application to the human lymphocyte micronucleus assay after treatment with four suspected aneugens. Mutagenesis. 1996;11(3):285–290.
    1. Afshari AJ, McGregor PW, Allen JW, Fuscoe JC. Centromere analysis of micronuclei induced by 2-aminoanthraquinone in cultured mouse splenocytes using both a gamma-satellite DNA probe and anti-kinetochore antibody. Environmental and Molecular Mutagenesis. 1994;24(2):96–102.
    1. Migliore L, Bevilacqua C, Scarpato R. Cytogenetic study and FISH analysis in lymphocytes of systemic lupus erythematosus (SLE) and systemic sclerosis (SS) patients. Mutagenesis. 1999;14(2):227–231.
    1. Ramos-Remus C, Dorazco-Barragan G, Aceves-Avila FJ, et al. Genotoxicity assessment using micronuclei assay in rheumatoid arthritis patients. Clinical and Experimental Rheumatology. 2002;20(2):208–212.
    1. Rodríguez-Vázquez MOA, Ramos-Remus C, Zúñiga G, Torres-Bugarín O. Evaluación de la genotoxicidad de la ciclofosfamida mediante prueba de micronúcleos en pacientes con lupus eritematoso sistémico. Revista Mexicana de Reumatología. 2000;15(2):41–45.
    1. Torres-Bugarín O, Covarrubias-Bugarín R, Zamora-Perez AL, Torres-Mendoza BMG, García-Ulloa M, Martínez-Sandoval FG. Anabolic androgenic steroids induce micronuclei in bucca mucosa cells of bodybuilders. British Journal of Sports Medicine. 2007;41(9):592–596.
    1. Heddle JA, Cimino MC, Hayashi M, et al. Micronuclei as an index of cytogenetic damage: past, present, and future. Environmental and Molecular Mutagenesis. 1991;18(4):277–291.
    1. Aires GMA, Meireles JRC, Oliveira PC, et al. Micronuclei as biomarkers for evaluating the risk of malignant transformation in the uterine cervix. Genetics and Molecular Research. 2011;10(3):1558–1564.
    1. Zúñiga G, Torres-Bugaŕin O, Ramírez-Muñoz MP, et al. Spontaneous micronuclei in peripheral blood erythrocytes from 35 mammalian species. Mutation Research. 1996;369(1):123–127.
    1. Zúñiga-González G, Torres-Bugarín O, Luna-Aguirre J, et al. Spontaneous micronuclei in peripheral blood erythrocytes from 54 animal species (mammals, reptiles and birds): part two. Mutation Research. 2000;467(1):99–103.
    1. Zúñiga-González G, Torres-Bugarín O, Zamora-Perez A, et al. Differences in the number of micronucleated erythrocytes among young and adult animals including humans—spontaneous micronuclei in 43 species. Mutation Research. 2001;494(1-2):161–167.
    1. Gómez-Meda BC, Zamora-Perez AL, Luna-Aguirre J, et al. Nuclear abnormalities in erythrocytes of parrots (Aratinga canicularis) related to genotoxic damage. Avian Pathology. 2006;35(3):206–210.
    1. Zavala-Aguirre JL, Torres-Bugarín O, Buelna-Osben HR, et al. Induction of micronuclei and nuclear abnormalities by cyclophosphamide and colchicine in Xenotoca melanosoma (Pisces, Goodeidae) from Lake la Alberca in Michoacán, México. Journal of Environmental Science and Health A. 2010;45(1):75–81.
    1. Alvarez-Moya C, Santerre-Lucas A, Zúñiga-González G, Torres-Bugarín O, Padilla-Camberos E, Feria-Velasco A. Evaluation of genotoxic activity of maleic hydrazide, ethyl methane sulfonate, and N-nitroso diethylamine in Tradescantia. Salud Publica de Mexico. 2001;43(6):563–569.
    1. Squier CA, Kremer MJ. Biology of oral mucosa and esophagus. Journal of the National Cancer Institute. 2001;(29):7–15.
    1. Slack JMW. Stem cells in epithelial tissues. Science. 2000;287(5457):1431–1433.
    1. Tolbert PE, Shy CM, Allen JW. Micronuclei and other nuclear anomalies in buccal smears: methods development. Mutation Research. 1992;271(1):69–77.
    1. Torres-Bugarín O, De Anda-Casillas A, Ramírez-Muñoz MP, Sánchez-Corona J, Cantú JM, Zúñiga G. Determination of diesel genotoxicity in firebreathers by micronuclei and nuclear abnormalities in buccal mucosa. Mutation Research. 1998;413(3):277–281.
    1. Torres Bugarin O. Evaluación de la genotoxicidad de las drogas antineoplásicas mediante el conteo de micronúcleos y otras anormalidades nucleares en mucosa bucal y micronúcleos en eritrocitos de sangre periférica [Doctorado en Genética] 2000.
    1. Tolbert PE, Shy CM, Allen JW. Micronuclei and other nuclear anomalies in buccal smears: a field test in snuff users. American Journal of Epidemiology. 1991;134(8):840–850.
    1. Raj VMS. Dose response relationship of nuclear changes with fractionated radiotherapy in assessing radiosensitivity of oral squamous cell carcinoma. Journal of Clinical and Experimental Dentistry. 2011;3(3):e193–e200.
    1. Thomas P, Harvey S, Gruner T, Fenech M. The buccal cytome and micronucleus frequency is substantially altered in Down’s syndrome and normal ageing compared to young healthy controls. Mutation Research. 2008;638(1-2):37–47.
    1. Nersesyan AK. Nuclear buds in exfoliated human cells. Mutation Research. 2005;588(1):64–68.
    1. Bolognesi C, Knasmueller S, Nersesyan A, Thomas P, Fenech M. The HUMNxl scoring criteria for different cell types and nuclear anomalies in the buccal micronucleus cytome assay—an update and expanded photogallery. Mutation Research. 2013;753(2):100–113.
    1. Nersesyan A, Kundi M, Atefie K, Schulte-Hermann R, Knasmüller S. Effect of staining procedures on the results of micronucleus assays with exfoliated oral mucosa cells. Cancer Epidemiology Biomarkers and Prevention. 2006;15(10):1835–1840.
    1. Grover S, Mujib A, Jahagirdar A, Telagi N, Kulkarni P. A comparative study for selectivity of micronuclei in oral exfoliated epithelial cells. Journal of Cytology. 2012;29(4):230–235.
    1. Palaskar S, Jindal C. Evaluation of micronuclei using Papanicolaou and may Grunwald Giemsa stain in individuals with different tobacco habits -A comparative study. Journal of Clinical and Diagnostic Research. 2010;4(6):3607–3613.
    1. Zamora-Perez AL, Lazalde-Ramos B, Sosa-Macías MG, Gómez-Meda BC, Torres-Bugarin O, Zuñiga-Gonzalez GM. Increased number of micronucleated cells in the buccal mucosa of brickmakers. Current Topics in Genetics. 2010;4:70–78.
    1. Ceppi M, Gallo F, Bonassi S. Study design and statistical analysis of data in human population studies with the micronucleus assay. Mutagenesis. 2011;26(1):247–252.
    1. Domínguez AA, Carnesoltas D, Ibrahín L, et al. Efectos citogenéticos por exposición ocupacional a citostáticos. Revista Médica del Instituto Mexicano del Seguro Social. 2004;42(6):487–492.
    1. Castro R, Ramírez V, Cuenca P. Micronuclei and other nuclear abnormalities in the oral epithelium of female workers exposed to pesticides. Revista de Biologia Tropical. 2004;52(3):611–621.
    1. Gómez-Arroyo S, Díaz-Sánchez Y, Meneses-Pérez MA, Villalobos-Pietrini R, De León-Rodríguez J. Cytogenetic biomonitoring in a Mexican floriculture worker group exposed to pesticides. Mutation Research. 2000;466(1):117–124.
    1. Sailaja N, Chandrasekhar M, Rekhadevi PV, et al. Genotoxic evaluation of workers employed in pesticide production. Mutation Research. 2006;609(1):74–80.
    1. Carlin V, Artioli AJ, Matsumoto MA, et al. Biomonitoring of DNA damage and cytotoxicity in individuals exposed to cone beam computed tomography. Dentomaxillofacial Radiology. 2010;39(5):295–299.
    1. Domínguez Odio A, Rojas Vázquez EI, Romero García LI, Rodríguez Tito JC, Pérez Andrés I. Buccoepithelial cytologic lesions in workers exposed to chemical products. Revista Médica del Instituto Mexicano del Seguro Social. 2005;43(3):221–227.
    1. Tejedor-Casiani I. Biomonitoreo de células bucales a partir de micronúcleos en soldadores de metales en Cartagena (Bolívar) [Master in Toxicology] Departamento de Toxicología, Facultad de Medicina; 2011.
    1. Moran-Martinez J, Monreal-De Luna KD, Betancourt-Martinez ND, et al. Genotoxicity in oral epithelial cells in children caused by nickel in metal crowns. Genetics and Molecular Research. 2013;12(3):3178–3185.
    1. Rudrama Devi K, Madhavi D, Karuna Kumari J. Nuclear anomolies in exfoliated buccal cells of Occupationally lead exposed population. International Journal of Pharma and Bio Sciences. 2011;2(4):710–716.
    1. Sudha S, Kripa SK, Shibily P, Shyn J. Elevated frequencies of micronuclei and other nuclear abnormalities of chrome plating workers occupationally exposed to hexavalent chromium. Iranian Journal of Cancer Prevention. 2011;4(3):120–125.
    1. Gamino-Gutierrez SP, Gonzalez-Perez CI, Gonsebatt ME, Monroy-Fernandez MG. Arsenic and lead contamination in urban soils of Villa de la Paz (Mexico) affected by historical mine wastes and its effect on children's health studied by micronucleated exfoliated cells assay. Environmental Geochemistry and Health. 2013;35(1):37–51.
    1. Vuyyuri SB, Ishaq M, Kuppala D, Grover P, Ahuja YR. Evaluation of micronucleus frequencies and DNA damage in glass workers exposed to arsenic. Environmental and Molecular Mutagenesis. 2006;47(7):562–570.
    1. Pinto D, Ceballos JM, García G, et al. Increased cytogenetic damage in outdoor painters. Mutation Research. 2000;467(2):105–111.
    1. Khan MI, Ahmad I, Mahdi AA, et al. Elevated blood lead levels and cytogenetic markers in buccal epithelial cells of painters in India. Environmental Science and Pollution Research. 2010;17(7):1347–1354.
    1. González-Yebra AL, Kornhauser C, Barbosa-Sabanero G, Pérez-Luque EL, Wrobel K, Wrobel K. Exposure to organic solvents and cytogenetic damage in exfoliated cells of the buccal mucosa from shoe workers. International Archives of Occupational and Environmental Health. 2009;82(3):373–380.
    1. Sellappa S, Prathyumnan S, Joseph S, Keyan KS. Micronucleus test in exfoliated buccal cells from chromium exposed tannery workers. International Journal of Bioscience Biochemistry and Bioinformatics. 2011;1(1)
    1. Wultsch G, Nersesyan A, Mišík M, et al. Formation of micronuclei and other nuclear anomalies in exfoliated nasal and oral cells: results of a human study with workers in a power plant processing poultry litter. International Journal of Hygiene and Environmental Health. 2012;216(1):82–87.
    1. Viegas S, Ladeira C, Nunes C, et al. Genotoxic effects in occupational exposure to formaldehyde: a study in anatomy and pathology laboratories and formaldehyde-resins production. Journal of Occupational Medicine and Toxicology. 2010;5(1, article 25)
    1. Rickes LN, Alvarengo MC, Souza TM, Garcias GL, Martino-Roth MG. Increased micronucleus frequency in exfoliated cells of the buccal mucosa in hairdressers. Genetics and Molecular Research. 2010;9(3):1921–1928.
    1. Garcia PV, Linhares D, Amaral AF, Rodrigues AS. Exposure of thermoelectric power-plant workers to volatile organic compounds from fuel oil: genotoxic and cytotoxic effects in buccal epithelial cells. Mutation Research. 2012;747(2):197–201.
    1. Diler SB, Ergene S. Nuclear anomalies in the buccal cells of calcite factory workers. Genetics and Molecular Biology. 2010;33(2):374–378.
    1. Ragragio EM, Belleza CP, Narciso MC, Su GLS. Assessment of micronucleus frequency in exfoliated buccal epithelial cells among fisher folks exposed to mine tailings in Marinduque Island, Philippines. Asian Pacific Journal of Tropical Medicine. 2010;3(4):315–317.
    1. Martino-Roth MG, Viégas J, Amaral M, Oliveira L, Ferreira FLS, Erdtmann B. Evaluation of genotoxicity through micronuclei test in workers of car and battery repair garages. Genetics and Molecular Biology. 2000;25(4):495–500.
    1. Manas Ranjan Ray CB, Senjuti M, Sanghita R, Twisha L. Micronucleus frequencies and nuclear anomalies in exfoliated buccal epithelial cells of firefighters. International Journal of Human Genetics. 2005;5(1):45–48.
    1. Çelik A, Çavaş T, Ergene-Gözükara S. Cytogenetic biomonitoring in petrol station attendants: micronucleus test in exfoliated buccal cells. Mutagenesis. 2003;18(5):417–421.
    1. Rajkokila KS, Usharani MV. Nuclear anomalies in exfoliated buccal epithelial cells of petrol station attendants in Tamilnadu, South India. Journal of Medical Genetics and Genomics. 2010;2(2):18–22.
    1. Rekhadevi PV, Mahboob M, Rahman MF, Grover P. Determination of genetic damage and urinary metabolites in fuel filling station attendants. Environmental and Molecular Mutagenesis. 2011;52(4):310–318.

Source: PubMed

Подписаться