Significant Changes in Metabolic Profiles after Intervention with Selenium and Coenzyme Q10 in an Elderly Population

Urban Alehagen, Peter Johansson, Jan Aaseth, Jan Alexander, Izabella Surowiec, Katrin Lundstedt-Enkel, Torbjörn Lundstedt, Urban Alehagen, Peter Johansson, Jan Aaseth, Jan Alexander, Izabella Surowiec, Katrin Lundstedt-Enkel, Torbjörn Lundstedt

Abstract

Selenium and coenzyme Q10 (SeQ10) are important for normal cellular function. Low selenium intake leads to increased cardiovascular mortality. Intervention with these substances with healthy elderly persons over a period of four years in a double-blind, randomised placebo-controlled prospective study showed reduced cardiovascular mortality, increased cardiac function, and a lower level of NT-proBNP. Therefore, we wanted to evaluate changes in biochemical pathways as a result of the intervention with SeQ10 using metabolic profiling. From a population of 443 healthy elderly individuals that were given 200 µg selenium and 200 mg coenzyme Q10, or placebo daily for four years, we selected nine males on active intervention and nine males on placebo for metabolic profiling in the main study. To confirm the results, two validation studies (study 1 n = 60 males, study 2 n = 37 males) were conducted. Principal component analyses were used on clinical and demographic data to select representative sets of samples for analysis and to divide the samples into batches for analysis. Gas chromatography time-of-flight mass spectrometry-based metabolomics was applied. The metabolite data were evaluated using univariate and multivariate approaches, mainly T-tests and orthogonal projections to latent structures (OPLS) analyses. Out of 95 identified metabolites, 19 were significantly decreased due to the intervention after 18 months of intervention. Significant changes could be seen in the pentose phosphate, the mevalonate, the beta-oxidation and the xanthine oxidase pathways. The intervention also resulted in changes in the urea cycle, and increases in the levels of the precursors to neurotransmitters of the brain. This adds information to previous published results reporting decreased oxidative stress and inflammation. This is the first-time metabolic profiling has been applied to elucidate the mechanisms behind an intervention with SeQ10. The study is small and should be regarded as hypothesis-generating; however, the results are interesting and, therefore, further research in the area is needed. This study was registered at Clinicaltrials.gov, with the identifier NCT01443780.

Keywords: coenzyme Q10; elderly; metabolic profiling; selenium.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
OPLS-DA score plot based on each individual’s metabolic profile. (R2X = 0.19, R2Y = 0.57, Q2Y = 0.18). Note: Round circles indicate the men that received the placebo (Pl, green; n = 9), and the squares are men treated with SeQ10 (Ki, blue; n = 9). Note: The metabolite pattern was determined in plasma at the time point of 18 months (T18). Note: One of the individuals receiving placebo took SeQ10 by self-administration.
Figure 2
Figure 2
Predicted cross-validated Y values (from the OPLS-DA model). Note: Actual values for controls are denoted 0 and for SeQ10-treated are denoted 1, showing that the two groups’ metabolic patterns are significantly different (p = 0.006).
Figure 3
Figure 3
P(corr) loading vector from the OPLS-DA model with the 95 metabolites identified in plasma of men (n = 9) receiving a daily addition of SeQ10 for 18 months as compared with placebo-treated men (controls; n = 8). Note: Bars pointing to the left from mean (0) indicate metabolites with lower levels in SeQ10-treated men. Amino acids are marked in light blue.

References

    1. Rayman M.P. Selenium and human health. Lancet. 2012;379:1256–1268. doi: 10.1016/S0140-6736(11)61452-9.
    1. Selenius M., Rundlöf A.K., Olm E., Fernandes A.P., Björnstedt M. Selenium and the Selenoprotein Thioredoxin Reductase in the Prevention, Treatment and Diagnostics of Cancer. Antioxid. Redox Signal. 2010;12:867–880. doi: 10.1089/ars.2009.2884.
    1. Huang Z., Rose A.H., Hoffmann P.R. The Role of Selenium in Inflammation and Immunity: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signal. 2012;16:705–743. doi: 10.1089/ars.2011.4145.
    1. Fairweather-Tait S.J., Bao Y., Broadley M.R., Collings R., Ford D., Hesketh J.E., Hurst R. Selenium in Human Health and Disease. Antioxid. Redox Signal. 2011;14:1337–1383. doi: 10.1089/ars.2010.3275.
    1. Yang G., Zhou R. Further observations on the human maximum safe dietary selenium intake in a seleniferous area of China. J. Trace Elem. Electrolytes Health Dis. 1994;8:159–165.
    1. Cheng Y.Y., Qian P.C. The effect of selenium-fortified table salt in the prevention of Keshan disease on a population of 1.05 million. Biomed. Environ. Sci. 1990;3:422–428.
    1. Akbaraly N.T., Arnaud J., Hininger-Favier I., Gourlet V., Roussel A.-M., Berr C. Selenium and Mortality in the Elderly: Results from the EVA Study. Clin. Chem. 2005;51:2117–2123. doi: 10.1373/clinchem.2005.055301.
    1. Adame E.M., Florea D., Pérez L.S., López J.M., López-González B., De La Cruz A.P., Del Pozo E.P. Deficient selenium status of a healthy adult Spanish population. Nutrición Hospitalaria. 2012;27:524–528.
    1. Letsiou S., Nomikos T., Panagiotakos D., Pergantis S.A., Fragopoulou E., Antonopoulou S., Pitsavos C., Stefanadis C. Serum total selenium status in Greek adults and its relation to age. The ATTICA study cohort. Biol. Trace Elem. Res. 2009;128:8–17. doi: 10.1007/s12011-008-8252-2.
    1. Benes B., Spevácková V., Smíd J., Batáriová A., Cejchanová M., Zítková L. Effects of age, BMI, smoking and contraception on levels of Cu, Se and Zn in the blood of the population in the Czech Republic. Central Eur. J. Public Health. 2005;13:202–207.
    1. Reszka E., Wieczorek E., Jablonska E., Janasik B., Fendler W., Wasowicz W. Association between plasma selenium level and NRF2 target genes expression in humans. J. Trace Elem. Med. Biol. 2015;30:102–106. doi: 10.1016/j.jtemb.2014.11.008.
    1. Xia Y., Hill K.E., Li P., Xu J., Zhou D., Motley A.K., Wang L., Byrne D.W., Burk R.F. Optimization of selenoprotein P and other plasma selenium biomarkers for the assessment of the selenium nutritional requirement: A placebo-controlled, double-blind study of selenomethionine supplementation in selenium-deficient Chinese subjects. Am. J. Clin. Nutr. 2010;92:525–531. doi: 10.3945/ajcn.2010.29642.
    1. Hurst R., Armah C.N., Dainty J.R., Hart D.J., Teucher B., Goldson A.J., Broadley M.R., Motley A.K., Fairweather-Tait S.J. Establishing optimal selenium status: Results of a randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 2010;91:923–931. doi: 10.3945/ajcn.2009.28169.
    1. Gao H., Hägg S., Sjögren P., Lambert P.C., Ingelsson E., Van Dam R.M. Serum selenium in relation to measures of glucose metabolism and incidence of Type 2 diabetes in an older Swedish population. Diabet. Med. 2014;31:787–793. doi: 10.1111/dme.12429.
    1. Harris H.R., Bergkvist L., Wolk A. Selenium intake and breast cancer mortality in a cohort of Swedish women. Breast Cancer Res. Treat. 2012;134:1269–1277. doi: 10.1007/s10549-012-2139-9.
    1. Alehagen U., Johansson P., Björnstedt M., Rosén A., Post C., Aaseth J. Relatively high mortality risk in elderly Swedish subjects with low selenium status. Eur. J. Clin. Nutr. 2016;70:91–96. doi: 10.1038/ejcn.2015.92.
    1. Kafai M.R., Ganji V. Sex, age, geographical location, smoking, and alcohol consumption influence serum selenium concentrations in the USA: Third national health and nutrition examination survey, 1988–1994. J. Trace Elements Med. Boil. 2003;17:13–18. doi: 10.1016/S0946-672X(03)80040-8.
    1. Bleys J., Navas-Acien A., Laclaustra M., Pastor-Barriuso R., Menke A., Ordovas J., Stranges S., Guallar E. Serum Selenium and Peripheral Arterial Disease: Results From the National Health and Nutrition Examination Survey, 2003–2004. Am. J. Epidemiol. 2009;169:996–1003. doi: 10.1093/aje/kwn414.
    1. Alehagen U., Alexander J., Aaseth J. Supplementation with Selenium and Coenzyme Q10 Reduces Cardiovascular Mortality in Elderly with Low Selenium Status. A Secondary Analysis of a Randomised Clinical Trial. PLoS ONE. 2016;11:e0157541. doi: 10.1371/journal.pone.0157541.
    1. Xia L., Nordman T., Olsson J.M., Damdimopoulos A., Björkhem-Bergman L., Nalvarte I., Eriksson L.C., Arnér E.S., Spyrou G., Björnstedt M. The mammalian cytosolic selenoenzyme thioredoxin reductase reduces ubiquinone. A novel mechanism for defense against oxidative stress. J. Biol. Chem. 2003;278:2141–2146. doi: 10.1074/jbc.M210456200.
    1. Acosta M.J., Fonseca L.V., Desbats M.A., Cerqua C., Zordan R., Trevisson E., Salviati L. Coenzyme Q biosynthesis in health and disease. Biochim. Biophys. Acta. 2016;1857:1079–1085. doi: 10.1016/j.bbabio.2016.03.036.
    1. Kalén A., Appelkvist E.-L., Dallner G. Age-related changes in the lipid compositions of rat and human tissues. Lipids. 1989;24:579–584. doi: 10.1007/BF02535072.
    1. Folkers K., Moesgaard S., Morita M. A one year bioavailability study of coenzyme Q10 with 3 months withdrawal period. Mol. Asp. Med. 1994;15:s281–s285. doi: 10.1016/0098-2997(94)90039-6.
    1. Molyneux S.L., Florkowski C.M., George P.M., Pilbrow A.P., Frampton C.M., Lever M., Richards A.M. Coenzyme Q10: An independent predictor of mortality in chronic heart failure. J. Am. Coll. Cardiol. 2008;52:1435–1441. doi: 10.1016/j.jacc.2008.07.044.
    1. Alehagen U., Johansson P., Björnstedt M., Rosén A., Dahlström U. Cardiovascular mortality and N-terminal-proBNP reduced after combined selenium and coenzyme Q10 supplementation: A 5-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. Int. J. Cardiol. 2013;167:1860–1866. doi: 10.1016/j.ijcard.2012.04.156.
    1. Madsen R.K., Lundstedt T., Gabrielsson J., Sennbro C.-J., Alenius G.-M., Moritz T., Rantapää-Dahlqvist S., Trygg J. Diagnostic properties of metabolic perturbations in rheumatoid arthritis. Arthritis Res. Ther. 2011;13:R19. doi: 10.1186/ar3243.
    1. Madsen R., Lundstedt T., Trygg J. Chemometrics in metabolomics—A review in human disease diagnosis. Anal. Chim. Acta. 2010;659:23–33. doi: 10.1016/j.aca.2009.11.042.
    1. Nordstrom A., Lewensohn R. Metabolomics: Moving to the clinic. J. Neuroimmune Pharmacol. 2010;5:4–17. doi: 10.1007/s11481-009-9156-4.
    1. Vinayavekhin N., Homan E.A., Saghatelian A. Exploring disease through metabolomics. ACS Chem. Biol. 2010;5:91–103. doi: 10.1021/cb900271r.
    1. Scholz S., Fischer S., Gündel U., Küster E., Luckenbach T., Voelker D. The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environ. Sci. Pollut. Res. 2008;15:394–404. doi: 10.1007/s11356-008-0018-z.
    1. Yamanouchi T., Minoda S., Yabuuchi M., Akanuma Y., Akanuma H., Miyashita H., Akaoka I. Plasma 1,5-anhydro-D-glucitol as new clinical marker of glycemic control in NIDDM patients. Diabetes. 1989;38:723–729. doi: 10.2337/diab.38.6.723.
    1. Fujiwara T., Yoshida M., Yamada H., Tsukui T., Nakamura T., Sakakura K., Wada H., Arao K., Katayama T., Funayama H., et al. Lower 1,5-anhydroglucitol is associated with denovo coronary artery disease in patients at high cardiovascular risk. Heart Vessels. 2015;30:469–476. doi: 10.1007/s00380-014-0502-y.
    1. Ouchi S., Shimada K., Miyazaki T., Takahashi S., Sugita Y., Shimizu M., Murata A., Kadoguchi T., Kato T., Aikawa T., et al. Low 1,5-anhydroglucitol levels are associated with long-term cardiac mortality in acute coronary syndrome patients with hemoglobin A1c levels less than 7.0. Cardiovasc. Diabetol. 2017;16:151. doi: 10.1186/s12933-017-0636-1.
    1. Münzel T., Camici G.G., Maack C., Bonetti N.R., Fuster V., Kovacic J.C. Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series. J. Am. Coll. Cardiol. 2017;70:212–229. doi: 10.1016/j.jacc.2017.05.035.
    1. Siti H.N., Kamisah Y., Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review) Vasc. Pharmacol. 2015;71:40–56. doi: 10.1016/j.vph.2015.03.005.
    1. Alehagen U., Aaseth J., Johansson P. Less increase of copeptin and MR-proADM due to intervention with selenium and coenzyme Q10 combined: Results from a 4-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. BioFactors. 2015;41:443–452. doi: 10.1002/biof.1245.
    1. Holstein S.A., Hohl R.J. Isoprenoids: Remarkable diversity of form and function. Lipids. 2004;39:293–309. doi: 10.1007/s11745-004-1233-3.
    1. Shaghaghi M.A., AbuMweis S.S., Jones P.J. Cholesterol-Lowering Efficacy of Plant Sterols/Stanols Provided in Capsule and Tablet Formats: Results of a Systematic Review and Meta-Analysis. J. Acad. Nutr. Diet. 2013;113:1494–1503. doi: 10.1016/j.jand.2013.07.006.
    1. Marangoni F., Poli A. Phytosterols and cardiovascular health. Pharmacol. Res. 2010;61:193–199. doi: 10.1016/j.phrs.2010.01.001.
    1. Dumolt J.H., Rideout T.C. The Lipid-lowering Effects and Associated Mechanisms of Dietary Phytosterol Supplementation. Curr. Pharm. Des. 2017;23:5077–5085. doi: 10.2174/1381612823666170725142337.
    1. Cabral C.E., Klein M.R.S.T. Phytosterols in the Treatment of Hypercholesterolemia and Prevention of Cardiovascular Diseases. Arq. Bras. Cardiol. 2017;109:475–482. doi: 10.5935/abc.20170158.
    1. Shandilya U.K., Sharma A. Functional Foods and Their Benefints: An Overview. J. Nutr. Health Food Eng. 2017;7:247.
    1. Speckmann B., Schulz S., Hiller F., Hesse D., Schumacher F., Kleuser B., Geisel J., Obeid R., Grune T., Kipp A.P. Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice. J. Nutr. Biochem. 2017;48:112–119. doi: 10.1016/j.jnutbio.2017.07.002.
    1. Alehagen U., Lindahl T.L., Aaseth J., Svensson E., Johansson P. Levels of sP-selectin and hs-CRP Decrease with Dietary Intervention with Selenium and Coenzyme Q10 Combined: A Secondary Analysis of a Randomized Clinical Trial. PLoS ONE. 2015;10:e0137680. doi: 10.1371/journal.pone.0137680.
    1. Walker K.A., Power M.C., Hoogeveen R.C., Folsom A.R., Ballantyne C.M., Knopman D.S., Windham B.G., Selvin E., Jack C.R., Gottesman R.F. Midlife Systemic Inflammation, Late-Life White Matter Integrity, and Cerebral Small Vessel Disease: The Atherosclerosis Risk in Communities Study. Stroke. 2017;48:3196–3202. doi: 10.1161/STROKEAHA.117.018675.
    1. Harrington R.A. Targeting Inflammation in Coronary Artery Disease. N. Engl. J. Med. 2017;377:1197–1198. doi: 10.1056/NEJMe1709904.
    1. Würtz P., Soininen P., Kangas A.J., Rönnemaa T., Lehtimäki T., Kähönen M., Viikari J.S., Raitakari O.T., Ala-Korpela M. Branched-Chain and Aromatic Amino Acids Are Predictors of Insulin Resistance in Young Adults. Diabetes Care. 2013;36:648–655. doi: 10.2337/dc12-0895.
    1. Tillin T., Hughes A.D., Wang Q., Würtz P., Ala-Korpela M., Sattar N., Forouhi N.G., Godsland I.F., Eastwood S.V., McKeigue P.M., et al. Diabetes risk and amino acid profiles: Cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent REvisited) Study. Diabetologia. 2015;58:968–979. doi: 10.1007/s00125-015-3517-8.
    1. Zhenyukh O., Civantos E., Ruiz-Ortega M., Sánchez M.S., Vázquez C., Peiró C., Egido J., Mas S. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic. Boil. Med. 2017;104:165–177. doi: 10.1016/j.freeradbiomed.2017.01.009.
    1. Johansson P., Dahlstrom O., Dahlstrom U., Alehagen U. Improved health-related quality of life, and more days out of hospital with supplementation with selenium and coenzyme Q10 combined. Results from a double blind, placebo-controlled prospective study. J. Nutr. Health Aging. 2015;19:870–877. doi: 10.1007/s12603-015-0509-9.
    1. Iwase S., Kawaguchi T., Yotsumoto D., Doi T., Miyara K., Odagiri H., Kitamura K., Ariyoshi K., Miyaji T., Ishiki H., et al. Efficacy and safety of an amino acid jelly containing coenzyme Q10 and L-carnitine in controlling fatigue in breast cancer patients receiving chemotherapy: A multi-institutional, randomized, exploratory trial (JORTC-CAM01) Support. Care Cancer. 2016;24:637–646. doi: 10.1007/s00520-015-2824-4.
    1. Sanoobar M., Dehghan P., Khalili M., Azimi A., Seifar F. Coenzyme Q10 as a treatment for fatigue and depression in multiple sclerosis patients: A double blind randomized clinical trial. Nutr. Neurosci. 2016;19:138–143. doi: 10.1179/1476830515Y.0000000002.
    1. Bengtsson A.A., Trygg J., Wuttge D.M., Sturfelt G., Theander E., Donten M., Moritz T., Sennbro C.-J., Torell F., Lood C., et al. Metabolic Profiling of Systemic Lupus Erythematosus and Comparison with Primary Sjögren’s Syndrome and Systemic Sclerosis. PLoS ONE. 2016;11:0159384. doi: 10.1371/journal.pone.0159384.
    1. Di Pierro F., Rossi A., Consensi A., Giacomelli C., Bazzichi L. Role for a water-soluble form of CoQ10 in female subjects affected by fibromyalgia. A preliminary study. Clin. Exp. Rheumatol. 2017;35(Suppl. 105):20–27.
    1. Zhang Y.P., Eber A., Yuan Y., Yang Z., Rodriguez Y., Levitt R.C., Takacs P., Candiotti K.A. Prophylactic and Antinociceptive Effects of Coenzyme Q10 on Diabetic Neuropathic Pain in a Mouse Model of Type 1 Diabetes. Anesthesiology. 2013;118:945–954. doi: 10.1097/ALN.0b013e3182829b7b.
    1. Zhang Y.P., Mei S., Yang J., Rodriguez Y., Candiotti K.A. Acute Hypoglycemia Induces Painful Neuropathy and the Treatment of Coenzyme Q10. J. Diabetes Res. 2016;2016:1–7. doi: 10.1155/2016/4593052.
    1. Jackson M.I., Cao J., Zeng H., Uthus E., Combs G.F. S-Adenosylmethionine-dependent Protein Methylation Is Required for Expression of Selenoprotein P and Gluconeogenic Enzymes in HepG2 Human Hepatocytes. J. Boil. Chem. 2012;287:36455–36464. doi: 10.1074/jbc.M112.412932.
    1. Jung M., Pfeifer G.P. Aging and DNA methylation. BMC Biol. 2015;13:7. doi: 10.1186/s12915-015-0118-4.
    1. Alehagen U., Aaseth J., Alexander J., Svensson E., Johansson P., Larsson A. Less fibrosis in elderly subjects supplemented with selenium and coenzyme Q10-A mechanism behind reduced cardiovascular mortality? BioFactors. 2017;44:137–147. doi: 10.1002/biof.1404.
    1. Johansson P., Dahlström Ö, Dahlström U., Alehagen U. Effect of selenium and Q10 on the cardiac biomarker NT-proBNP. Scand. Cardiovasc. J. 2013;47:281–288. doi: 10.3109/14017431.2013.820838.
    1. Jensen-Urstad K., Bouvier F., Höjer J., Ruiz H., Hulting J., Samad B., Thorstrand C., Jensen-Urstad M. Comparison of Different Echocardiographic Methods With Radionuclide Imaging for Measuring Left Ventricular Ejection Fraction During Acute Myocardial Infarction Treated by Thrombolytic Therapy. Am. J. Cardiol. 1998;81:538–544. doi: 10.1016/S0002-9149(97)00964-8.
    1. van Royen N., Jaffe C.C., Krumholz H.M., Johnson K.M., Lynch P.J., Natale D., Atkinson P., Deman P., Wackers F.J. Comparison and reproducibility of visual echocardiographic and quantitative radionuclide left ventricular ejection fractions. Am. J. Cardiol. 1996;77:843–850. doi: 10.1016/S0002-9149(97)89179-5.
    1. Surowiec I., Johansson E., Torell F., Idborg H., Gunnarsson I., Svenungsson E., Jakobsson P.-J., Trygg J. Multivariate strategy for the sample selection and integration of multi-batch data in metabolomics. Metabolomics. 2017;13:114. doi: 10.1007/s11306-017-1248-1.
    1. Surowiec I., Vikström L., Hector G., Johansson E., Vikström C., Trygg J. Generalized Subset Designs in Analytical Chemistry. Anal. Chem. 2017;89:6491–6497. doi: 10.1021/acs.analchem.7b00506.
    1. A J., Trygg J., Gullberg J., Johansson A.I., Jonsson P., Antti H., Marklund S.L., Moritz T. Extraction and GC/MS analysis of the human blood plasma metabolome. Anal. Chem. 2005;77:8086–8094. doi: 10.1021/ac051211v.
    1. Jonsson P., Johansson A.I., Gullberg J., Trygg J., A J., Grung B., Marklund S., Sjöström M., Antti H., Moritz T. High-Throughput Data Analysis for Detecting and Identifying Differences between Samples in GC/MS-Based Metabolomic Analyses. Anal. Chem. 2005;77:5635–5642. doi: 10.1021/ac050601e.
    1. Trygg J., Wold S. PLS regressionon waveletcompressed NIR spectra. Chemom. Intell. Lab. Syst. 1998;42:209–220. doi: 10.1016/S0169-7439(98)00013-6.
    1. Wold S., Trygg J., Berglund A., Antti H. Some recent developments in PLS modeling. Chemom. Intell. Lab. Syst. 2001;58:131–150. doi: 10.1016/S0169-7439(01)00156-3.
    1. Wold S. Pattern-Recognition by Means of Disjoint Principal Component Analysis. Pattern Recognit. 1976;8:127–139. doi: 10.1016/0031-3203(76)90014-5.
    1. Redestig H., Fukushima A., Stenlund H., Moritz T., Arita M., Saito K., Kusano M. Compensation for Systematic Cross-Contribution Improves Normalization of Mass Spectrometry Based Metabolomics Data. Anal. Chem. 2009;81:7974–7980. doi: 10.1021/ac901143w.
    1. Wold S., Esbensen K., Geladi P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987;2:37–52. doi: 10.1016/0169-7439(87)80084-9.
    1. Trygg J., Wold S. Orthogonal projections to latent structures (O-PLS) J. Chemom. 2002;16:119–128. doi: 10.1002/cem.695.
    1. Bylesjo M., Rantalainen M., Cloarec O., Nicholson J.K., Holmes E., Trygg J. OPLS discriminant analysis: Combiningthe strengths of PLS-DA and SIMCA classification. J. Chemom. 2006;20:341–351. doi: 10.1002/cem.1006.
    1. Wiklund S., Johansson E., Sjöström L., Mellerowicz E.J., Edlund U., Shockcor J.P., Gottfries J., Moritz T., Trygg J. Visualization of GC/TOF-MS-Based Metabolomics Data for Identification of Biochemically Interesting Compounds Using OPLS Class Models. Anal. Chem. 2008;80:115–122. doi: 10.1021/ac0713510.
    1. Efron B., Gong G. A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation. Am. Stat. 1983;37:36–48.

Source: PubMed

Подписаться