Rhodiola crenulata extract for prevention of acute mountain sickness: a randomized, double-blind, placebo-controlled, crossover trial

Te-Fa Chiu, Lisa Li-Chuan Chen, Deng-Huang Su, Hsiang-Yun Lo, Chung-Hsien Chen, Shih-Hao Wang, Wei-Lung Chen, Te-Fa Chiu, Lisa Li-Chuan Chen, Deng-Huang Su, Hsiang-Yun Lo, Chung-Hsien Chen, Shih-Hao Wang, Wei-Lung Chen

Abstract

Background: Rhodiola crenulata (R. crenulata) is widely used to prevent acute mountain sickness in the Himalayan areas and in Tibet, but no scientific studies have previously examined its effectiveness. We conducted a randomized, double-blind, placebo-controlled crossover study to investigate its efficacy in acute mountain sickness prevention.

Methods: Healthy adult volunteers were randomized to 2 treatment sequences, receiving either 800 mg R. crenulata extract or placebo daily for 7 days before ascent and 2 days during mountaineering, before crossing over to the alternate treatment after a 3-month wash-out period. Participants ascended rapidly from 250 m to 3421 m on two separate occasions: December 2010 and April 2011. The primary outcome measure was the incidence of acute mountain sickness, as defined by a Lake Louise score ≥ 3, with headache and at least one of the symptoms of nausea or vomiting, fatigue, dizziness, or difficulty sleeping.

Results: One hundred and two participants completed the trial. There were no demographic differences between individuals taking Rhodiola-placebo and those taking placebo-Rhodiola. No significant differences in the incidence of acute mountain sickness were found between R. crenulata extract and placebo groups (all 60.8%; adjusted odds ratio (AOR) = 1.02, 95% confidence interval (CI) = 0.69-1.52). The incidence of severe acute mountain sickness in Rhodiola extract vs. placebo groups was 35.3% vs. 29.4% (AOR = 1.42, 95% CI = 0.90-2.25).

Conclusions: R. crenulata extract was not effective in reducing the incidence or severity of acute mountain sickness as compared to placebo.

Trial registration: ClinicalTrials.gov NCT01536288.

Figures

Figure 1
Figure 1
Mountaineering schedule. Total of 10 checkpoints (CPs): CP 1, Linkou (250 m); 2, Cingjing Farm (1743 m); 3, Yuanfeng parking lot (2756 m); 4, training camp (3100 m) at noon; 5, East Peak (3421 m) of Hehuan Mountain; 6, training camp (evening); 7, training camp (next morning); 8, Main Peak (3416 m) of Hehuan Mountain; 9, Cingjing Farm and 10, Linkou. Solid line indicates that participants were transported by bus.
Figure 2
Figure 2
Participant flow diagram.
Figure 3
Figure 3
AMS occurrence in 2 periods. The incidence of AMS was 65.7% (67/102) in period 1 and 55.9% (57/102) in period 2 (OR: 0.66, 95% CI: 0.45 - 0.98). There were no between-group differences in either period.
Figure 4
Figure 4
Sensitivity analysis. Data was presented as adjusted odds ratio (AOR) and 95% confidence interval (CI). Comparison between Rhodiola arm and placebo arm was analyzed by generalized linear models with generalized estimating equations. Regardless of any extreme scenarios, Rhodiola was not effective in preventing AMS. *: significant difference statistically.

References

    1. Hackett PH, Roach RC. High-altitude illness. N Engl J Med. 2001;345(2):107–114. doi: 10.1056/NEJM200107123450206.
    1. Imray C, Booth A, Wright A, Bradwell A. Acute altitude illnesses. BMJ. 2011;343:d4943. doi: 10.1136/bmj.d4943.
    1. Chow T, Browne V, Heileson HL, Wallace D, Anholm J, Green SM. Ginkgo biloba and acetazolamide prophylaxis for acute mountain sickness: a randomized, placebo-controlled trial. Arch Intern Med. 2005;165(3):296–301. doi: 10.1001/archinte.165.3.296.
    1. Hackett PH, Rennie D, Levine HD. The incidence, importance, and prophylaxis of acute mountain sickness. Lancet. 1976;2(7996):1149–1155.
    1. Seupaul RA, Welch JL, Malka ST, Emmett TW. Pharmacologic prophylaxis for acute mountain sickness: a systematic shortcut review. Ann Emerg Med. 2012;59(4):307–317. doi: 10.1016/j.annemergmed.2011.10.015.
    1. Basnyat B, Murdoch DR. High-altitude illness. Lancet. 2003;361(9373):1967–1974. doi: 10.1016/S0140-6736(03)13591-X.
    1. Dumont L, Mardirosoff C, Tramer MR. Efficacy and harm of pharmacological prevention of acute mountain sickness: quantitative systematic review. BMJ. 2000;321(7256):267–272. doi: 10.1136/bmj.321.7256.267.
    1. Basnyat B, Gertsch JH, Holck PS, Johnson EW, Luks AM, Donham BP, Fleischman RJ, Gowder DW, Hawksworth JS, Jensen BT. et al.Acetazolamide 125 mg BD is not significantly different from 375 mg BD in the prevention of acute mountain sickness: the prophylactic acetazolamide dosage comparison for efficacy (PACE) trial. High Alt Med Biol. 2006;7(1):17–27. doi: 10.1089/ham.2006.7.17.
    1. Imray C, Wright A, Subudhi A, Roach R. Acute mountain sickness: pathophysiology, prevention, and treatment. Prog Cardiovasc Dis. 2010;52(6):467–484. doi: 10.1016/j.pcad.2010.02.003.
    1. Panossian A, Wikman G, Sarris J. Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine. 2010;17(7):481–493. doi: 10.1016/j.phymed.2010.02.002.
    1. Gertsch JH, Seto TB, Mor J, Onopa J. Ginkgo biloba for the prevention of severe acute mountain sickness (AMS) starting one day before rapid ascent. High Alt Med Biol. 2002;3(1):29–37. doi: 10.1089/152702902753639522.
    1. Gertsch JH, Basnyat B, Johnson EW, Onopa J, Holck PS. Randomised, double blind, placebo controlled comparison of ginkgo biloba and acetazolamide for prevention of acute mountain sickness among Himalayan trekkers: the prevention of high altitude illness trial (PHAIT) BMJ. 2004;328(7443):797. doi: 10.1136/bmj.38043.501690.7C.
    1. van Patot MC, Keyes LE, Leadbetter G 3rd, Hackett PH. Ginkgo biloba for prevention of acute mountain sickness: does it work? High Alt Med Biol. 2009;10(1):33–43. doi: 10.1089/ham.2008.1085.
    1. Zhang ZJ, Tong Y, Zou J, Chen PJ, Yu DH. Dietary supplement with a combination of Rhodiola crenulata and Ginkgo biloba enhances the endurance performance in healthy volunteers. Chin J Integr Med. 2009;15(3):177–183. doi: 10.1007/s11655-009-0177-x.
    1. Abidov M, Crendal F, Grachev S, Seifulla R, Ziegenfuss T. Effect of extracts from Rhodiola rosea and Rhodiola crenulata (Crassulaceae) roots on ATP content in mitochondria of skeletal muscles. Bull Exp Biol Med. 2003;136(6):585–587.
    1. Li T, Zhang H. Identification and comparative determination of rhodionin in traditional tibetan medicinal plants of fourteen Rhodiola species by high-performance liquid chromatography-photodiode array detection and electrospray ionization-mass spectrometry. Chem Pharm Bull (Tokyo) 2008;56(6):807–814. doi: 10.1248/cpb.56.807.
    1. Salazar H, Swanson J, Mozo K, White AC Jr, Cabada MM. Acute mountain sickness impact among travelers to Cusco. Peru. J Travel Med. 2012;19(4):220–225. doi: 10.1111/j.1708-8305.2012.00606.x.
    1. De Bock K, Eijnde BO, Ramaekers M, Hespel P. Acute Rhodiola rosea intake can improve endurance exercise performance. Int J Sport Nutr Exerc Metab. 2004;14(3):298–307.
    1. Hung SK, Perry R, Ernst E. The effectiveness and efficacy of Rhodiola rosea L.: a systematic review of randomized clinical trials. Phytomedicine. 2011;18(4):235–244. doi: 10.1016/j.phymed.2010.08.014.
    1. Lee SY, Li MH, Shi LS, Chu H, Ho CW. CTC. Rhodiola crenulata extract alleviates hypoxic pulmonary edema in rats. Evid Based Complement Alternat Med. 2013;2013:718739.
    1. Swenson ER, Maggiorini M, Mongovin S, Gibbs JSR, Greve I, Mairbäurl H, Bärtsch P. Pathogenesis of high-altitude pulmonary edema: inflammation is not an etiologic factor. JAMA. 2002;287(17):2228–2235. doi: 10.1001/jama.287.17.2228.
    1. Stream JO, Grissom CK. Update on high-altitude pulmonary edema: pathogenesis, prevention, and treatment. Wilderness Environ Med. 2008;19(4):293–303. doi: 10.1580/07-WEME-REV-173.1.
    1. Icard P, Saumon G. Alveolar sodium and liquid transport in mice. Am J Physiol. 1999;277(6):L1232–L1238.
    1. Looney MR, Sartori C, Chakraborty S, James PF, Lingrel JB, Matthay MA. Decreased expression of both the α1-and α2 -subunits of the Na-K-ATPase reduces maximal alveolar epithelial fluid clearance. Am J Physiol. 2005;289(1):L104–L110. doi: 10.1152/ajpcell.00600.2004.
    1. Zhang BC, Li WM, Guo R, Xu YW. Salidroside decreases atherosclerotic plaque formation in low-density lipoprotein receptor-deficient mice. Evid Based Complement Alternat Med. 2012;2012:607508.
    1. Sun L, Isaak CK, Zhou Y. Salidroside and Tyrosol from Rhodiola protect H9c2 cell from ischemia/reperfusion-induced apoptosis. Life Sci. 2012;91:151–158. doi: 10.1016/j.lfs.2012.06.026.
    1. Chen SF, Tsai HJ, Hung TH, Chen CC, Lee CY, Wu CH, Wang PY, Liao NC. Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PLoS One. 2012;7(9):e45763. doi: 10.1371/journal.pone.0045763.
    1. Tu Y, Roberts L, Shetty K, Schneider SS. Rhodiola crenulata induces death and inhibits growth of breast cancer cell lines. J Med Food. 2008;11(3):413–423. doi: 10.1089/jmf.2007.0736.
    1. Lee OH, Kwon YI, Apostolidis E, Shetty K, Kim YC. Rhodiola-induced inhibition of adipogenesis involves antioxidant enzyme response associated with pentose phosphate pathway. Phytother Res. 2011;25(1):106–115. doi: 10.1002/ptr.3236.
    1. Qu ZQ, Zhou Y, Zeng YS, Lin YK, Li Y, Zhong ZQ, Chan WY. Protective effects of a Rhodiola crenulata extract and salidroside on hippocampal neurogenesis against streptozotocin-induced neural injury in the rat. PLoS One. 2012;7(1):e29641. doi: 10.1371/journal.pone.0029641.
    1. Lee SY, Shi LS, Chu H, Li MH, Ho CW, Lai FY, Huang CY, Chang TC. Rhodiola crenulata and its bioactive components, salidroside and tyrosol, reverse the hypoxia-induced reduction of plasma-membrane-associated Na. K-ATPase expression via inhibition of ROS-AMPK-PKC ξ Pathway. Evid Based Complement Alternat Med. 2013;2013:284150.
    1. Wu TY, Ding SQ, Zhang SL, Duan JQ, Li BY, Zhan ZY, Wu QL, Baomu S, Liang BZ, Han SR, Jie YL, Li G, Sun L, Kayser B. Altitude illness in Qinghai–Tibet railroad passengers. High Alt Med Biol. 2010;11(3):189–198. doi: 10.1089/ham.2009.1047.
    1. Wang S, Wang FP. [Studies on the chemical components of Rhodiola crenulata] Yao Xue Xue Bao. 1992;27(2):117–120.
    1. Wang S, You XT, Wang FP. [HPLC determination of salidroside in the roots of Rhodiola genus plants] Yao Xue Xue Bao. 1992;27(11):849–852.
    1. Roach RC, Bartsch P, Hackett PH, Oelz O. Hypoxia and Molecular Medicine: Proceedings of the 8th International Hypoxia Symposium: The Lake Louise Acute Mountain Sickness Scoring System. 1993.
    1. Wang SH, Chen YC, Kao WF, Lin YJ, Chen JC, Chiu TF, Hsu TY, Chen HC, Liu SW. Epidemiology of acute mountain sickness on Jade Mountain, Taiwan: an annual prospective observational study. High Alt Med Biol. 2010;11(1):43–49. doi: 10.1089/ham.2009.1063.
    1. Mairer K, Wille M, Bucher T, Burtscher M. Prevalence of acute mountain sickness in the Eastern Alps. High Alt Med Biol. 2009;10(3):239–245. doi: 10.1089/ham.2008.1091.
    1. Pesce C, Leal C, Pinto H, González G, Maggiorini M, Schneider M, Bärtsch P. Determinants of acute mountain sickness and success on Mount Aconcagua (6962 m) High Alt Med Biol. 2005;6(2):158–166. doi: 10.1089/ham.2005.6.158.
    1. Ziaee V, Yunesian M, Ahmadinejad Z, Halabchi F, Kordi R, Alizadeh R, Afsharjoo HR. Acute mountain sickness in Iranian trekkers around Mount Damavand (5671 m) in Iran. Wilderness Environ Med. 2003;14(4):214–219. doi: 10.1580/1080-6032(2003)14[214:AMSIIT];2.
    1. Gaillard S, Dellasanta P, Loutan L, Kayser B. Awareness, prevalence, medication use, and risk factors of acute mountain sickness in tourists trekking around the Annapurnas in Nepal: a 12-year follow-up. High Alt Med Biol. 2004;5:410–419. doi: 10.1089/ham.2004.5.410.
    1. Vardy J, Vardy J, Judge K. Can knowledge protect against acute mountain sickness? J Public Health (Oxf) 2005;27:366–370. doi: 10.1093/pubmed/fdi060.

Source: PubMed

Подписаться