Population Pharmacokinetics and Pharmacodynamics of Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction

Hauke Ruehs, Dagmar Klein, Matthias Frei, Joachim Grevel, Rupert Austin, Corina Becker, Lothar Roessig, Burkert Pieske, Dirk Garmann, Michaela Meyer, Hauke Ruehs, Dagmar Klein, Matthias Frei, Joachim Grevel, Rupert Austin, Corina Becker, Lothar Roessig, Burkert Pieske, Dirk Garmann, Michaela Meyer

Abstract

Background: Vericiguat, a stimulator of soluble guanylate cyclase, has been developed as a first-in-class therapy for worsening chronic heart failure in adults with left ventricular ejection fraction < 45%.

Objective: The objective of this article was to characterize the pharmacokinetics and pharmacokinetic variability of vericiguat combined with guideline-directed medical therapy (standard of care), and identify exposure-response relationships for safety (hemodynamics) and pharmacodynamic markers of efficacy (N-terminal pro-B-type natriuretic peptide concentration [NT-proBNP]) in patients with heart failure and left ventricular ejection fraction < 45% in the SOCRATES-REDUCED study (NCT01951625).

Methods: Vericiguat and NT-proBNP plasma concentrations in 454 and 432 patients in SOCRATES-REDUCED, respectively, were analyzed using nonlinear mixed-effects modeling.

Results: Vericiguat pharmacokinetics were well described by a one-compartment model with apparent clearance, apparent volume of distribution, and absorption rate constant. Age, bodyweight, plasma bilirubin, and creatinine clearance were identified as significant covariates on apparent clearance; sex and bodyweight on apparent volume of distribution; and bodyweight and plasma albumin level on absorption rate constant. Pharmacokinetic/pharmacodynamic analysis showed initial minor and transient effects of vericiguat on blood pressure with low clinical impact. There were no changes in heart rate following initial or repeated vericiguat administration. An exposure-dependent and time-dependent turnover pharmacokinetic/pharmacodynamic model for NT-proBNP described production and elimination rates and an demonstrated exposure-dependent reduction in [NT-proBNP] by vericiguat plus standard of care compared with placebo plus standard of care. This effect was dependent on baseline [NT-proBNP].

Conclusions: Vericiguat has predictable pharmacokinetics, with no long-term effects on blood pressure in patients with heart failure and left ventricular ejection fraction < 45%. A pharmacokinetic/pharmacodynamic model described a vericiguat exposure-dependent reduction of NT-proBNP.

Clinical trial identifier: NCT01951625.

Conflict of interest statement

Hauke Ruehs, Dagmar Klein, Matthias Frei, Corina Becker, Lothar Roessig, Dirk Garmann, and Michaela Meyer are employees and potential stockholders of Bayer AG and may own stock in the company. Joachim Grevel and Rupert Austin are employees of BAST Inc. Limited and paid consultants for Bayer Healthcare Pharmaceuticals. Burkert Pieske served as the Study Chair on the Executive Committee of SOCRATES and received advisory honoraria and speakers’ fees from Bayer Healthcare and Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Flow of patients through the SOCRATES-REDUCED study and eligible samples for vericiguat pharmacokinetic (PK) and PK/pharmacodynamic (PD) analyses. HR heart rate, LLOQ lower limit of quantification, N/A not applicable, SBP systolic blood pressure
Fig. 2
Fig. 2
Prediction-corrected visual predictive checks of the final covariate model at visits 1–5. The upper row shows the normal scale and the lower row shows the log scale of the prediction-corrected concentrations. In Visits 2–5, time is shown ± 24 h around the planned time. Solid purple line: median prediction-corrected data. Dashed purple lines: 90% prediction interval of prediction-corrected data. Solid red line: median model predictions. Solid blue lines: 90% interval. Boxes indicate the 95% confidence intervals around the corresponding model predictions. Circles: prediction-corrected observed vericiguat plasma concentration–time data
Fig. 3
Fig. 3
Systolic blood pressure (SBP) change vs vericiguat maximum observed concentration (Cmax). Correlation of Cmax with change in SBP from pre-dose to post-dose (first dose of study medication) at visit 1. Open symbols represent data from individual patients belonging to different treatment arms (black: placebo, dark blue: 1.25 mg, teal: 2.5 mg). The red solid line depicts the linear regression model. The 95% confidence interval (CI) of the regression model is represented by red dashed lines
Fig. 4
Fig. 4
Systolic blood pressure (SBP) change vs vericiguat maximum observed concentration at steady state (Cmax,ss). Correlation of Cmax,ss with pre-dose to post-dose change of SBP at week 8 (visit 4). Open symbols represent data from individual patients belonging to different treatment arms (black: placebo, dark blue: 1.25 mg, teal: 2.5 mg, green: 5 mg, orange: 10 mg). The red solid line depicts the linear regression model. The 95% confidence interval (CI) of the regression model is represented by dashed lines
Fig. 5
Fig. 5
Scheme visualizing the structure of the pharmacokinetic/pharmacodynamic (PK/PD) turnover model for N-terminal pro-B-type natriuretic peptide (NT-proBNP). [NT-proBNP] is the plasma concentration of NT-proBNP, kin is a zero-order rate describing the production of NT-proBNP, and kout is a first-order rate constant describing the elimination of NT-proBNP. Area under the plasma concentration–time curve (AUC) is the exposure of vericiguat and [NT-proBNP]baseline is the NT-proBNP concentration at baseline
Fig. 6
Fig. 6
Visual predictive check (VPC) of absolute [NT-proBNP] simulations from pharmacokinetic/pharmacodynamic (PK/PD) model with study data from SOCRATES-REDUCED stratified by the four quartiles of [NT-proBNP]baseline plasma concentration. Red lines: medians of observed data. Yellow lines: 10th and 90th percentiles of observed data. Unshaded boxes: 95% confidence intervals (CIs) around the median of simulated data. Gray shaded boxes: 95% CIs around 10th and 90th percentiles of simulated data. Blue points: observed data. NTPB0 quartile 1/2/3/4: patients assigned to first/second/third/fourth quartiles of [NT-proBNP]baseline according to fixed boundaries (94.1–1559 pg/mL, 1559–3000 pg/mL, 3000–6246 pg/mL, 6246–69,720 pg/mL). NT-proBNP N-terminal pro-B-type natriuretic peptide, [NT-proBNP]baseline concentration of NT-proBNP at baseline
Fig. 7
Fig. 7
Simulated N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentration–time profiles under vericiguat 10 mg on top of standard of care (SoC) or for SoC alone (a) and simulated absolute NT-proBNP change compared with SoC (b). Solid lines: simulated NT-proBNP time courses for vericiguat 10 mg. Dashed lines: simulations for the corresponding SoC arm. [NT-proBNP]baseline considered for simulation: 250 pg/mL (gray), 500 pg/mL (orange), 1000 pg/mL (green), 3000 pg/mL (purple), 5000 pg/mL (light blue), and 10,000 pg/mL (dark blue)
Fig. 8
Fig. 8
Results of N-terminal pro-B-type natriuretic peptide (NT-proBNP) pharmacokinetic/pharmacodynamic (PK/PD) simulation (expressed as ratio to standard of care [SoC]) displayed as stratified boxplots. Data were assigned to first/second/third/fourth quartiles (Q1/Q2/Q3/Q4) of [NT-proBNP]baseline according to fixed boundaries (94.1–1559 pg/mL, 1559–3000 pg/mL, 3000–6246 pg/mL, and 6246–69,720 pg/mL). Blue points: median of [NT-proBNP]day84/[NT-proBNP]baseline divided by the corresponding SoC median of [NT-proBNP]day84/[NT-proBNP]baseline across patients from each simulation repeat

References

    1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics: 2018 update A report from the American Heart Association. Circulation. 2018;137(12):e67–492. doi: 10.1161/CIR.0000000000000558.
    1. Cook C, Cole G, Asaria P, Jabbour R, Francis DP. The annual global economic burden of heart failure. Int J Cardiol. 2014;171(3):368–376. doi: 10.1016/j.ijcard.2013.12.028.
    1. Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–1259. doi: 10.1016/S0140-6736(17)32154-2.
    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. Eur J Heart Fail. 2016;18(8):891–975. doi: 10.1002/ejhf.592.
    1. Butler J, Yang M, Manzi MA, Hess GP, Patel MJ, Rhodes T, et al. Clinical course of patients with worsening heart failure with reduced ejection fraction. J Am Coll Cardiol. 2019;73(8):935–944. doi: 10.1016/j.jacc.2018.11.049.
    1. Weber M, Hamm C. Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine. Heart. 2006;92(6):843–849. doi: 10.1136/hrt.2005.071233.
    1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136(6):e137–e161. doi: 10.1161/CIR.0000000000000509.
    1. McKie PM, Burnett JC., Jr NT-proBNP: the gold standard biomarker in heart failure. J Am Coll Cardiol. 2016;68(22):2437–2439. doi: 10.1016/j.jacc.2016.10.001.
    1. Boerrigter G, Lapp H, Burnett JC. Modulation of cGMP in heart failure: a new therapeutic paradigm. Handb Exp Pharmacol. 2009;191:485–506. doi: 10.1007/978-3-540-68964-5_21.
    1. Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev. 2003;83(1):59–115. doi: 10.1152/physrev.00017.2002.
    1. Sandner P. From molecules to patients: exploring the therapeutic role of soluble guanylate cyclase stimulators. Biol Chem. 2018;399(7):679–690. doi: 10.1515/hsz-2018-0155.
    1. Gheorghiade M, Marti CN, Sabbah HN, Roessig L, Greene SJ, Bohm M, et al. Soluble guanylate cyclase: a potential therapeutic target for heart failure. Heart Fail Rev. 2013;18(2):123–134. doi: 10.1007/s10741-012-9323-1.
    1. Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble guanylate cyclase stimulators and activators. Handb Exp Pharmacol. 2021;264:355–394. doi: 10.1007/164_2018_197.
    1. Armstrong PW, Roessig L, Patel MJ, Anstrom KJ, Butler J, Voors AA, et al. A multicenter, randomized, double-blind, placebo-controlled trial of the efficacy and safety of the oral soluble guanylate cyclase stimulator: the VICTORIA trial. JACC Heart Fail. 2018;6(2):96–104. doi: 10.1016/j.jchf.2017.08.013.
    1. Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J, Hernandez AF, Butler J, et al. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med. 2020;382(20):1883–1893. doi: 10.1056/NEJMoa1915928.
    1. US Food and Drug Administration. VerquvoTM prescribing information. 2021. . Accessed 8 Feb 2021.
    1. Boettcher M-F, Thomas D, Mueck W, Loewen S, Arens E, Yoshikawa K, et al. Safety, pharmacodynamic and pharmacokinetic characterisation of vericiguat: key results from six phase I studies in healthy subjects. Eur J Heart Fail. 2019;21(Suppl S1):293.
    1. Lobmeyer M, Gerisch M, Boettcher M-F, Thomas D, Gerrits M, Mueck W, et al. Metabolism and pharmacokinetic drug interaction profile of vericiguat, a soluble guanylate cyclase stimulator. Eur J Heart Fail; 2019. p. 425. .
    1. Bhatt DK, Mehrotra A, Gaedigk A, Chapa R, Basit A, Zhang H, et al. Age- and genotype-dependent variability in the protein abundance and activity of six major uridine diphosphate-glucuronosyltransferases in human liver. Clin Pharmacol Ther. 2019;105(1):131–141. doi: 10.1002/cpt.1109.
    1. Margaillan G, Rouleau M, Fallon JK, Caron P, Villeneuve L, Turcotte V, et al. Quantitative profiling of human renal UDP-glucuronosyltransferases and glucuronidation activity: a comparison of normal and tumoral kidney tissues. Drug Metab Dispos. 2015;43(4):611–619. doi: 10.1124/dmd.114.062877.
    1. Gheorghiade M, Greene SJ, Butler J, et al. Effect of vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED randomized trial. J Am Med Assoc. 2015;314:2251–2262. doi: 10.1001/jama.2015.15734.
    1. Pieske B, Butler J, Filippatos G, Lam C, Maggioni PA, Ponikowski P, et al. Rationale and design of the SOluble guanylate Cyclase stimulatoR in heArT failurE Studies (SOCRATES) Eur J Heart Fail. 2014;16:1026–1038. doi: 10.1002/ejhf.135.
    1. Boettcher M, Gerisch M, Lobmeyer M, Besche N, Thomas D, Gerrits M, et al. Metabolism and pharmacokinetic drug-drug interaction profile of vericiguat, a soluble guanylate cyclase stimulator: results from preclinical and phase I healthy volunteer studies. Clin Pharmacokinet. 2020;11:1407–1418. doi: 10.1007/s40262-020-00895-x.
    1. Boettcher M, Thomas D, Mueck W, Loewen S, Arens E, Yoshikawa K, et al. Safety, pharmacodynamic, and pharmacokinetic characterization of vericiguat: results from six phase I studies in healthy subjects. Eur J Clin Pharmacol. 2021;77:527–537. doi: 10.1007/s00228-020-03023-7.
    1. US Food and Drug Administration. Bioanalytical method validation: guidance for industry. 2018. . Accessed 22 Mar 2019.
    1. R Core Team (2014) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2014.
    1. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41. doi: 10.1159/000180580.
    1. Mould DR, Holford NH, Schellens JH, Beijnen JH, Hutson PR, Rosing H, et al. Population pharmacokinetic and adverse event analysis of topotecan in patients with solid tumors. Clin Pharmacol Ther. 2002;71(5):334–348. doi: 10.1067/mcp.2002.123553.
    1. Mandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic-pharmacodynamic models. Models for covariate effects. J Pharmacokinet Biopharm. 1992;20(5):511–528. doi: 10.1007/BF01061469.
    1. Karlsson MO, Holford N. A tutorial on visual predictive checks. In: Annual Meeting of the Population Approach Group in Europe, 18–20th June 2008; Marseille.
    1. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13(2):143–151. doi: 10.1208/s12248-011-9255-z.
    1. Holford NH. A size standard for pharmacokinetics. Clin Pharmacokinet. 1996;30(5):329–332. doi: 10.2165/00003088-199630050-00001.
    1. Linssen GC, Damman K, Hillege HL, Navis G, van Veldhuisen DJ, Voors AA. Urinary N-terminal prohormone brain natriuretic peptide excretion in patients with chronic heart failure. Circulation. 2009;120(1):35–41. doi: 10.1161/CIRCULATIONAHA.108.824581.
    1. Follmann M, Ackerstaff J, Redlich G, Wunder F, Lang D, Kern A, et al. Discovery of the soluble guanylate cyclase stimulator vericiguat (BAY 1021189) for the treatment of chronic heart failure. J Med Chem. 2017;60(12):5146–5161. doi: 10.1021/acs.jmedchem.7b00449.
    1. Liang S, Brundage RC, Jacobson PA, Blaes A, Kirstein MN. Pharmacokinetic-pharmacodynamic modelling of acute N-terminal pro B-type natriuretic peptide after doxorubicin infusion in breast cancer. Br J Clin Pharmacol. 2016;82(3):773–783. doi: 10.1111/bcp.12989.
    1. Krause A, Machacek M, Lott D, Hurst N, Bruderer S, Dingemanse J. Population modeling of selexipag pharmacokinetics and clinical response parameters in patients with pulmonary arterial hypertension. CPT Pharmacometr Syst Pharmacol. 2017;6(7):477–485. doi: 10.1002/psp4.12202.
    1. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008. doi: 10.1056/NEJMoa1911303.
    1. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004. doi: 10.1056/NEJMoa1409077.
    1. Schmitt W, Rühs H, Burghaus R, Diedrich C, Duwal S, Eissing T, et al. NT-proBNP qualifies as a surrogate for clinical endpoints in heart failure. Clin Pharmacol Ther. 2021 doi: 10.1002/cpt.2222.
    1. Bonate PL. Pharmacokinetic-pharmacodynamic modeling and simulation. 2. Boston, MA: Springer; 2011.

Source: PubMed

Подписаться