Remotely controlled mandibular positioning of oral appliance therapy during polysomnography and drug-induced sleep endoscopy compared with conventional subjective titration in patients with obstructive sleep apnea: protocol for a randomized crossover trial

Marijke Dieltjens, Marc J Braem, Sara Op de Beeck, Anneclaire V M T Vroegop, Elahe Kazemeini, Eli Van de Perck, Jolien Beyers, Chloé Kastoer, Kristien Wouters, Marc Willemen, Johan A Verbraecken, Olivier M Vanderveken, Marijke Dieltjens, Marc J Braem, Sara Op de Beeck, Anneclaire V M T Vroegop, Elahe Kazemeini, Eli Van de Perck, Jolien Beyers, Chloé Kastoer, Kristien Wouters, Marc Willemen, Johan A Verbraecken, Olivier M Vanderveken

Abstract

Background: The amount of mandibular protrusion is a key factor in optimizing the efficacy of mandibular advancement device (MAD) therapy in an individual patient diagnosed with obstructive sleep apnea. This process is called titration and is generally based on resolution of subjective symptoms like snoring and/or daytime sleepiness as a function of protrusion. An objective approach uses a remotely controlled mandibular positioner (RCMP) during a full-night polysomnography (PSG), in analogy with continuous positive airway pressure (CPAP) titration. More recently, the feasibility of RCMP use during drug-induced sleep endoscopy (DISE) titration was reported.

Methods: This randomized crossover trial will compare DISE-assisted titration to PSG-guided titration, as well as with the conventional subjective titration method. The primary outcome is the actual mandibular protrusive position found to be the most optimal for each tested titration procedure. Furthermore, the therapeutic efficacy will be compared among the different titration modalities using level 1 sleep studies.

Discussion: Currently, the optimal titration of MAD therapy is most often based on 'trial and error'. The conventional method relies on subjective improvement in symptoms, although this may not provide the most accurate indicator for efficient titration. Therefore, relying on objective criteria in the titration process should be advantageous. In analogy with CPAP, titration of the most optimal mandibular protrusion could be performed using RCMP during an overnight titration PSG. Recently, it was shown that titration under direct visualization of upper airway patency and collapsibility is feasible using the RCMP during DISE. However, no clinical results for such a procedure are as yet available. This study is the first to compare the most optimal mandibular protrusive position according to three titration procedures, as well as to compare the therapeutic efficacy of these titration methods.

Trial registration: ClinicalTrials.gov, NCT03716648 . Registered on 23 October 2018.

Keywords: Apnea–hypopnea index; Mandibular advancement device; Sleep-disordered breathing.

Conflict of interest statement

MJB and OMV hold a research grant from SomnoMed. OMV has the following potential conflicts of interests: research support and lecture fees from Inspire Medical Systems, research grant from and consultancy for Philips Respironics, research grant and lecture fees from SomnoMed, consultancy for Nyxoah, consultancy for Galvani, research support from ReVent, research support from Nightbalance and part of the advisory board of Zephyr. The other authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Fig. 1
Fig. 1
Schematic overview of the study design. Patients will undergo three titration procedures —subjective titration (green), titration PSG (orange) and, titration DISE (yellow) — in randomized order. This leads to six different possible sequences. A 1-week washout period is integrated between the different titration procedures. A follow-up sleep study is performed at the end of each titration method. DISE, drug-induced sleep endoscopy; MAD, mandibular advancement device; PSG, polysomnography
Fig. 2
Fig. 2
Schedule of protocol assessments following Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT). Interventions and assessments will be administered at different time points (indicated by X). See text for more details. CIS20R, Checklist Individual Strength; DISE, drug-induced sleep endoscopy; PSG, polysomnography; RCT, randomized crossover trial; VAS, visual analog scale
Fig. 3
Fig. 3
Schematic overview of the commercially available remotely controlled mandibular positioner (RCMP) device (MATRx™; Zephyr Sleep Technologies Inc., Calgary, Canada). Left: the controller that receives commands from the device software. Right: the motorized RCMP attached to disposable upper and lower dental impression trays. This schematic overview was drawn by our research group

References

    1. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–1014. doi: 10.1093/aje/kws342.
    1. Guilleminault C, Tilkian A, Dement WC. The sleep apnea syndromes. Annu Rev Med. 1976;27:465–484. doi: 10.1146/annurev.me.27.020176.002341.
    1. Jennum P, Kjellberg J. Health, social and economical consequences of sleep-disordered breathing: a controlled national study. Thorax. 2011;66(7):560–566. doi: 10.1136/thx.2010.143958.
    1. McNicholas WT, Bassetti CL, Ferini-Strambi L, Pepin JL, Pevernagie D, Verbraecken J, et al. Challenges in obstructive sleep apnoea. Lancet Respir Med. 2018;6(3):170–172. doi: 10.1016/S2213-2600(18)30059-6.
    1. Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342(19):1378–1384. doi: 10.1056/NEJM200005113421901.
    1. Bradley TD, Floras JS. Obstructive sleep apnoea and its cardiovascular consequences. Lancet. 2009;373(9657):82–93. doi: 10.1016/S0140-6736(08)61622-0.
    1. Epstein LJ, Kristo D, Strollo PJ, Jr, Friedman N, Malhotra A, Patil SP, et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med. 2009;5(3):263–276.
    1. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012;8(5):597–619.
    1. Peppard PE, Young T, Palta M, Dempsey J, Skatrud J. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA. 2000;284(23):3015–3021. doi: 10.1001/jama.284.23.3015.
    1. Kushida CA, Littner MR, Hirshkowitz M, Morgenthaler TI, Alessi CA, Bailey D, et al. Practice parameters for the use of continuous and bilevel positive airway pressure devices to treat adult patients with sleep-related breathing disorders. Sleep. 2006;29(3):375–380. doi: 10.1093/sleep/29.3.375.
    1. Sullivan CE, Issa FG, Berthon-Jones M, Eves L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet. 1981;1(8225):862–865. doi: 10.1016/S0140-6736(81)92140-1.
    1. Civelek S, Emre IE, Dizdar D, Cuhadaroglu C, Eksioglu BK, Eraslan AK, et al. Comparison of conventional continuous positive airway pressure to continuous positive airway pressure titration performed with sleep endoscopy. Laryngoscope. 2012;122(3):691–695. doi: 10.1002/lary.22494.
    1. Morgenthaler TI, Aurora RN, Brown T, Zak R, Alessi C, Boehlecke B, Chesson AL, Jr., et al. Practice parameters for the use of autotitrating continuous positive airway pressure devices for titrating pressures and treating adult patients with obstructive sleep apnea syndrome: an update for 2007. An American Academy of Sleep Medicine report. Sleep. 2008;31(1):141–7.
    1. Lopez-Campos JL, Garcia Polo C, Leon Jimenez A, Gonzalez-Moya E, Arnedillo A, Fernandez Berni JJ. CPAP titration: different methods for similar clinical results. Eur J Intern Med. 2007;18(3):230–4.
    1. Rabelo FA, Kupper DS, Sander HH, Fernandes RM, Valera FC. Polysomnographic evaluation of propofol-induced sleep in patients with respiratory sleep disorders and controls. Laryngoscope. 2013;123(9):2300–2305. doi: 10.1002/lary.23664.
    1. Rotenberg BW, Murariu D, Pang KP. Trends in CPAP adherence over twenty years of data collection: a flattened curve. J Otolaryngol Head Neck Surg. 2016;45(1):43. doi: 10.1186/s40463-016-0156-0.
    1. Phillips CL, Grunstein RR, Darendeliler MA, Mihailidou AS, Srinivasan VK, Yee BJ, et al. Health outcomes of continuous positive airway pressure versus oral appliance treatment for obstructive sleep apnea: a randomized controlled trial. Am J Respir Crit Care Med. 2013;187(8):879–887. doi: 10.1164/rccm.201212-2223OC.
    1. Vanderveken OM, Devolder A, Marklund M, Boudewyns AN, Braem MJ, Okkerse W, et al. Comparison of a custom-made and a thermoplastic oral appliance for the treatment of mild sleep apnea. Am J Respir Crit Care Med. 2008;178(2):197–202. doi: 10.1164/rccm.200701-114OC.
    1. Lettieri CJ, Paolino N, Eliasson AH, Shah AA, Holley AB. Comparison of adjustable and fixed oral appliances for the treatment of obstructive sleep apnea. J Clin Sleep Med. 2011;7(5):439–445.
    1. Kato J, Isono S, Tanaka A, Watanabe T, Araki D, Tanzawa H, et al. Dose-dependent effects of mandibular advancement on pharyngeal mechanics and nocturnal oxygenation in patients with sleep-disordered breathing. Chest. 2000;117(4):1065–1072. doi: 10.1378/chest.117.4.1065.
    1. Remmers J, Charkhandeh S, Grosse J, Topor Z, Brant R, Santosham P, et al. Remotely controlled mandibular protrusion during sleep predicts therapeutic success with oral appliances in patients with obstructive sleep apnea. Sleep. 2013;36(10):1517–1525. doi: 10.5665/sleep.3048.
    1. Demko BG. Ten misconceptions that dentists have about treating obstructive sleep apnea. J Dent Sleep Med. 2018;5(3):90–103.
    1. Dieltjens M, Vanderveken OM, Heyning PH, Braem MJ. Current opinions and clinical practice in the titration of oral appliances in the treatment of sleep-disordered breathing. Sleep Med Rev. 2012;16(2):177–185. doi: 10.1016/j.smrv.2011.06.002.
    1. Ferguson KA, Ono T, Lowe AA, Al-Majed S, Love LL, Fleetham JA. A short-term controlled trial of an adjustable oral appliance for the treatment of mild to moderate obstructive sleep apnoea. Thorax. 1997;52(4):362–368. doi: 10.1136/thx.52.4.362.
    1. Mehta A, Qian J, Petocz P, Darendeliler MA, Cistulli PA. A randomized, controlled study of a mandibular advancement splint for obstructive sleep apnea. Am J Respir Crit Care Med. 2001;163(6):1457–1461. doi: 10.1164/ajrccm.163.6.2004213.
    1. Johal A, Gill G, Ferman A, McLaughlin K. The effect of mandibular advancement appliances on awake upper airway and masticatory muscle activity in patients with obstructive sleep apnoea. Clin Physiol Funct Imaging. 2007;27(1):47–53. doi: 10.1111/j.1475-097X.2007.00714.x.
    1. Pancer J, Al-Faifi S, Al-Faifi M, Hoffstein V. Evaluation of variable mandibular advancement appliance for treatment of snoring and sleep apnea. Chest. 1999;116(6):1511–1518. doi: 10.1378/chest.116.6.1511.
    1. Almeida FR, Parker JA, Hodges JS, Lowe AA, Ferguson KA. Effect of a titration polysomnogram on treatment success with a mandibular repositioning appliance. J Clin Sleep Med. 2009;5(3):198–204.
    1. Fleury B, Rakotonanahary D, Petelle B, Vincent G, Pelletier Fleury N, Meyer B, et al. Mandibular advancement titration for obstructive sleep apnea: optimization of the procedure by combining clinical and oximetric parameters. Chest. 2004;125(5):1761–1767. doi: 10.1378/chest.125.5.1761.
    1. Kastoer C, Dieltjens M, Oorts E, Hamans E, Braem MJ, Van de Heyning PH, et al. The use of remotely controlled mandibular positioner as a predictive screening tool for mandibular advancement device therapy in patients with obstructive sleep apnea through single-night progressive titration of the mandible: a systematic review. J Clin Sleep Med. 2016;12(10):1411–1421. doi: 10.5664/jcsm.6202.
    1. Dort LC, Hadjuk E, Remmers JE. Mandibular advancement and obstructive sleep apnoea: a method for determining effective mandibular protrusion. Eur Respir J. 2006;27(5):1003–1009. doi: 10.1183/09031936.06.00077804.
    1. Tsai WH, Vazquez JC, Oshima T, Dort L, Roycroft B, Lowe AA, et al. Remotely controlled mandibular positioner predicts efficacy of oral appliances in sleep apnea. Am J Respir Crit Care Med. 2004;170(4):366–370. doi: 10.1164/rccm.200310-1446OC.
    1. Croft CB, Pringle M. Sleep nasendoscopy: a technique of assessment in snoring and obstructive sleep apnoea. Clin Otolaryngol Allied Sci. 1991;16(5):504–509. doi: 10.1111/j.1365-2273.1991.tb01050.x.
    1. Kastoer C, Dieltjens M, Op de Beeck S, Braem MJ, Van de Heyning PH, Vanderveken OM. Remotely controlled mandibular positioning during drug-induced sleep endoscopy toward mandibular advancement device therapy: feasibility and protocol. J Clin Sleep Med. 2018;14(8):1409–1413. doi: 10.5664/jcsm.7284.
    1. Vroegop AV, Vanderveken OM, Boudewyns AN, Scholman J, Saldien V, Wouters K, et al. Drug-induced sleep endoscopy in sleep-disordered breathing: report on 1,249 cases. Laryngoscope. 2014;124(3):797–802.
    1. Worm-Smeitink M, Gielissen M, Bloot L, et al. The assessment of fatigue: Psychometric qualities and norms for the Checklist individual strength. J Psychom Res. 2017;98:40–46
    1. Johns MW. A new method for measuring daytime sleepiness: the Epworth Sleepiness Scale. Sleep. 1991;14(6):540–545. doi: 10.1093/sleep/14.6.540.
    1. Vanderveken OM, Boudewyns AN, Braem MJ, Okkerse W, Verbraecken JA, Willemen M, et al. Pilot study of a novel mandibular advancement device for the control of snoring. Acta Otolaryngol. 2004;124(5):628–633. doi: 10.1080/00016480310015984.
    1. Barnes M, McEvoy RD, Banks S, Tarquinio N, Murray CG, Vowles N, et al. Efficacy of positive airway pressure and oral appliance in mild to moderate obstructive sleep apnea. Am J Respir Crit Care Med. 2004;170(6):656–664. doi: 10.1164/rccm.200311-1571OC.
    1. Rabelo FAW, Küper DS, Sander, HH, Fernandes RMF, Valera FCP. Polysomnographic Evaluation of Propofol-Induced Sleep in Patients with Respiratory Sleep Disorders and Controls. Laryngoscope. 2013;123:2300–305.

Source: PubMed

Подписаться