Pathophysiology of chronic subdural haematoma: inflammation, angiogenesis and implications for pharmacotherapy

Ellie Edlmann, Susan Giorgi-Coll, Peter C Whitfield, Keri L H Carpenter, Peter J Hutchinson, Ellie Edlmann, Susan Giorgi-Coll, Peter C Whitfield, Keri L H Carpenter, Peter J Hutchinson

Abstract

Chronic subdural haematoma (CSDH) is an encapsulated collection of blood and fluid on the surface of the brain. Historically considered a result of head trauma, recent evidence suggests there are more complex processes involved. Trauma may be absent or very minor and does not explain the progressive, chronic course of the condition. This review focuses on several key processes involved in CSDH development: angiogenesis, fibrinolysis and inflammation. The characteristic membrane surrounding the CSDH has been identified as a source of fluid exudation and haemorrhage. Angiogenic stimuli lead to the creation of fragile blood vessels within membrane walls, whilst fibrinolytic processes prevent clot formation resulting in continued haemorrhage. An abundance of inflammatory cells and markers have been identified within the membranes and subdural fluid and are likely to contribute to propagating an inflammatory response which stimulates ongoing membrane growth and fluid accumulation. Currently, the mainstay of treatment for CSDH is surgical drainage, which has associated risks of recurrence requiring repeat surgery. Understanding of the underlying pathophysiological processes has been applied to developing potential drug treatments. Ongoing research is needed to identify if these therapies are successful in controlling the inflammatory and angiogenic disease processes leading to control and resolution of CSDH.

Keywords: Angiogenesis; Chronic subdural haematoma; Drug therapy; Head injury; Inflammation.

Figures

Fig. 1
Fig. 1
Computed tomography (CT) head scan and schematic representation of a CSDH
Fig. 2
Fig. 2
The CSDH cycle. Summary of the pathophysiological processes involved in the formation of a CSDH
Fig. 3
Fig. 3
Summary of molecules associated with CSDH formation including recruitment of inflammatory cells (green), angiogenesis of highly permeable and leaky capillaries (red), processes supporting membrane formation (brown) and fibrinolysis promoting further haemorrhage (blue). Abbreviations: Ang angiopoietin, FDPs fibrin/fibrinogen degradation products, HIF hypoxia-inducible factor, IL interleukin, JAK-STAT Janus kinase-signal transducer and activator of transcription, MAPK mitogen-activated protein kinase, MMP matrix metalloproteinase, NO nitric oxide, PGE prostaglandin E, PI3-Akt phosphatidylinositol 3-kinase-serine/threonine kinase, PICP procollagen type 1, PIIINP procollagen type 3, tPA tissue plasminogen activator, VEGF vascular endothelial growth factor
Fig. 4
Fig. 4
Different patterns of CSDH: left image represents a more chronic, hypodense collection, whilst right image shows hyperdensity (see arrow), representing fresh bleeding

References

    1. Ommaya AK, Yarnell P. Subdural haematoma after whiplash injury. Lancet. 1969;2(7614):237–9.
    1. Markwalder TM. Chronic subdural haematoma: a review. J Neurosurg. 1981;54(5):637–45. doi: 10.3171/jns.1981.54.5.0637.
    1. Gelabert-Gonzalez M, Iglesias-Pais M, Garcia-Allut A, et al. Chronic subdural haematoma: surgical treatment and outcome in 1000 cases. Clin Neurol Neurosurg. 2005;107(3):223–9. doi: 10.1016/j.clineuro.2004.09.015.
    1. Stroobandt G, Fransen P, Thauvoy C, et al. Pathogenetic factors in chronic subdural haematoma and causes of recurrence. Acta Neurochir (Wien) 1995;137(1-2):6–14. doi: 10.1007/BF02188772.
    1. D’abbondanza JA, Loch MR. Experimental models of chronic subdural hematoma. Neurol Res. 2014;36(2):176–88. doi: 10.1179/1743132813Y.0000000279.
    1. Virchow R. Haematoma Durae Matris. Verhandl Phys-med Gesellsch Wurzburg. 1857;7:134–42.
    1. Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 2001;344(12):907–16. doi: 10.1056/NEJM200103223441207.
    1. Holgate ST. Pathogenesis of asthma. Clin Exp Allergy. 2008;38(6):872–97. doi: 10.1111/j.1365-2222.2008.02971.x.
    1. Trotter W. Chronic subdural haemorrhage of traumatic origin, and its relation to pachymeningitis haemorrhagica interna. Br J Surg. 1914;2:271–91. doi: 10.1002/bjs.1800020608.
    1. Putnam TJ, Cushing H. Chronic subdural hematoma: its pathology, its relation to pachymeningitis hemorrhagica, and its surgical treatment. Arch Surg. 1925;11(3):329–3. doi: 10.1001/archsurg.1925.01120150002001.
    1. Inglis K. Subdural haemorrhage, cysts and false membranes: illustrating the influence of intrinsic factors in disease when development of the body is normal. Brain. 1946;69(3):157–94. doi: 10.1093/brain/69.3.157.
    1. Kolias AG, Chari A, Santarius T, et al. Chronic subdural haematoma: modern management and emerging therapies. Nat Rev Neurol. 2014;10(10):570–8. doi: 10.1038/nrneurol.2014.163.
    1. D’errico AP, German WJ. Chronic subdural haematoma. Yale J Biol Med. 1930;3(1):11–20.
    1. Goodell CL, Mealey J., Jr Pathogenesis of chronic subdural hematoma. Exp Stud Arch Neurol. 1963;8:429–37. doi: 10.1001/archneur.1963.00460040099009.
    1. Izumihara A, Yamashita K, Murakami T. Acute subdural haematoma requiring surgery in the subacute or chronic stage. Neurol Med Chir (Tokyo) 2013;53(5):323–8. doi: 10.2176/nmc.53.323.
    1. Sajanti J, Majamaa K. High concentrations of procollagen propeptides in chronic subdural haematoma and effusion. J Neurol Neurosurg Psychiatry. 2003;74(4):522–4. doi: 10.1136/jnnp.74.4.522.
    1. Heula AL, Sajanti J, Majamaa K. Procollagen propeptides in chronic subdural hematoma reveal sustained dural collagen synthesis after head injury. J Neurol. 2009;256(1):66–71. doi: 10.1007/s00415-009-0048-6.
    1. Osuka K, Watanabe Y, Usuda N, et al. Eotaxin-3 activates the Smad pathway through the transforming growth factor β1 in chronic subdural hematoma outer membranes. J Neurotrauma. 2014;31(16):1451–6. doi: 10.1089/neu.2013.3195.
    1. Sato A, Suzuki J. Ultrastructural observations of the capsule of chronic subdural hematoma in various clinical stages. J Neurosurg. 1975;43(5):569–78. doi: 10.3171/jns.1975.43.5.0569.
    1. Moskala M, Goscinski I, Kaluza J, et al. Morphological aspects of the traumatic chronic subdural hematoma capsule: SEM studies. Microsc Microanal. 2007;13(3):211–9. doi: 10.1017/S1431927607070286.
    1. Hara M, Tamaki M, Aoyagi M, et al. Possible role of cyclooxygenase-2 in developing chronic subdural haematoma. J Med Dent Sci. 2009;56:101–6.
    1. Shono T, Inamura T, Morioka T. Vascular endothelial growth factor in chronic subdural haematomas. J Clin Neurosci. 2001;8(5):411–5. doi: 10.1054/jocn.2000.0951.
    1. Nanko N, Tanikawa M, Mase M, et al. Involvement of hypoxia-inducible-factor-1a and VEGF in the mechanism and development of chronic subdural haematoma. Neurol Med Chir (Tokyo) 2009;49(9):379–85. doi: 10.2176/nmc.49.379.
    1. Sarkar C, Lakhtakia R, Gill SS, et al. Chronic subdural haematoma and the enigmatic eosinophil. Acta Neurochir (Wien) 2002;144(10):983–8. doi: 10.1007/s00701-002-0994-6.
    1. Müller W, Firsching R. Significance of eosinophilic granulocytes in chronic subdural haematomas. Neurosurg Rev. 1990;13(4):305–8. doi: 10.1007/BF00346370.
    1. Yamashima T, Yamamoto S, Friede RL. The role of endothelial gap junctions in the enlargement of chronic subdural hematomas. J Neurosurg. 1983;59(2):298–303. doi: 10.3171/jns.1983.59.2.0298.
    1. Ito H, Komai T, Yamamoto S. Fibronolytic enzyme in the lining walls of chronic subdural haematoma. J Neurosurg. 1978;48(2):197–200. doi: 10.3171/jns.1978.48.2.0197.
    1. Murakami H, Hirose Y, Sagoh M, et al. Why to chronic subdural haematoma continue to grow slowly and not coagulate? Role of thrombomodulin in the mechanism. J Neurosurg. 2002;96(5):877–84. doi: 10.3171/jns.2002.96.5.0877.
    1. Hohenstein A, Erber R, Schilling L, et al. Increased mRNA expression of VEGF within the hematoma and imbalance of angiopoietin-1 and -2 mRNA within the neomembranes of chronic subdural hematoma. J Neurotrauma. 2005;22(5):518–28. doi: 10.1089/neu.2005.22.518.
    1. Nakagawa T, Kodera T, Kubota T. Expression of matrix metalloproteinases in the chronic subdural haematoma membrane. Acta Neurochir (Wien) 2000;142(1):61–6. doi: 10.1007/s007010050008.
    1. Basaldella L, Perin A, Orvieto E, et al. A preliminary study of AQUAPORIN 1 immunolocalization in chronic subdural haematoma membranes. J Clin Neurosci. 2010;17(7):905–7. doi: 10.1016/j.jocn.2009.11.010.
    1. Kubota M, Narita K, Nakagomi T, et al. Fatty acid composition of the chronic subdural hematoma: with reference to its recurrence. J Clin Neurosci. 1998;5(1):63–5. doi: 10.1016/S0967-5868(98)90204-1.
    1. Heula AL, Ohlmeier S, Sajanti J, et al. Characterization of chronic subdural hematoma fluid proteome. Neurosurgery. 2013;73:317–331. doi: 10.1227/.
    1. Fujisawa H, Nomura S, Tsuchida E, et al. Serum protein exudation in chronic subdural haematomas: a mechanism for haematoma enlargement? Acta Neurochir (Wien) 1998;140(2):161–6. doi: 10.1007/s007010050077.
    1. Kristof RA, Grimm JM, Stoffel-Wagner B. Cerebrospinal fluid leakage into the subdural space: possible influence on the pathogenesis and recurrence frequency of chronic subdural hematoma and subdural hygroma. J Neurosurg. 2008;108(2):275–80. doi: 10.3171/JNS/2008/108/2/0275.
    1. Gandhoke GS, Kaif M, Choi L, et al. Histopathological features of the outer membrane of chronic subdural hematoma and correlation with clinical and radiological features. J Clin Neurosci. 2013;20(10):1398–401. doi: 10.1016/j.jocn.2013.01.010.
    1. Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015;29(1):17–24. doi: 10.1016/j.blre.2014.09.003.
    1. Ito H, Yamamoto S, Komai T, et al. Role of local hyperfibrinolysis in the etiology of chronic subdural hematoma. J Neurosurg. 1976;45(1):26–31. doi: 10.3171/jns.1976.45.1.0026.
    1. Nomura S, Kashiwagi S, Fujisawa H, et al. Characterization of local hyperfibrinolysis in chronic subdural hematomas by SDS-PAGE and immunoblot. J Neurosurg. 1994;81(6):910–3. doi: 10.3171/jns.1994.81.6.0910.
    1. Weir B, Gordon P. Factors affecting coagulation: fibrinolysis in chronic subdural fluid collections. J Neurosurg. 1983;58(2):242–5. doi: 10.3171/jns.1983.58.2.0242.
    1. Katano H, Kamiya K, Mase M, et al. Tissue plasminogen activator in chronic subdural hematomas as a predictor of recurrence. J Neurosurg. 2006;104:79–84. doi: 10.3171/jns.2006.104.1.79.
    1. Neils DM, Singanallur PS, Wang H, et al. Recurrence-free chronic subdural hematomas: a retrospective analysis of the instillation of tissue plasminogen activator in addition to twist drill or burr hole drainage in the treatment of chronic subdural hematomas. World Neurosurg. 2012;78(1-2):145–9. doi: 10.1016/j.wneu.2011.08.032.
    1. Helmy A, De Simoni MG, Guilfoyle MR, et al. Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Prog Neurobiol. 2011;95(3):352–72. doi: 10.1016/j.pneurobio.2011.09.003.
    1. Jones N, Iljin K, Dumont DJ, et al. Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol. 2001;2(4):257–67. doi: 10.1038/35067005.
    1. Hoeben A, Landuyt B, Highley MS, et al. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004. 2004;56(4):549–80.
    1. Weigel R, Schilling L, Schmiedek P. Specific pattern of growth factor distribution in chronic subdural haematoma (CSH): evidence for an angiogenic disease. Acta Neuroshir (Wien) 2001;143(8):811–9. doi: 10.1007/s007010170035.
    1. Kalamatianos T, Stavrinou LC, Koutsarnakis C, et al. PlGF and sVEGFR-1 in chronic subdural hematoma: implications for hematoma development. J Neurosurg. 2013;118(2):353–7. doi: 10.3171/2012.10.JNS12327.
    1. Hua C, Zhao G, Feng Y, et al. Role of matrix metalloproteinase-2, matrix metalloproteinase-9, and vascular endothelial growth factor in the development of chronic subdural hematoma. J Neurotrauma. 2016;33(1):65–70. doi: 10.1089/neu.2014.3724.
    1. Vaquero J, Zurita M, Cincu R. Vascular endothelial growth-permeability factor in granulation tissue of chronic subdural haematomas. Acta Neurochir (Wien) 2002;144(4):343–6. doi: 10.1007/s007010200047.
    1. Osuka K, Watanabe Y, Usuda N, et al. Activation of Ras/MEK/ERK signaling in chronic subdural hematoma outer membranes. Brain Res. 2012;1489:98–103. doi: 10.1016/j.brainres.2012.10.013.
    1. Aoyama M, Osuka K, Usuda N, et al. Expression of mitogen-ativated protein kinases in chronic subdural hematoma outer membranes. J Neurotrauma. 2015;32(14):1064–70. doi: 10.1089/neu.2014.3594.
    1. Funai M, Osuka K, Usuda N, et al. Activation of PI3 kinase/Akt signaling in chronic subdural hematoma outer membranes. J Neurotrauma. 2011;28(6):1127–31. doi: 10.1089/neu.2010.1498.
    1. Hong HJ, Kim YJ, Yi HJ, et al. Role of angiogenic growth factors and inflammatory cytokine on recurrence of chronic subdural hematoma. Surg Neurol. 2009;71(2):161–5. doi: 10.1016/j.surneu.2008.01.023.
    1. Thau-Zuchman O, Shohami E, Alexandrovich AG, et al. Vascular endothelial growth factor increases neurogenesis after traumatic brain injury. J Cereb Blood Flow Metab. 2010;30(5):1008–16. doi: 10.1038/jcbfm.2009.271.
    1. Burbridge MF, Coge F, Galizzi JP, et al. The role of the matrix metalloproteinases during in vitro vessel formation. Angiogenesis. 2002;5(3):215–26. doi: 10.1023/A:1023889805133.
    1. Manicone AM, McGuire JK. Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol. 2008;19(1):34–41. doi: 10.1016/j.semcdb.2007.07.003.
    1. Jung S, Moon KS, Jung TY, et al. Possible pathophysiological role of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in metastatic brain tumor-associated intracerebral hemorrhage. J Neurooncol. 2006;76(3):257–63. doi: 10.1007/s11060-005-6876-z.
    1. Gong D, Hao M, Liu L, et al. Prognostic relevance of circulating endothelial progenitor cells for severe traumatic brain injury. Brain Inj. 2012;26(3):291–7. doi: 10.3109/02699052.2011.648710.
    1. Grossetete M, Phelps J, Arko L, et al. Elevation of matrix metalloproteinases 3 and 9 in cerebrospinal fluid and blood in patients with severe traumatic brain injury. Neurosurgery. 2009;65(4):702–8. doi: 10.1227/01.NEU.0000351768.11363.48.
    1. Guilfoyle MR, Carpenter KL, Helmy A, et al. Matrix metalloproteinase expression in contusional traumatic brain injury: a paired microdialysis study. J Neurotrauma. 2015;32(20):1553–9. doi: 10.1089/neu.2014.3764.
    1. Stanisic M, Lyngstadaas SP, Pripp AH, et al. Chemokines as markers of local inflammation and angiogenesis in patients with chronic subdural haematoma: a prospective study. Acta Neurochir. 2012;154:113–20. doi: 10.1007/s00701-011-1203-2.
    1. Pripp AH, Stansic M. The correlation between pro- and anti-inflammatory cytokines in chronic subdural hematoma patients assessed with factor analysis. PLoS One. 2014;9(2):e90149. doi: 10.1371/journal.pone.0090149.
    1. Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39(6):1003–18. doi: 10.1016/j.immuni.2013.11.010.
    1. Sims JE, Smith DE. The IL-1 family: regulators of immunity. Nat Rev Immunol. 2010;10(2):89–102. doi: 10.1038/nri2691.
    1. Rothwell NJ, Luheshi GN. Interleukin I in the brain: biology, pathology and therapeutic target. Trends Neurosci. 2000;23:618–25. doi: 10.1016/S0166-2236(00)01661-1.
    1. Hutchinson PJ, O’Connell MT, Rothwell NJ, et al. Inflammation in human brain injury: intracerebral concentrations of IL-1α, IL-1β and their endogenous inhibitor IL-1ra. J Neurotrauma. 2007;24(10):1545–57. doi: 10.1089/neu.2007.0295.
    1. Colotta F, Re F, Muzio M, et al. Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science. 1993;261(5120):472–75. doi: 10.1126/science.8332913.
    1. Clausen F, Hanell A, Bjork M, et al. Neutralization of interleukin-1beta modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. Eur J Neurosci. 2009;30(3):385–96. doi: 10.1111/j.1460-9568.2009.06820.x.
    1. Brough D, Rothwell NJ, Allan SM. Interleukin-1 as a pharmacological target in acute brain injury. Exp Physiol. 2015;100(12):1488–94. doi: 10.1113/EP085135.
    1. Kishimoto T, Akira S, Taga T. Interleukin-6 and its receptor: a paradigm for cytokines. Science. 1992;258(5082):593–7. doi: 10.1126/science.1411569.
    1. Benveniste EN. Cytokine actions in the central nervous system. Cytokine Growth Factor Rev. 1998;9(3-4):259–75. doi: 10.1016/S1359-6101(98)00015-X.
    1. Ayala A, Wang P, Ba ZF, et al. Differential alterations in plasma IL-6 and TNF levels after trauma and hemorrhage. Am J Physiol. 1991;260:R167–71.
    1. Frati A, Salvati M, Mainiero F, et al. Inflammation markers and risk factors for recurrence in 35 patients with a posttraumatic chronic subdural haematoma: a prospective study. J Neurosurg. 2004;100(1):24–32. doi: 10.3171/jns.2004.100.1.0024.
    1. Kitazono M, Yokota H, Satoh H, et al. Measurement of inflammatory cytokines and thrombomodulin in chronic subdural hematoma. Neurol Med Chir (Tokyo) 2012;52(11):810–5. doi: 10.2176/nmc.52.810.
    1. Osuka K, Watanabe Y, Usuda N, et al. Activation of JAK-STAT3 signaling pathway in chronic subdural hematoma outer membranes. Neurosci Lett. 2013;534:166–70. doi: 10.1016/j.neulet.2012.11.011.
    1. Osuka K, Watanabe Y, Usuda N, et al. Activation of STAT3 in endothelial cells of chronic subdural hematoma outer membranes. World Neurosurg. 2016;91:376–82. doi: 10.1016/j.wneu.2016.04.025.
    1. Oppenheim JJ, Zachariae CO, Mukaida N, et al. Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu Rev Immunol. 1991;9:617–48. doi: 10.1146/annurev.iy.09.040191.003153.
    1. Gimbrone MA, Jr, Obin MS, Brock AF, et al. Endothelial interleukin 8: a novel inhibitor of leukocyte-endothelial interactions. Science. 1989;246:1601–3. doi: 10.1126/science.2688092.
    1. Li A, Varney ML, Valasek J, et al. Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis. 2005;8(1):63–71. doi: 10.1007/s10456-005-5208-4.
    1. Suzuki M, Endo S, Inada K, et al. Inflammatory cytokines elevated in chronic subdural haematoma. Acta Neurochir (Wein) 1998;140(1):51–5. doi: 10.1007/s007010050057.
    1. Seymour RM, Henderson B. Pro-inflammatory-anti-inflammatory cytokine dynamics mediated by cytokine-receptor dynamics in monocytes. IMA J Math Appl Med. 2001;18(2):159–92. doi: 10.1093/imammb/18.2.159.
    1. Moore KW, O’Garra A, deWaal MR, et al. Interleukin-10. Annu Rev Immunol. 1993;11:165–90. doi: 10.1146/annurev.iy.11.040193.001121.
    1. Wada T, Kuroda K, Yoshida Y, et al. Local elevation of the anti-inflammatory interleukin-10 in the pathogenesis of chronic subdural hematoma. Neurosurg Rev. 2006;29(3):242–5. doi: 10.1007/s10143-006-0019-7.
    1. Almenawer SA, Farrokhyar F, Hong C, et al. Chronic subdural hematoma management: a systematic review and meta-analysis of 34, 829 patients. Ann Surg. 2014;259(3):449–57. doi: 10.1097/SLA.0000000000000255.
    1. Bender MB, Christoff N. Nonsurgical treatment of subdural hematomas. Arch Neurol. 1974;31(2):73–79. doi: 10.1001/archneur.1974.00490380021001.
    1. Arth GE, Fried J, Johnston DBR, et al. 16-Methylated steroids. II. 16α-Methyl analogs of cortisone, a new group of anti-inflammatory steroids. 9α-Halo derivatives. J Am Chem Soc. 1958;80:3161–3. doi: 10.1021/ja01545a063.
    1. Glover D, Labadie EL. Physiopathogenesis of subdural hematomas. Part 2: inhibition of growth of experimental hematomas with dexamethasone. J Neurosurg. 1976;45(4):393–7. doi: 10.3171/jns.1976.45.4.0393.
    1. Sun TF, Boet R, Poon WS. Non-surgical primary treatment of chronic subdural haematoma: preliminary results of using dexamethasone. Br J Neurosurg. 2005;19(4):327–33. doi: 10.1080/02688690500305332.
    1. Delgado-Lopez PD, Martin-Velasco V, Castilla-Diez JM, et al. Dexamethasone treatment in chronic subdural haematoma. Neurocirugia (Astur) 2009;20(4):346–359. doi: 10.1016/S1130-1473(09)70154-X.
    1. Dran G, Berthier F, Fontaine D, et al. Effectiveness of adjuvant corticosteroid therapy for chronic subdural hematoma: a retrospective study of 198 cases. Neurochirurgie. 2007;53(6):477–82. doi: 10.1016/j.neuchi.2007.09.146.
    1. Thotakura AK, Marabathina NR. Nonsurgical treatment of chronic subdural haematoma with steroids. World Neurosurg. 2015;84(6):1968–72. doi: 10.1016/j.wneu.2015.08.044.
    1. Qian Z, Yang D, Sun F, et al. Risk factors for recurrence of chronic subdural haematoma after burr hole surgery: potential protective role of dexamethasone. Br J Neurosurg. 2017;31(1):84–8. doi: 10.1080/02688697.2016.1260686.
    1. Berghauser Pont LM, Dammers R, Schouten JW, et al. Clinical factors associated with outcome in chronic subdural hematoma: a retrospective cohort study of patients on preoperative corticosteroid therapy. Neurosurgery. 2012;70(4):873–80. doi: 10.1227/NEU.0b013e31823672ad.
    1. Berghauser Pont LM, Dirven CM, Dippel DW, et al. The role of corticosteroids in the management of chronic subdural hematoma: a systematic review. Eur J Neurol. 2012;19(11):1397–403. doi: 10.1111/j.1468-1331.2012.03768.x.
    1. Czock D, Keller F, Rasche FM, et al. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005;44(1):61–98. doi: 10.2165/00003088-200544010-00003.
    1. Dietrich J, Rao K, Pastorino S, et al. Corticosteroids in brain cancer patients: benefits and pitfalls. Expert Rev Clin Pharmacol. 2011;4(2):233–42. doi: 10.1586/ecp.11.1.
    1. Dinarello CA. Anti-inflammatory agents: present and future. Cell. 2010;140(6):935–50. doi: 10.1016/j.cell.2010.02.043.
    1. Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond) 1998;94(6):557–72. doi: 10.1042/cs0940557.
    1. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2–13. doi: 10.1016/j.mce.2010.04.005.
    1. Green JA, Tran CT, Farrar JJ, et al. Dexamethasone, cerebrospinal fluid matrix metalloproteinase concentrations and clinical outcomes in tuberculous meningitis. PLoS One. 2009;4(9):e7277. doi: 10.1371/journal.pone.0007277.
    1. Marcus HJ, Carpenter KLH, Price SJ, et al. In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines. J Neurooncol. 2010;97:11–23. doi: 10.1007/s11060-009-9990-5.
    1. Maxwell RE, Long DM, French LA. The clinical effects of synthetic gluco-corticoid used for brain edema in the practice of neurosurgery. In: Reulen HJ, Shurmann K, editors. Steroids and brain edema. Berlin: Springer-Verlag; 1972.
    1. French LA. The use of steroids in the treatment of cerebral edema. Bull N Y Acad Med. 1966;42(4):301–11.
    1. Siegal T. Spinal cord compression: from laboratory to clinic. Eur J Cancer. 1995;31A(11):1748–53. doi: 10.1016/0959-8049(95)00320-I.
    1. Stream JO, Grissom CK. Update on high altitude pulmonary edema: pathogenesis, prevention, and treatment. Wilderness Environ Med. 2008;19(4):293–303. doi: 10.1580/07-WEME-REV-173.1.
    1. Ostergaard L, Hochberg FH, Rabinov JD, et al. Early changes measured by magnetic resonance imaging in cerebral blood flow, blood volume, and blood-brain barrier permeability following dexamethasone treatment in patients with brain tumours. J Neurosurg. 1999;90(2):300–5. doi: 10.3171/jns.1999.90.2.0300.
    1. Anderson C, Jensen FT. Differences in blood-tumour-barrier leakage of human intracranial tumours: quantitative monitoring of vasogenic oedema and its response to glucocorticoid treatment. Acta Neurochir (Wein) 1998;140(9):919–24. doi: 10.1007/s007010050194.
    1. Anderson C, Haselgrove JC, Doenstrup S, et al. Resorption of peritumoural oedema in cerebral gliomas during dexamethasone treatment evaluated by NMR relaxation time imaging. Acta Neurochir (Wien) 1993;122:218–24. doi: 10.1007/BF01405532.
    1. Forster C, Silwedel C, Golenhofen N, et al. Occludin as direct target for glucocorticoid-induced improvement of blood–brain barrier properties in a murine in vitro system. J Physiol. 2005;565(Pt 2):475–86. doi: 10.1113/jphysiol.2005.084038.
    1. Prud’homme M, Mathieu F, Marcotte N, et al. A pilot placebo controlled randomized controlled trial of dexamethasone for chronic subdural haematoma. Can J Neurol Sci. 2016;43(2):284–90. doi: 10.1017/cjn.2015.393.
    1. Weissman DE, Dufer D, Vogel V, et al. Corticosteroid toxicity in neuro-oncology patients. J Neurooncol. 1987;5(2):125–8. doi: 10.1007/BF02571300.
    1. Caughey GE, Preiss AK, Vitry AI, et al. Comorbid diabetes and COPD: impact of corticosteroid use on diabetes complications. Diabetes Care. 2013;36(10):3009–14. doi: 10.2337/dc12-2197.
    1. Garbe E, LeLorier J, Boivin JF, et al. Risk of ocular hypertension or open-angle glaucoma in elderly patients on oral glucocorticoids. Lancet. 1997;350(9083):979–82. doi: 10.1016/S0140-6736(97)03392-8.
    1. Vecht CJ, Hovestadt A, Verbiest HB, et al. Dose-effect relationship of dexamethasone on Karnofsky performance in metastatic brain tumors: a randomized study of doses of 4, 8 and 16 mg per day. Neurology. 1994;44(4):675–80. doi: 10.1212/WNL.44.4.675.
    1. Meikle AW, Tyler FH. Potency and duration of action of glucocorticoids. Effects of hydrocortisone, prednisone and dexamethasone on human pituitary-adrenal function. Am J Med. 1977;63(2):200–7. doi: 10.1016/0002-9343(77)90233-9.
    1. Chrousos GP, Pavlaki AN, Magiakou MA, et al. Glucocorticoid therapy and adrenal suppression. In: De Groot LJ, Chrousos G, Dungan K, et al., editors. Endotext. South Dartmouth (MA): , Inc.; 2000.
    1. Emich S, Richling B, McCoy MR, et al. The efficacy of dexamethasone on reduction in the reoperation rate of chronic subdural haematoma—the DRESH study: straightforward study protocol for a randomized controlled trial. Trials. 2014;15:6. doi: 10.1186/1745-6215-15-6.
    1. Hutchinson PJ. Protocol 15PRT/5650: A randomised, double blind, placebo-controlled trial of a 2-week course of dexamethasone for adult patients with symptomatic chronic subdural haematoma (Dex-CSDH trial)—ISRCTN80782810 [Internet]. Available from .
    1. World Health Organization International Clinical Trials Registry (WHO-ICTRP). . (version 3.3, Accessed 03 Oct 2016).
    1. Araujo FA, Rocha MA, Mendes JB, et al. Atorvastatin inhibits inflammatory angiogenesis in mice through down regulation of VEGF, TNF-alpha and TGF-beta1. Biomed Pharmacother. 2010;64:29–34. doi: 10.1016/j.biopha.2009.03.003.
    1. Dulak J, Loboda A, Jazwa A, et al. Atorvastatin affects several angiogenic mediators in human endothelial cells. Endothelium. 2005;12(5-6):233–41. doi: 10.1080/10623320500476559.
    1. Wang D, Li T, Tian Y, et al. Effects of atorvastatin on chronic subdural hematoma: a preliminary report from three medical centers. J Neurol Sci. 2014;336(1):237–42. doi: 10.1016/j.jns.2013.11.005.
    1. Xu M, Chen P, Zhu X, et al. Effects of atorvastatin on conservative and surgical treatments of chronic subdural hematoma in patients. World Neurosurg. 2016;91:23–8. doi: 10.1016/j.wneu.2016.03.067.
    1. Chan DY, Chan DT, Sun TF, et al. The use of atorvastatin for chronic subdural haematoma: a retrospective cohort comparison study. Br J Neurosurg. 2017;31(1):72–7. doi: 10.1080/02688697.2016.1208806.
    1. Liu H, Liu Z, Liu Y et al. Effect of atorvastatin on resolution of chronic subdural hematoma: a prospective observational study [RETRACTED]. J Neurosurg. 2016;1-10. [Epub ahead of print].
    1. Liu H. Retraction: effect of atorvastatin on resolution of chronic subdural hematoma: a prospective observational study. J Neurosurg. 2017;126(2):651. doi: 10.3171/2016.10.JNS151991r.
    1. Liu H, Luo Z, Liu Z, et al. Atorvastatin may attenuate recurrence of chronic subdural hematoma. Front Neurosci. 2016;10:303.
    1. Frontiers Editorial Office Retraction: Atorvastatin may attenuate recurrence of chronic subdural hematoma. Front Neurosci. 2016;10:465.
    1. Jiang R, Wang D, Poon WS, et al. Effect of ATorvastatin On Chronic subdural Haematoma (ATOCH): a study protocol for a randomized controlled trial. Trials. 2015;16:528. doi: 10.1186/s13063-015-1045-y.
    1. da Silva AR, Fraga-Silva RA, Stergiopulos N, et al. Update on the role of angiotensin in the pathophysiology of coronary atherothrombosis. Eur J Clin Invest. 2015;45(3):274–87. doi: 10.1111/eci.12401.
    1. Weigel R, Hohenstein A, Schlickum L, et al. Angiotensin converting enzyme inhibition for arterial hypertension reduces the risk of recurrence in patients with chronic subdural hematoma possibly by an antiangiogenic mechanism. Neurosurgery. 2007;61(4):788–92. doi: 10.1227/01.NEU.0000298907.56012.E8.
    1. Poulsen FR, Munthe S, Søe M, et al. Perindopril and residual chronic subdural hematoma volumes six weeks after burr hole surgery: a randomized trial. Clin Neurol Neurosurg. 2014;123:4–8. doi: 10.1016/j.clineuro.2014.05.003.
    1. CRASH-2 trial collaborators. Shakur H, Roberts I, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32. doi: 10.1016/S0140-6736(10)60835-5.
    1. Kageyama H, Toyooka T, Tsuzuki N, et al. Nonsurgical treatment of chronic 33 subdural hematoma with tranexamic acid. J Neurosurg. 2013;119(2):332–7. doi: 10.3171/2013.3.JNS122162.
    1. Iorio-Morin C, Blanchard J, Richer M, et al. Tranexamic Acid in Chronic Subdural Hematomas (TRACS): study protocol for a randomized controlled trial. Trials. 2016;17(1):235. doi: 10.1186/s13063-016-1358-5.

Source: PubMed

Подписаться