Neuroprotective effect of melatonin: a novel therapy against perinatal hypoxia-ischemia

Daniel Alonso-Alconada, Antonia Alvarez, Olatz Arteaga, Agustín Martínez-Ibargüen, Enrique Hilario, Daniel Alonso-Alconada, Antonia Alvarez, Olatz Arteaga, Agustín Martínez-Ibargüen, Enrique Hilario

Abstract

One of the most common causes of mortality and morbidity in children is perinatal hypoxia-ischemia (HI). In spite of the advances in neonatology, its incidence is not diminishing, generating a pediatric population that will require an extended amount of chronic care throughout their lifetime. For this reason, new and more effective neuroprotective strategies are urgently required, in order to minimize as much as possible the neurological consequences of this encephalopathy. In this sense, interest has grown in the neuroprotective possibilities of melatonin, as this hormone may help to maintain cell survival through the modulation of a wide range of physiological functions. Although some of the mechanisms by which melatonin is neuroprotective after neonatal asphyxia remain a subject of investigation, this review tries to summarize some of the most recent advances related with its use as a therapeutic drug against perinatal hypoxic-ischemic brain injury, supporting the high interest in this indoleamine as a future feasible strategy for cerebral asphyctic events.

Figures

Figure 1
Figure 1
Nissl-stained (AC), myelin basic protein (DF) and glial fibrillary acidic protein (GI) immunolabeled brain sections corresponding to the surrounding areas of the CA1 region of the hippocampus and the external capsule showing cell loss (B), myelination deficit (E) and reactive gliosis (H) after hypoxia-ischemia and recovery after melatonin administration. Seven-day old rats were subjected to hypoxia-ischemia (left common carotid artery ligated and then 8% oxygen for 2 h) and sacrificed seven days after the injury. Pups without ischemia or hypoxia served as controls (Sham group). Bar: 100 μm.

References

    1. Arendt J. Melatonin and the Mammalian Pineal Gland. Chapman & Hall; London, UK: 1995.
    1. Tan D.X., Manchester L.C., Terron M.P., Flores L.J., Reiter R.J. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res. 2007;42:28–42.
    1. Tan D.X., Hardeland R., Manchester L.C., Paredes S.D., Korkmaz A., Sainz R.M., Mayo J.C., Fuentes-Broto L., Reiter R.J. The changing biological roles of melatonin during evolution: From an antioxidant to signals of darkness, sexual selection and fitness. Biol. Rev. Camb. Philos. Soc. 2010;85:607–623.
    1. Rosen J., Than N.N., Koch D., Poeggeler B., Laatsch H., Hardeland R. Interactions of melatonin and its metabolites with the ABTS cation radical: Extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J. Pineal Res. 2006;41:374–381.
    1. Acuna-Castroviejo D., Martin M., Macias M., Escames G., Leon J., Khaldy H., Reiter R.J. Melatonin, mitochondria, and cellular bioenergetics. J. Pineal Res. 2001;30:65–74.
    1. Tomas-Zapico C., Coto-Montes A. A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J. Pineal Res. 2005;39:99–104.
    1. Reiter R.J., Tan D.X., Osuna C., Gitto E. Actions of melatonin in the reduction of oxidative stress. A Review. J. Biomed. Sci. 2000;7:444–458.
    1. De Haan M., Wyatt J.S., Roth S., Vargha-Khadem F., Gadian D., Mishkin M. Brain and cognitive-behavioural development after asphyxia at term birth. Dev. Sci. 2006;9:350–358.
    1. Du Plessis A.J., Volpe J.J. Perinatal brain injury in the preterm and term newborn. Curr. Opin. Neurol. 2002;15:151–157.
    1. Hamrick S.E., Ferriero D.M. The injury response in the term newborn brain: Can we neuroprotect? Curr. Opin. Neurol. 2003;16:147–154.
    1. Volpe J.J. Perinatal brain injury: From pathogenesis to neuroprotection. Ment. Retard. Dev. Disabil. Res. Rev. 2001;7:56–64.
    1. Low J.A. Determining the contribution of asphyxia to brain damage in the neonate. J. Obstet. Gynaecol. Res. 2004;30:276–286.
    1. Vannucci S.J., Hagberg H. Hypoxia-ischemia in the immature brain. J. Exp. Biol. 2004;207:3149–3154.
    1. Maneru C., Junque C., Botet F., Tallada M., Guardia J. Neuropsychological long-term sequelae of perinatal asphyxia. Brain Inj. 2001;15:1029–1039.
    1. Yager J.Y., Armstrong E.A., Black A.M. Treatment of the term newborn with brain injury: Simplicity as the mother of invention. Pediatr. Neurol. 2009;40:237–243.
    1. Vitte P.A., Harthe C., Lestage P., Claustrat B., Bobillier P. Plasma, cerebrospinal fluid, and brain distribution of 14C-melatonin in Rat: A biochemical and autoradiographic study. J. Pineal Res. 1988;5:437–453.
    1. Menendez-Pelaez A., Reiter R.J. Distribution of melatonin in mammalian tissues: The relative importance of nuclear versus cytosolic localization. J. Pineal Res. 1993;15:59–69.
    1. Gupta Y.K., Gupta M., Kohli K. Neuroprotective role of melatonin in oxidative stress vulnerable brain. Indian J. Physiol. Pharmacol. 2003;47:373–386.
    1. Rees S., Harding R., Walker D. The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int. J. Dev. Neurosci. 2011;29:551–563.
    1. Hilario E., Alvarez A., Alvarez F.J., Gastiasoro E., Valls-i-Soler A. Cellular mechanisms in perinatal hypoxic-ischemic brain injury. Curr. Pediatr. Rev. 2006;2:131–141.
    1. Manev H., Uz T., Kharlamov A., Joo J.Y. Increased brain damage after stroke or excitotoxic seizures in melatonin-deficient rats. FASEB J. 1996;10:1546–1551.
    1. Li X.J., Zhang L.M., Gu J., Zhang A.Z., Sun F.Y. Melatonin decreases production of hydroxyl radical during cerebral ischemia-reperfusion. Zhongguo Yao Li Xue Bao. 1997;18:394–396.
    1. Cho S., Joh T.H., Baik H.H., Dibinis C., Volpe B.T. Melatonin administration protects CA1 hippocampal neurons after transient forebrain ischemia in rats. Brain Res. 1997;755:335–338.
    1. Kilic E., Ozdemir Y.G., Bolay H., Kelestimur H., Dalkara T. Pinealectomy aggravates and melatonin administration attenuates brain damage in focal ischemia. J. Cereb. Blood Flow MeTable. 1999;19:511–516.
    1. Wakatsuki A., Okatani Y., Izumiya C., Ikenoue N. Melatonin protects against ischemia and reperfusion-induced oxidative lipid and DNA damage in fetal rat brain. J. Pineal Res. 1999;26:147–152.
    1. Joo J.Y., Uz T., Manev H. Opposite effects of pinealectomy and melatonin administration on brain damage following cerebral focal ischemia in rat. Restor. Neurol. Neurosci. 1998;13:185–191.
    1. Cuzzocrea S., Costantino G., Gitto E., Mazzon E., Fulia F., Serraino I., Cordaro S., Barberi I., De Sarro A., Caputi A.P. Protective effects of melatonin in ischemic brain injury. J. Pineal Res. 2000;29:217–227.
    1. Letechipia-Vallejo G., Gonzalez-Burgos I., Cervantes M. Neuroprotective effect of melatonin on brain damage induced by acute global cerebral ischemia in cats. Arch. Med. Res. 2001;32:186–192.
    1. Zhang J., Guo J.D., Xing S.H., Gu S.L., Dai T.J. The protective effects of melatonin on global cerebral ischemia-reperfusion injury in gerbils. Yao Xue Xue Bao. 2002;37:329–333.
    1. Pei Z., Pang S.F., Cheung R.T. Administration of melatonin after onset of ischemia reduces the volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model. Stroke. 2003;34:770–775.
    1. Koh P.O. Melatonin attenuates the focal cerebral ischemic injury by inhibiting the dissociation of pBad from 14-3-3. J. Pineal Res. 2008;44:101–106.
    1. Wang X., Figueroa B.E., Stavrovskaya I.G., Zhang Y., Sirianni A.C., Zhu S., Day A.L., Kristal B.S., Friedlander R.M. Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke. 2009;40:1877–1885.
    1. Alonso-Alconada D., Alvarez A., Lacalle J., Hilario E. Histological study of the protective effect of melatonin on neural cells after neonatal hypoxia-ischemia. Histol. Histopathol. 2012;27:771–783.
    1. Carloni S., Perrone S., Buonocore G., Longini M., Proietti F., Balduini W. Melatonin protects from the long-term consequences of a neonatal hypoxic-ischemic brain injury in rats. J. Pineal Res. 2008;44:157–164.
    1. Cetinkaya M., Alkan T., Ozyener F., Kafa I.M., Kurt M.A., Koksal N. Possible neuroprotective effects of magnesium sulfate and melatonin as both pre- and post-treatment in a neonatal hypoxic-ischemic rat model. Neonatology. 2011;99:302–310.
    1. Ozyener F., Cetinkaya M., Alkan T., Goren B., Kafa I.M., Kurt M.A., Koksal N. Neuroprotective effects of melatonin administered alone or in combination with topiramate in neonatal hypoxic-ischemic rat model. Restor. Neurol. Neurosci. 2012;30:435–444.
    1. Mattson M.P., Guthrie P.B., Kater S.B. Intrinsic factors in the selective vulnerability of hippocampal pyramidal neurons. Prog. Clin. Biol. Res. 1989;317:333–351.
    1. Johnston M.V. Selective vulnerability in the neonatal brain. Ann. Neurol. 1998;44:155–156.
    1. Northington F.J., Ferriero D.M., Graham E.M., Traystman R.J., Martin L.J. Early neurodegeneration after hypoxia-ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiol. Dis. 2001;8:207–219.
    1. Hamada F., Watanabe K., Wakatsuki A., Nagai R., Shinohara K., Hayashi Y., Imamura R., Fukaya T. Therapeutic effects of maternal melatonin administration on ischemia/reperfusion-induced oxidative cerebral damage in neonatal rats. Neonatology. 2010;98:33–40.
    1. Watanabe K., Hamada F., Wakatsuki A., Nagai R., Shinohara K., Hayashi Y., Imamura R., Fukaya T. Prophylactic administration of melatonin to the mother throughout pregnancy can protect against oxidative cerebral damage in neonatal rats. J. Matern. Fetal. Neonatal Med. 2012;25:1254–1259.
    1. Takuma K., Baba A., Matsuda T. Astrocyte apoptosis: Implications for neuroprotection. Prog. Neurobiol. 2004;72:111–127.
    1. Panickar K.S., Norenberg M.D. Astrocytes in cerebral ischemic injury: Morphological and general considerations. Glia. 2005;50:287–298.
    1. Sizonenko S.V., Camm E.J., Dayer A., Kiss J.Z. Glial responses to neonatal hypoxic-ischemic injury in the rat cerebral cortex. Int. J. Dev. Neurosci. 2008;26:37–45.
    1. Huang Z., Liu J., Cheung P.Y., Chen C. Long-term cognitive impairment and myelination deficiency in a rat model of perinatal hypoxic-ischemic brain injury. Brain Res. 2009;1301:100–109.
    1. Xiong M., Yang Y., Chen G.Q., Zhou W.H. Post-ischemic hypothermia for 24h in P7 rats rescues hippocampal neuron: Association with decreased astrocyte activation and inflammatory cytokine expression. Brain Res. Bull. 2009;79:351–357.
    1. Rothstein R.P., Levison S.W. Gray matter oligodendrocyte progenitors and neurons die caspase-3 mediated deaths subsequent to mild perinatal hypoxic/ischemic insults. Dev. Neurosci. 2005;27:149–159.
    1. Inder T.E., Wells S.J., Mogridge N.B., Spencer C., Volpe J.J. Defining the nature of the cerebral abnormalities in the premature infant: A qualitative magnetic resonance imaging study. J. Pediatr. 2003;143:171–179.
    1. Wang X., Hagberg H., Zhu C., Jacobsson B., Mallard C. Effects of intrauterine inflammation on the developing mouse brain. Brain Res. 2007;1144:180–185.
    1. Olivier P., Fontaine R.H., Loron G., van Steenwinckel J., Biran V., Massonneau V., Kaindl A., Dalous J., Charriaut-Marlangue C., Aigrot M.S., et al. Melatonin promotes oligodendroglial maturation of injured white matter in neonatal rats. PLoS One. 2009;4:e7128.
    1. Kaur C., Sivakumar V., Ling E.A. Melatonin protects periventricular white matter from damage due to hypoxia. J. Pineal Res. 2010;48:185–193.
    1. Villapol S., Fau S., Renolleau S., Biran V., Charriaut-Marlangue C., Baud O. Melatonin promotes myelination by decreasing white matter inflammation after neonatal stroke. Pediatr. Res. 2011;69:51–55.
    1. McLean C., Ferriero D. Mechanisms of hypoxic-ischemic injury in the term infant. Semin. Perinatol. 2004;28:425–432.
    1. Sheldon R.A., Jiang X., Francisco C., Christen S., Vexler Z.S., Tauber M.G., Ferriero D.M. Manipulation of antioxidant pathways in neonatal murine brain. Pediatr. Res. 2004;56:656–662.
    1. McQuillen P.S., Ferriero D.M. Selective vulnerability in the developing central nervous system. Pediatr. Neurol. 2004;30:227–235.
    1. Miller S.L., Yan E.B., Castillo-Melendez M., Jenkin G., Walker D.W. Melatonin provides neuroprotection in the late-gestation fetal sheep brain in response to umbilical cord occlusion. Dev. Neurosci. 2005;27:200–210.
    1. Tutunculer F., Eskiocak S., Basaran U.N., Ekuklu G., Ayvaz S., Vatansever U. The protective role of melatonin in experimental hypoxic brain damage. Pediatr. Int. 2005;47:434–439.
    1. Fulia F., Gitto E., Cuzzocrea S., Reiter R.J., Dugo L., Gitto P., Barberi S., Cordaro S., Barberi I. Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: Reduction by melatonin. J. Pineal Res. 2001;31:343–349.
    1. Kohen R., Nyska A. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 2002;30:620–650.
    1. Arneson K.O., Roberts L.J., 2nd Measurement of products of docosahexaenoic acid peroxidation, neuroprostanes, and neurofurans. Methods Enzymol. 2007;433:127–143.
    1. Song W.L., Lawson J.A., Reilly D., Rokach J., Chang C.T., Giasson B., FitzGerald G.A. Neurofurans, novel indices of oxidant stress derived from docosahexaenoic acid. J. Biol. Chem. 2008;283:6–16.
    1. Signorini C., Ciccoli L., Leoncini S., Carloni S., Perrone S., Comporti M., Balduini W., Buonocore G. Free iron, total F-isoprostanes and total F-neuroprostanes in a model of neonatal hypoxic-ischemic encephalopathy: Neuroprotective effect of melatonin. J. Pineal Res. 2009;46:148–154.
    1. Balduini W., Carloni S., Perrone S., Bertrando S., Tataranno M.L., Negro S., Proietti F., Longini M., Buonocore G. The use of melatonin in hypoxic-ischemic brain damage: An experimental study. J. Matern. Fetal. Neonatal Med. 2012;25:119–124.
    1. Welin A.K., Svedin P., Lapatto R., Sultan B., Hagberg H., Gressens P., Kjellmer I., Mallard C. Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr. Res. 2007;61:153–158.
    1. Eskiocak S., Tutunculer F., Basaran U.N., Taskiran A., Cakir E. The Effect of melatonin on protein oxidation and nitric oxide in the brain tissue of hypoxic neonatal rats. Brain Dev. 2007;29:19–24.
    1. Witko-Sarsat V., Friedlander M., Capeillere-Blandin C., Nguyen-Khoa T., Nguyen A.T., Zingraff J., Jungers P., Descamps-Latscha B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49:1304–1313.
    1. Andrabi S.A., Sayeed I., Siemen D., Wolf G., Horn T.F. Direct Inhibition of the mitochondrial permeability transition pore: A possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J. 2004;18:869–871.
    1. Wang X., Zhu S., Pei Z., Drozda M., Stavrovskaya I.G., Del Signore S.J., Cormier K., Shimony E.M., Wang H., Ferrante R.J., et al. Inhibitors of cytochrome c release with therapeutic potential for huntington’s disease. J. Neurosci. 2008;28:9473–9485.
    1. Jou M.J., Peng T.I., Reiter R.J., Jou S.B., Wu H.Y., Wen S.T. Visualization of the antioxidative effects of melatonin at the mitochondrial level during oxidative stress-induced apoptosis of rat brain astrocytes. J. Pineal Res. 2004;37:55–70.
    1. Kilic E., Kilic U., Reiter R.J., Bassetti C.L., Hermann D.M. Tissue-plasminogen activator-induced ischemic brain injury is reversed by melatonin: Role of inos and akt. J. Pineal Res. 2005;39:151–155.
    1. Jang M.H., Jung S.B., Lee M.H., Kim C.J., Oh Y.T., Kang I., Kim J., Kim E.H. Melatonin attenuates amyloid beta25–35-induced apoptosis in mouse microglial bv2 cells. Neurosci. Lett. 2005;380:26–31.
    1. Ebadi M., Sharma S.K., Ghafourifar P., Brown-Borg H., El Refaey H. Peroxynitrite in the pathogenesis of parkinson’s disease and the neuroprotective role of metallothioneins. Methods Enzymol. 2005;396:276–298.
    1. Alvira D., Tajes M., Verdaguer E., Acuna-Castroviejo D., Folch J., Camins A., Pallas M. Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of parkinson’s disease. J. Pineal Res. 2006;40:251–258.
    1. Ling X., Zhang L.M., Lu S.D., Li X.J., Sun F.Y. Protective effect of melatonin on injuried cerebral neurons is associated with bcl-2 protein over-expression. Zhongguo Yao Li Xue Bao. 1999;20:409–414.
    1. Sun F.Y., Lin X., Mao L.Z., Ge W.H., Zhang L.M., Huang Y.L., Gu J. Neuroprotection by melatonin against ischemic neuronal injury associated with modulation of DNA damage and repair in the rat following a transient cerebral ischemia. J. Pineal Res. 2002;33:48–56.
    1. Chung S.Y., Han S.H. Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition. J. Pineal Res. 2003;34:95–102.
    1. Feng Z., Cheng Y., Zhang J.T. Long-term effects of melatonin or 17 beta-estradiol on improving spatial memory performance in cognitively impaired, ovariectomized adult rats. J. Pineal Res. 2004;37:198–206.
    1. Deng Y.Q., Xu G.G., Duan P., Zhang Q., Wang J.Z. Effects of melatonin on wortmannin-induced TAU hyperphosphorylation. Acta Pharmacol. Sin. 2005;26:519–526.
    1. Rosenstein R.E., Cardinali D.P. Central gabaergic mechanisms as targets for melatonin activity in brain. Neurochem. Int. 1990;17:373–379.
    1. Molina-Carballo A., Munoz-Hoyos A., Sanchez-Forte M., Uberos-Fernandez J., Moreno-Madrid F., Acuna-Castroviejo D. Melatonin increases following convulsive seizures may be related to its anticonvulsant properties at physiological concentrations. Neuropediatrics. 2007;38:122–125.
    1. Prada C., Udin S.B., Wiechmann A.F., Zhdanova I.V. Stimulation of melatonin receptors decreases calcium levels in xenopus tectal cells by activating gaba(c) receptors. J. Neurophysiol. 2005;94:968–978.
    1. Prada C., Udin S.B. Melatonin decreases calcium levels in retinotectal axons of xenopus laevis by indirect activation of group iii metabotropic glutamate receptors. Brain Res. 2005;1053:67–76.
    1. Buonocore G., Perrone S., Bracci R. Free radicals and brain damage in the newborn. Biol. Neonate. 2001;79:180–186.
    1. Blomgren K., Hagberg H. Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic. Biol. Med. 2006;40:388–397.
    1. Kumar A., Mittal R., Khanna H.D., Basu S. Free radical injury and blood-brain barrier permeability in hypoxic-ischemic encephalopathy. Pediatrics. 2008;122:722–727.
    1. Alonso-Alconada D., Hilario E., Alvarez F.J., Alvarez A. Apoptotic cell death correlates with ros overproduction and early cytokine expression after hypoxia-ischemia in fetal lambs. Reprod. Sci. 2012;19:754–763.
    1. Watanabe K., Wakatsuki A., Shinohara K., Ikenoue N., Yokota K., Fukaya T. Maternally administered melatonin protects against ischemia and reperfusion-induced oxidative mitochondrial damage in premature fetal rat brain. J. Pineal Res. 2004;37:276–280.
    1. Hutton L.C., Abbass M., Dickinson H., Ireland Z., Walker D.W. Neuroprotective properties of melatonin in a model of birth asphyxia in the spiny mouse (Acomys cahirinus) Dev. Neurosci. 2009;31:437–451.
    1. Fu J., Zhao S.D., Liu H.J., Yuan Q.H., Liu S.M., Zhang Y.M., Ling E.A., Hao A.J. Melatonin promotes proliferation and differentiation of neural stem cells subjected to hypoxia in vitro. J. Pineal Res. 2011;51:104–112.
    1. Kilic U., Kilic E., Reiter R.J., Bassetti C.L., Hermann D.M. Signal transduction pathways involved in melatonin-induced neuroprotection after focal cerebral ischemia in mice. J. Pineal Res. 2005;38:67–71.
    1. Koh P.O. Melatonin prevents the injury-induced decline of akt/forkhead transcription factors phosphorylation. J. Pineal Res. 2008;45:199–203.
    1. Zhou J., Zhang S., Zhao X., Wei T. Melatonin impairs nadph oxidase assembly and decreases superoxide anion production in microglia exposed to amyloid-beta1–42. J. Pineal Res. 2008;45:157–165.
    1. Koh P.O. Melatonin prevents ischemic brain injury through activation of the mtor/p70s6 kinase signaling pathway. Neurosci. Lett. 2008;444:74–78.
    1. Fjaerli O., Lund T., Osterud B. The effect of melatonin on cellular activation processes in human blood. J. Pineal Res. 1999;26:50–55.
    1. Baykal A., Iskit A.B., Hamaloglu E., Guc M.O., Hascelik G., Sayek I. Melatonin modulates mesenteric blood flow and TNFα concentrations after lipopolysaccharide challenge. Eur. J. Surg. 2000;166:722–727.
    1. Silva S.O., Rodrigues M.R., Ximenes V.F., Bueno-da-Silva A.E., Amarante-Mendes G.P., Campa A. Neutrophils as a specific target for melatonin and kynuramines: Effects on cytokine release. J. Neuroimmunol. 2004;156:146–152.
    1. Wang H., Wei W., Shen Y.X., Dong C., Zhang L.L., Wang N.P., Yue L., Xu S.Y. Protective effect of melatonin against liver injury in mice induced by bacillus calmette-guerin plus lipopolysaccharide. World J. Gastroenterol. 2004;10:2690–2696.
    1. Perianayagam M.C., Oxenkrug G.F., Jaber B.L. Immune-modulating effects of melatonin, N-acetylserotonin, and N-acetyldopamine. Ann. N.Y. Acad. Sci. 2005;1053:386–393.
    1. Carrillo-Vico A., Lardone P.J., Fernandez-Santos J.M., Martin-Lacave I., Calvo J.R., Karasek M., Guerrero J.M. Human lymphocyte-synthesized melatonin is involved in the regulation of the interleukin-2/interleukin-2 receptor system. J. Clin. Endocrinol. MeTable. 2005;90:992–1000.
    1. Gitto E., Reiter R.J., Sabatino G., Buonocore G., Romeo C., Gitto P., Bugge C., Trimarchi G., Barberi I. Correlation among cytokines, bronchopulmonary dysplasia and modality of ventilation in preterm newborns: Improvement with melatonin treatment. J. Pineal Res. 2005;39:287–293.
    1. Steinhilber D., Brungs M., Werz O., Wiesenberg I., Danielsson C., Kahlen J.P., Nayeri S., Schrader M., Carlberg C. The nuclear receptor for melatonin represses 5-lipoxygenase gene expression in human B lymphocytes. J. Biol. Chem. 1995;270:7037–7040.
    1. Mayo J.C., Sainz R.M., Tan D.X., Hardeland R., Leon J., Rodriguez C., Reiter R.J. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5- methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J. Neuroimmunol. 2005;165:139–149.
    1. Deng W.G., Tang S.T., Tseng H.P., Wu K.K. Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood. 2006;108:518–524.
    1. Cardinali D.P., Ritta M.N., Fuentes A.M., Gimeno M.F., Gimeno A.L. Prostaglandin E release by rat medial basal hypothalamus in vitro. Inhibition by melatonin at submicromolar concentrations. Eur. J. Pharmacol. 1980;67:151–153.
    1. Cardinali D.P., Ritta M.N. The role of prostaglandins in neuroendocrine junctions: Studies in the pineal gland and the hypothalamus. Neuroendocrinology. 1983;36:152–160.
    1. Carrillo-Vico A., Garcia-Maurino S., Calvo J.R., Guerrero J.M. Melatonin counteracts the inhibitory effect of PGE2 on IL-2 production in human lymphocytes via its mt1 membrane receptor. FASEB J. 2003;17:755–757.
    1. Bilici D., Akpinar E., Kiziltunc A. Protective effect of melatonin in carrageenan-induced acute local inflammation. Pharmacol. Res. 2002;46:133–139.
    1. Acuna-Castroviejo D., Escames G., Lopez L.C., Hitos A.B., Leon J. Melatonin and nitric oxide: Two required antagonists for mitochondrial homeostasis. Endocrine. 2005;27:159–168.
    1. Leon J., Macias M., Escames G., Camacho E., Khaldy H., Martin M., Espinosa A., Gallo M.A., Acuna-Castroviejo D. Structure-related inhibition of calmodulin-dependent neuronal nitric-oxide synthase activity by melatonin and synthetic kynurenines. Mol. Pharmacol. 2000;58:967–975.
    1. Leon J., Escames G., Rodriguez M.I., Lopez L.C., Tapias V., Entrena A., Camacho E., Carrion M.D., Gallo M.A., Espinosa A., et al. Inhibition of neuronal nitric oxide synthase activity by N1-acetyl-5-methoxykynuramine, a brain metabolite of melatonin. J. Neurochem. 2006;98:2023–2033.
    1. Jimenez-Ortega V., Cano P., Cardinali D.P., Esquifino A.I. 24-Hour variation in gene expression of redox pathway enzymes in rat hypothalamus: Effect of melatonin treatment. Redox Rep. 2009;14:132–138.
    1. Tapias V., Escames G., Lopez L.C., Lopez A., Camacho E., Carrion M.D., Entrena A., Gallo M.A., Espinosa A., Acuna-Castroviejo D. Melatonin and its brain metabolite N(1)-acetyl-5-methoxykynuramine prevent mitochondrial nitric oxide synthase induction in parkinsonian mice. J. Neurosci. Res. 2009;87:3002–3010.
    1. Leon J., Vives F., Crespo E., Camacho E., Espinosa A., Gallo M.A., Escames G., Acuna-Castroviejo D. Modification of nitric oxide synthase activity and neuronal response in rat striatum by melatonin and kynurenine derivatives. J. Neuroendocrinol. 1998;10:297–302.
    1. Chandrasekaran A., Ponnambalam G., Kaur C. Domoic acid-induced neurotoxicity in the hippocampus of adult rats. Neurotox Res. 2004;6:105–117.
    1. Escames G., Khaldy H., Leon J., Gonzalez L., Acuna-Castroviejo D. Changes in iNOS activity, oxidative stress and melatonin levels in hypertensive patients treated with lacidipine. J. Hypertens. 2004;22:629–635.
    1. Escames G., Acuna-Castroviejo D., Lopez L.C., Tan D.X., Maldonado M.D., Sanchez-Hidalgo M., Leon J., Reiter R.J. Pharmacological utility of melatonin in the treatment of septic shock: Experimental and clinical evidence. J. Pharm. Pharmacol. 2006;58:1153–1165.
    1. Escames G., Lopez L.C., Tapias V., Utrilla P., Reiter R.J., Hitos A.B., Leon J., Rodriguez M.I., Acuna-Castroviejo D. Melatonin counteracts inducible mitochondrial nitric oxide synthase-dependent mitochondrial dysfunction in skeletal muscle of septic mice. J. Pineal Res. 2006;40:71–78.
    1. Lopez L.C., Escames G., Tapias V., Utrilla P., Leon J., Acuna-Castroviejo D. Identification of an inducible nitric oxide synthase in diaphragm mitochondria from septic mice: Its relation with mitochondrial dysfunction and prevention by melatonin. Int. J. Biochem. Cell Biol. 2006;38:267–278.
    1. Srinivasan V., Pandi-Perumal S.R., Spence D.W., Kato H., Cardinali D.P. Melatonin in septic shock: Some recent concepts. J. Crit. Care. 2010;25:656. e1–656.e6.
    1. Lopez L.C., Escames G., Ortiz F., Ros E., Acuna-Castroviejo D. Melatonin restores the mitochondrial production of ATP in septic mice. Neuro Endocrinol. Lett. 2006;27:623–630.
    1. Escames G., Lopez L.C., Ortiz F., Lopez A., Garcia J.A., Ros E., Acuna-Castroviejo D. Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice. FEBS J. 2007;274:2135–2147.
    1. Pei Z., Cheung R.T. Pretreatment with melatonin exerts anti-inflammatory effects against ischemia/reperfusion injury in a rat middle cerebral artery occlusion stroke model. J. Pineal Res. 2004;37:85–91.
    1. Lee M.Y., Kuan Y.H., Chen H.Y., Chen T.Y., Chen S.T., Huang C.C., Yang I.P., Hsu Y.S., Wu T.S., Lee E.J. Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats. J. Pineal Res. 2007;42:297–309.
    1. Koh P.O. Melatonin regulates nitric oxide synthase expression in ischemic brain injury. J. Vet. Med. Sci. 2008;70:747–750.
    1. Mohan N., Sadeghi K., Reiter R.J., Meltz M.L. The neurohormone melatonin inhibits cytokine, mitogen and ionizing radiation induced NF-κB. Biochem. Mol. Biol. Int. 1995;37:1063–1070.
    1. Reiter R.J., Calvo J.R., Karbownik M., Qi W., Tan D.X. Melatonin and its relation to the immune system and inflammation. Ann. N.Y. Acad. Sci. 2000;917:376–386.
    1. Hardeland R. Antioxidative protection by melatonin: Multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine. 2005;27:119–130.
    1. Kaur C., Sivakumar V., Lu J., Tang F.R., Ling E.A. Melatonin attenuates hypoxia-induced ultrastructural changes and increased vascular permeability in the developing hippocampus. Brain Pathol. 2008;18:533–547.
    1. Jan J.E., Wasdell M.B., Freeman R.D., Bax M. Evidence supporting the use of melatonin in short gestation infants. J. Pineal Res. 2007;42:22–27.
    1. Gitto E., Reiter R.J., Cordaro S.P., La Rosa M., Chiurazzi P., Trimarchi G., Gitto P., Calabro M.P., Barberi I. Oxidative and inflammatory parameters in respiratory distress syndrome of preterm newborns: Beneficial effects of melatonin. Am. J. Perinatol. 2004;21:209–216.
    1. Gitto E., Reiter R.J., Amodio A., Romeo C., Cuzzocrea E., Sabatino G., Buonocore G., Cordaro V., Trimarchi G., Barberi I. Early indicators of chronic lung disease in preterm infants with respiratory distress syndrome and their inhibition by melatonin. J. Pineal Res. 2004;36:250–255.
    1. Buonocore G., Groenendaal F. Anti-oxidant strategies. Semin. Fetal. Neonatal Med. 2007;12:287–295.
    1. Robertson N.J., Faulkner S., Fleiss B., Bainbridge A., Andorka C., Price D., Powell E., Lecky-Thompson L., Thei L., Chandrasekaran M., et al. Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain. 2013;136:90–105.
    1. Waldhauser F., Waldhauser M., Lieberman H.R., Deng M.H., Lynch H.J., Wurtman R.J. Bioavailability of oral melatonin in humans. Neuroendocrinology. 1984;39:307–313.
    1. Aldhous M., Franey C., Wright J., Arendt J. Plasma concentrations of melatonin in man following oral absorption of different preparations. Br. J. Clin. Pharmacol. 1985;19:517–521.
    1. Lane E.A., Moss H.B. Pharmacokinetics of melatonin in man: First pass hepatic metabolism. J. Clin. Endocrinol. MeTable. 1985;61:1214–1216.
    1. Merchant N.M., Azzopardi D.V., Hawwa A.F., McElnay J.C., Middleton B., Arendt J., Arichi T., Gressens P., Edwards A.D. Pharmacokinetics of Melatonin in Preterm Infants. Br. J. Clin. Pharmacol. 2013 doi: 10.1111/bcp.12092.

Source: PubMed

Подписаться