A double-blind, randomized, multicenter phase 2 study of prasugrel versus placebo in adult patients with sickle cell disease

Ted Wun, Denis Soulieres, Andrew L Frelinger, Lakshmanan Krishnamurti, Enrico M Novelli, Abdullah Kutlar, Kenneth I Ataga, Charles L Knupp, Lillian E McMahon, John J Strouse, Chunmei Zhou, Lori E Heath, Chuke E Nwachuku, Joseph A Jakubowski, Jeffrey S Riesmeyer, Kenneth J Winters, Ted Wun, Denis Soulieres, Andrew L Frelinger, Lakshmanan Krishnamurti, Enrico M Novelli, Abdullah Kutlar, Kenneth I Ataga, Charles L Knupp, Lillian E McMahon, John J Strouse, Chunmei Zhou, Lori E Heath, Chuke E Nwachuku, Joseph A Jakubowski, Jeffrey S Riesmeyer, Kenneth J Winters

Abstract

Background: Platelet activation has been implicated in the pathogenesis of sickle cell disease (SCD) suggesting antiplatelet agents may be therapeutic. To evaluate the safety of prasugrel, a thienopyridine antiplatelet agent, in adult patients with SCD, we conducted a double-blind, randomized, placebo-controlled study.

Methods: The primary endpoint, safety, was measured by hemorrhagic events requiring medical intervention. Patients were randomized to prasugrel 5 mg daily (n = 41) or placebo (n = 21) for 30 days. Platelet function by VerifyNow® P2Y12 and vasodilator-stimulated phosphoprotein assays at days 10 and 30 were significantly inhibited in prasugrel- compared with placebo-treated SCD patients.

Results: There were no hemorrhagic events requiring medical intervention in either study arm. Mean pain rate (percentage of days with pain) and intensity in the prasugrel arm were decreased compared with placebo. However, these decreases did not reach statistical significance. Platelet surface P-selectin and plasma soluble P-selectin, biomarkers of in vivo platelet activation, were significantly reduced in SCD patients receiving prasugrel compared with placebo. In sum, prasugrel was well tolerated and not associated with serious hemorrhagic events.

Conclusions: Despite the small size and short duration of this study, there was a decrease in platelet activation biomarkers and a trend toward decreased pain.

Figures

Figure 1
Figure 1
Adaptive study design Phase A and Phase B. Decisions about dose allocations were made as the trial progressed. If interim analysis of pharmacodynamic data revealed insufficient platelet inhibition in the first 16 patients randomized to 5-mg daily prasugrel, the dose was to be escalated to 7.5 mg. Dotted line denotes dose escalation plan per protocol; no dose escalation occurred occur during the study
Figure 2
Figure 2
Patient distribution. A total of 62 patients were randomly assigned to treatment (prasugrel [41], placebo [21]) and were included in the Intent-to-Treat (ITT) analysis set
Figure 3
Figure 3
Patient-reported days with pain and pain intensity. A. Proportion of patients reporting pain on 0, >0 to 25, >25 to 50, >50 to 75, >75 to <100, or 100% of study days. B. Proportion of patients with average pain intensity of 0, >0 to 2, >2 to 4, >4 to 6, or >6 to 8. Prasugrel = black bars; placebo = grey bars
Figure 4
Figure 4
Pharmacodynamic effects of prasugrel on platelet function. A. Platelet Inhibition: VerifyNow® P2Y12. B. VASP platelet reactivity index. The bottom and top of the box are the 25th and 75th percentile, the solid line in the box is median and the dotted line is mean, the ends of the whiskers are 10th and 90th percentile
Figure 5
Figure 5
Effect of prasugrel vs. placebo on biomarkers of disease-related platelet activation. A. Percent of platelets positive for platelet surface P-selectin, B. Plasma soluble P-selectin, C. Serum TXB2, D. plasma soluble CD40L. Prasugrel = black bars; placebo = grey bars. Results are mean ± SD

References

    1. Steinberg MH. Management of sickle cell disease. N Engl J Med. 1999;340:1021–1030. doi: 10.1056/NEJM199904013401307.
    1. Hebbel RP, Boogaerts MA, Eaton JW, Steinberg MH. Erythrocyte adherence to endothelium in sickle-cell anemia. A possible determinant of disease severity. N Engl J Med. 1980;302:992–995. doi: 10.1056/NEJM198005013021803.
    1. Wun T, Cordoba M, Rangaswami A, Cheung AW, Paglieroni T. Activated monocytes and platelet-monocyte aggregates in patients with sickle cell disease. Clin Lab Haematol. 2002;24:81–88.
    1. Lum AF, Wun T, Staunton D, Simon SI. Inflammatory potential of neutrophils detected in sickle cell disease. Am J Hematol. 2004;76:126–133. doi: 10.1002/ajh.20059.
    1. Haynes J Jr, Obiako B. Activated polymorphonuclear cells increase sickle red blood cell retention in lung: role of phospholipids. Am J Physiol Heart Circ Physiol. 2002;282:H122–H130.
    1. Frenette PS. Sickle cell vasoocclusion: heterotypic, multicellular aggregations driven by leukocyte adhesion. Microcirculation. 2004;11:167–177.
    1. Ataga KI, Moore CG, Hillery CA, Jones S, Whinna HC, Strayhorn D, Sohier C, Hinderliter A, Parise LV, Orringer EP. Coagulation activation and inflammation in sickle cell disease-associated pulmonary hypertension. Haematologica. 2008;93:20–26. doi: 10.3324/haematol.11763.
    1. Ataga KI, Key NS. Hypercoagulability in sickle cell disease: new approaches to an old problem. Hematology Am Soc Hematol Educ Program. 2007;2007:91–96. doi: 10.1182/asheducation-2007.1.91.
    1. Ataga KI, Cappellini MD, Rachmilewitz EA. Beta-thalassaemia and sickle cell anaemia as paradigms of hypercoagulability. Br J Haematol. 2007;139:3–13. doi: 10.1111/j.1365-2141.2007.06740.x.
    1. Wun T, Paglieroni T, Rangaswami A, Franklin PH, Welborn J, Cheung A, Tablin F. Platelet activation in patients with sickle cell disease. Br J Haematol. 1998;100:741–749. doi: 10.1046/j.1365-2141.1998.00627.x.
    1. Ataga KI, Orringer EP. Hypercoagulability in sickle cell disease: a curious paradox. Am J Med. 2003;115:721–728. doi: 10.1016/j.amjmed.2003.07.011.
    1. Tomer A, Harker LA, Kasey S, Eckman JR. Thrombogenesis in sickle cell disease. J Lab Clin Med. 2001;137:398–407. doi: 10.1067/mlc.2001.115450.
    1. Villagra J, Shiva S, Hunter LA, Machado RF, Gladwin MT, Kato GJ. Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin. Blood. 2007;110:2166–2172. doi: 10.1182/blood-2006-12-061697.
    1. Ataga KI, Brittain JE, Desai P, May R, Jones S, Delaney J, Strayhorn D, Hinderliter A, Key NS. Association of coagulation activation with clinical complications in sickle cell disease. PLoS One. 2012;7:e29786. doi: 10.1371/journal.pone.0029786.
    1. Osamo NO, Photiades DP, Famodu AA. Therapeutic effect of aspirin in sickle cell anaemia. Acta Haematol. 1981;66:102–107. doi: 10.1159/000207105.
    1. Cabannes R, Lonsdorfer J, Castaigne JP, Ondo A, Plassard A, Zohoun I. Clinical and biological double-blind-study of ticlopidine in preventive treatment of sickle-cell disease crises. Agents Actions Suppl. 1984;15:199–212.
    1. Semple MJ, Al-Hasani SF, Kioy P, Savidge GF. A double-blind trial of ticlopidine in sickle cell disease. Thromb Haemost. 1984;51:303–306.
    1. Blann AD, Mohan JS, Bareford D, Lip GY. Soluble P-selectin and vascular endothelial growth factor in steady state sickle cell disease: relationship to genotype. J Thromb Thrombolysis. 2008;25:185–189. doi: 10.1007/s11239-007-0177-7.
    1. Browne PV, Mosher DF, Steinberg MH, Hebbel RP. Disturbance of plasma and platelet thrombospondin levels in sickle cell disease. Am J Hematol. 1996;51:296–301. doi: 10.1002/(SICI)1096-8652(199604)51:4<296::AID-AJH8>;2-R.
    1. Varenhorst C, James S, Erlinge D, Braun OO, Brandt JT, Winters KJ, Jakubowski JA, Olofsson S, Wallentin L, Siegbahn A. Assessment of P2Y(12) inhibition with the point-of-care device VerifyNow P2Y12 in patients treated with prasugrel or clopidogrel coadministered with aspirin. Am Heart J. 2009;157:562–569.
    1. Jakubowski JA, Payne CD, Li YG, Brandt JT, Small DS, Farid NA, Salazar DE, Winters KJ. The use of the VerifyNow P2Y12 point-of-care device to monitor platelet function across a range of P2Y12 inhibition levels following prasugrel and clopidogrel administration. Thromb Haemost. 2008;99:409–415.
    1. Michelson AD, Barnard MR, Krueger LA, Valeri CR, Furman MI. Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation. 2001;104:1533–1537. doi: 10.1161/hc3801.095588.
    1. Frelinger AL III, Michelson AD, Wiviott SD, Trenk D, Neumann FJ, Miller DL, Jakubowski JA, Costigan TM, McCabe CH, Antman EM, Braunwald E. Intrinsic platelet reactivity before P2Y12 blockade contributes to residual platelet reactivity despite high-level P2Y12 blockade by prasugrel or high-dose clopidogrel. Results from PRINCIPLE-TIMI 44. Thromb Haemost. 2011;106:219–226. doi: 10.1160/TH11-03-0185.
    1. Jakubowski JA, Payne CD, Weerakkody GJ, Brandt JT, Farid NA, Li YG, Naganuma H, Lachno DR, Winters KJ. Dose-dependent inhibition of human platelet aggregation by prasugrel and its interaction with aspirin in healthy subjects. J Cardiovasc Pharmacol. 2007;49:167–173. doi: 10.1097/FJC.0b013e318031301b.
    1. Jakubowski JA, Winters KJ, Naganuma H, Wallentin L. Prasugrel: a novel thienopyridine antiplatelet agent. A review of preclinical and clinical studies and the mechanistic basis for its distinct antiplatelet profile. Cardiovasc Drug Rev. 2007;25:357–374. doi: 10.1111/j.1527-3466.2007.00027.x.
    1. Jernberg T, Payne CD, Winters KJ, Darstein C, Brandt JT, Jakubowski JA, Naganuma H, Siegbahn A, Wallentin L. Prasugrel achieves greater inhibition of platelet aggregation and a lower rate of non-responders compared with clopidogrel in aspirin-treated patients with stable coronary artery disease. Eur Heart J. 2006;27:1166–1173.
    1. Smith WR, Bovbjerg VE, Penberthy LT, McClish DK, Levenson JL, Roberts JD, Gil K, Roseff SD, Aisiku IP. Understanding pain and improving management of sickle cell disease: the PiSCES study. J Natl Med Assoc. 2005;97:183–193.
    1. Smith WR, Penberthy LT, Bovbjerg VE, McClish DK, Roberts JD, Dahman B, Aisiku IP, Levenson JL, Roseff SD. Daily assessment of pain in adults with sickle cell disease. Ann Intern Med. 2008;148:94–101.
    1. Greenberg J, Ohene-Frempong K, Halus J, Way C, Schwartz E. Trial of low doses of aspirin as prophylaxis in sickle cell disease. J Pediatr. 1983;102:781–784. doi: 10.1016/S0022-3476(83)80258-3.
    1. Chaplin H Jr, Alkjaersig N, Fletcher AP, Michael JM, Joist JH. Aspirin-dipyridamole prophylaxis of sickle cell disease pain crises. Thromb Haemost. 1980;43:218–221.

Source: PubMed

Подписаться