NF-κB-Mediated Inflammation in the Pathogenesis of Intracranial Aneurysm and Subarachnoid Hemorrhage. Does Autophagy Play a Role?

Elzbieta Pawlowska, Joanna Szczepanska, Karol Wisniewski, Paulina Tokarz, Dariusz J Jaskólski, Janusz Blasiak, Elzbieta Pawlowska, Joanna Szczepanska, Karol Wisniewski, Paulina Tokarz, Dariusz J Jaskólski, Janusz Blasiak

Abstract

The rupture of saccular intracranial aneurysms (IA) is the commonest cause of non-traumatic subarachnoid hemorrhage (SAH)—the most serious form of stroke with a high mortality rate. Aneurysm walls are usually characterized by an active inflammatory response, and NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) has been identified as the main transcription factor regulating the induction of inflammation-related genes in IA lesions. This transcription factor has also been related to IA rupture and resulting SAH. We and others have shown that autophagy interacts with inflammation in many diseases, but there is no information of such interplay in IA. Moreover, NF-κB, which is a pivotal factor controlling inflammation, is regulated by autophagy-related proteins, and autophagy is regulated by NF-κB signaling. It was also shown that autophagy mediates the normal functioning of vessels, so its disturbance can be associated with vessel-related disorders. Early brain injury, delayed brain injury, and associated cerebral vasospasm are among the most serious consequences of IA rupture and are associated with impaired function of the autophagy⁻lysosomal system. Further studies on the role of the interplay between autophagy and NF-κB-mediated inflammation in IA can help to better understand IA pathogenesis and to identify IA patients with an increased SAH risk.

Keywords: NF-κB; autophagy; delayed brain injury; early brain injury; inflammation; intracranial aneurysm; subarachnoid hemorrhage.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Molecular mechanism of intracranial aneurysm (IA) growth and rupture. Neovascularization (dashed thin red lines) of the vasa vasorum (solid thin red lines) in vascular smooth muscle cells (VSMCs) enables macrophages and other inflammatory cells to penetrate the vessel wall through the layer of endothelial cells (ECs) and secrete substances, mostly proteases, thus thinning and weakening the wall. Such structure of the vessel can rupture, resulting in subarachnoid hemorrhage (SAH), but a trigger, mostly unidentified, is needed to initiate this effect.
Figure 2
Figure 2
Mechanism of IA formation, progression, and rupture. Hemodynamic stress in a blood vessel stimulates inflammation in the endothelial cells (ECs), which promotes lamina degradation and evokes changes in vascular smooth muscle cells (VSMCs), including inflammation, neovascularization and matrix remodeling, which together modify the properties of the blood vessel wall. Permanent inflammation leads to the degeneration of VSMCs, resulting in thinning of the VSMC layers, increase in their fragility, and finally in IA rupture. Red dashed lines denote vasa vasorum, black dashed lines: destroyed lamina, red ovals represent blood cells.
Figure 3
Figure 3
NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) can be activated in a canonical (left) or non-canonical (right) pathway to stimulate or repress the expression of genes involved in the regulation of cellular response to stress, immune response, and inflammation. Either pathway is initiated by a ligand bound by its receptor. Some autophagy proteins can be related to both pathways, as discussed in Section 4. This figure is a simplified representation only and does not contain many important details. IKB (nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor); IKK: IκB kinase; mTOR: mammalian target of rapamycin; NIK: NF-κB-inducing kinase; TNFR: tumor necrosis factor receptor; ROS: reactive oxygen species. Subunits of NF-κB are shaded with the same, light fiolet color. Sharp arrows represent stimulation/induction, while blunt arrows: inhibition/downregulation, dashed oval: the nucleus.
Figure 4
Figure 4
Molecular mechanism of intracranial aneurysm (IA) formation and progression. A wall shear stress can be an initial trigger in IA formation. This stress can result in some fragile sites (Figure 1) to which macrophages can be recruited by MCP-1 (monocyte chemoattractant protein 1), which is expressed after NF-κB activation, resulting also in the expression of other pro-inflammatory proteins, including COX-2 and PGE-2, in endothelial cells (ECs). Macrophages, which adhere to ECs with the involvement of VCAM-1 protein, find their way to the vessel wall through new vasa vasorum, secrete other pro-inflammatory proteins, including TNF-α, IL-1β, and matrix remodeling proteins such as matrix metalloproteinases MMP-2 and MMP-9. NF-κB activation is mediated by IKK (IκB kinase) and NIK (NF-κB-inducing kinase) proteins, whose activity is regulated by autophagy. The concerted action of these proteins can result in a further weakening of the wall structure and, eventually, in its rupture, but the action of some, yet unidentified factors, can be the final trigger of IA rupture. Black and red solid/dashed lines denote normal/disrupted lamina and vasa vasorum, respectively.
Figure 5
Figure 5
The inflammasome and the interplay between autophagy and NF-κB-mediated inflammation. See the text for more details. PYCARD (apoptosis-associated speck-like protein containing a caspase recruitment domain); DAMP: damage-associated molecular pattern; IKK: IκB kinase; IL: interleukin; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; NIK: NF-κB-inducing kinase; NLRP3: NLR family pyrin domain containing 3; PAMP: pathogen-associated pattern; TLR4: Toll-like receptor 4.
Figure 6
Figure 6
Macroautophagy dependent on mTOR (mammalian target of rapamycin) can be induced by a lack of nutrients, which leads to the activation of the ULK1 complex, containing UKL1/2, FIP200, ATG13, and ATG101, that is inhibited by the mTOR complex in normal conditions. This complex, with the involvement of Beclin 1, supports the formation of an isolation membrane (phagophore), which encircles the cargo, consisting of damaged and no longer needed cellular components, to form an autophagosome, a double-membrane vehicle which encloses the cargo. The process of autophagosome formation is mediated by several proteins, including LC3, and p62 (SQSTM1), which are essential for autophagy, and involves phospholipids, including phosphatidylethanoamine (PE). The autophagosome fuses with the lysosome forming the autolysosome, in which degradation and recycling of the cargo occurs. Sharp arrows denote stimulation/induction, while blunt arrows: inhibition/downregulation; an X mark denotes abolishing of the inhibitory action of mTOR.
Figure 7
Figure 7
Autophagy in cerebral vessel walls. Damage to endothelial cells (ECs), following a shear stress, can result in pro-death autophagy activation, which increases the consequence of the damage because of a proapoptotic effect and other mechanisms. In addition, disturbances in pro-life autophagy may support the premature senescence of vascular smooth muscle cells (VSMCs), leading to their inability to replace damaged cells.
Figure 8
Figure 8
Involvement of autophagy in subarachnoid hemorrhage (SAH) resulted from rupture of an intracranial aneurysm and its consequent brain injury. Impaired pro-life autophagy can lead to the expansion of damage in endothelial cells (ECs) and vascular muscle smooth cells, by supporting the senescence of these cells and an antiapoptotic effect, which can lead to early brain injury (EBI). Pro-death autophagy can lead to cell death and thinning of EC and VSMC layers and thus participate in IA rupture. Cerebral vasospasm can be associated with delayed brain injury (DBI) after SAH, and autophagy can reduce this effect. Red dashed lines: vasa vasorum, black dashed lines: destroyed lamina.

References

    1. Berge J., Blanco P., Rooryck C., Boursier R., Marnat G., Gariel F., Wavasseur T., Desal H., Dousset V. Understanding flow patterns and inflammatory status in intracranial aneurysms: Towards a personalized medicine. J. Neuroradiol. 2016;43:141–147. doi: 10.1016/j.neurad.2015.09.005.
    1. Campi A., Ramzi N., Molyneux A.J., Summers P.E., Kerr R.S., Sneade M., Yarnold J.A., Rischmiller J., Byrne J.V. Retreatment of ruptured cerebral aneurysms in patients randomized by coiling or clipping in the International Subarachnoid Aneurysm Trial (ISAT) Stroke. 2007;38:1538–1544. doi: 10.1161/STROKEAHA.106.466987.
    1. Iihara K., Murao K., Sakai N., Soeda A., Ishibashi-Ueda H., Yutani C., Yamada N., Nagata I. Continued growth of and increased symptoms from a thrombosed giant aneurysm of the vertebral artery after complete endovascular occlusion and trapping: The role of vasa vasorum. Case report. J. Neurosurg. 2003;98:407–413. doi: 10.3171/jns.2003.98.2.0407.
    1. Wang Z., Shi X.Y., Yin J., Zuo G., Zhang J., Chen G. Role of autophagy in early brain injury after experimental subarachnoid hemorrhage. J. Mol. Neurosci. 2012;46:192–202. doi: 10.1007/s12031-011-9575-6.
    1. Zhang Y.B., Li S.X., Chen X.P., Yang L., Zhang Y.G., Liu R., Tao L.Y. Autophagy is activated and might protect neurons from degeneration after traumatic brain injury. Neurosci. Bull. 2008;24:143–149. doi: 10.1007/s12264-008-1108-0.
    1. He Y., Wan S., Hua Y., Keep R.F., Xi G. Autophagy after experimental intracerebral hemorrhage. J. Cereb. Blood Flow Metab. 2008;28:897–905. doi: 10.1038/sj.jcbfm.9600578.
    1. Sehba F.A., Hou J., Pluta R.M., Zhang J.H. The importance of early brain injury after subarachnoid hemorrhage. Prog. Neurobiol. 2012;97:14–37. doi: 10.1016/j.pneurobio.2012.02.003.
    1. Wu H., Niu H., Wu C., Li Y., Wang K., Zhang J., Wang Y., Yang S. The autophagy-lysosomal system in subarachnoid haemorrhage. J. Cell. Mol. Med. 2016;20:1770–1778. doi: 10.1111/jcmm.12855.
    1. Chalouhi N., Ali M.S., Jabbour P.M., Tjoumakaris S.I., Gonzalez L.F., Rosenwasser R.H., Koch W.J., Dumont A.S. Biology of intracranial aneurysms: Role of inflammation. J. Cereb. Blood Flow Metab. 2012;32:1659–1676. doi: 10.1038/jcbfm.2012.84.
    1. Frosen J., Piippo A., Paetau A., Kangasniemi M., Niemela M., Hernesniemi J., Jaaskelainen J. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: Histological analysis of 24 unruptured and 42 ruptured cases. Stroke. 2004;35:2287–2293. doi: 10.1161/01.STR.0000140636.30204.da.
    1. Tromp G., Weinsheimer S., Ronkainen A., Kuivaniemi H. Molecular basis and genetic predisposition to intracranial aneurysm. Ann. Med. 2014;46:597–606. doi: 10.3109/07853890.2014.949299.
    1. Moulton K.S., Vakili K., Zurakowski D., Soliman M., Butterfield C., Sylvin E., Lo K.M., Gillies S., Javaherian K., Folkman J. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc. Natl. Acad. Sci. USA. 2003;100:4736–4741. doi: 10.1073/pnas.0730843100.
    1. Kanematsu Y., Kanematsu M., Kurihara C., Tada Y., Tsou T.L., van Rooijen N., Lawton M.T., Young W.L., Liang E.I., Nuki Y., et al. Critical roles of macrophages in the formation of intracranial aneurysm. Stroke. 2011;42:173–178. doi: 10.1161/STROKEAHA.110.590976.
    1. Krings T., Piske R.L., Lasjaunias P.L. Intracranial arterial aneurysm vasculopathies: Targeting the outer vessel wall. Neuroradiology. 2005;47:931–937. doi: 10.1007/s00234-005-1438-9.
    1. Li S., Tian Y., Huang X., Zhang Y., Wang D., Wei H., Dong J., Jiang R., Zhang J. Intravenous transfusion of endothelial colony-forming cells attenuates vascular degeneration after cerebral aneurysm induction. Brain Res. 2014;1593:65–75. doi: 10.1016/j.brainres.2014.09.077.
    1. Marbacher S., Marjamaa J., Bradacova K., von Gunten M., Honkanen P., Abo-Ramadan U., Hernesniemi J., Niemela M., Frosen J. Loss of mural cells leads to wall degeneration, aneurysm growth, and eventual rupture in a rat aneurysm model. Stroke. 2014;45:248–254. doi: 10.1161/STROKEAHA.113.002745.
    1. Nakatomi H., Segawa H., Kurata A., Shiokawa Y., Nagata K., Kamiyama H., Ueki K., Kirino T. Clinicopathological study of intracranial fusiform and dolichoectatic aneurysms: Insight on the mechanism of growth. Stroke. 2000;31:896–900. doi: 10.1161/01.STR.31.4.896.
    1. Ollikainen E., Tulamo R., Frosen J., Lehti S., Honkanen P., Hernesniemi J., Niemela M., Kovanen P.T. Mast cells, neovascularization, and microhemorrhages are associated with saccular intracranial artery aneurysm wall remodeling. J. Neuropathol. Exp. Neurol. 2014;73:855–864. doi: 10.1097/NEN.0000000000000105.
    1. Kataoka K., Taneda M., Asai T., Kinoshita A., Ito M., Kuroda R. Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke. 1999;30:1396–1401. doi: 10.1161/01.STR.30.7.1396.
    1. Fennell V.S., Kalani M.Y., Atwal G., Martirosyan N.L., Spetzler R.F. Biology of Saccular Cerebral Aneurysms: A Review of Current Understanding and Future Directions. Front. Surg. 2016;3:43. doi: 10.3389/fsurg.2016.00043.
    1. Serrone J.C., Maekawa H., Tjahjadi M., Hernesniemi J. Aneurysmal subarachnoid hemorrhage: Pathobiology, current treatment and future directions. Expert Rev. Neurother. 2015;15:367–380. doi: 10.1586/14737175.2015.1018892.
    1. Wei H., Mao Q., Liu L., Xu Y., Chen J., Jiang R., Yin L., Fan Y., Chopp M., Dong J., et al. Changes and function of circulating endothelial progenitor cells in patients with cerebral aneurysm. J. Neurosci. Res. 2011;89:1822–1828. doi: 10.1002/jnr.22696.
    1. Sen R., Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986;46:705–716. doi: 10.1016/0092-8674(86)90346-6.
    1. Mora E., Guglielmotti A., Biondi G., Sassone-Corsi P. Bindarit: An anti-inflammatory small molecule that modulates the NFκB pathway. Cell Cycle. 2012;11:159–169. doi: 10.4161/cc.11.1.18559.
    1. Ghosh S., Dass J.F. Study of pathway cross-talk interactions with NF-κB leading to its activation via ubiquitination or phosphorylation: A brief review. Gene. 2016;584:97–109. doi: 10.1016/j.gene.2016.03.008.
    1. Noort A.R., Tak P.P., Tas S.W. Non-canonical NF-κB signaling in rheumatoid arthritis: Dr. Jekyll and Mr. Hyde? Arthritis Res. Ther. 2015;17:15. doi: 10.1186/s13075-015-0527-3.
    1. Pujari R., Hunte R., Khan W.N., Shembade N. A20-mediated negative regulation of canonical NF-κB signaling pathway. Immunol. Res. 2013;57:166–171. doi: 10.1007/s12026-013-8463-2.
    1. Hellweg C.E. The Nuclear Factor κB pathway: A link to the immune system in the radiation response. Cancer Lett. 2015;368:275–289. doi: 10.1016/j.canlet.2015.02.019.
    1. Israel A. The IKK complex, a central regulator of NF-κB activation. Cold Spring Harb. Perspect. Biol. 2010;2:a000158. doi: 10.1101/cshperspect.a000158.
    1. Chaturvedi M.M., Sung B., Yadav V.R., Kannappan R., Aggarwal B.B. NF-κB addiction and its role in cancer: ‘one size does not fit all’. Oncogene. 2011;30:1615–1630. doi: 10.1038/onc.2010.566.
    1. Perkins N.D. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 2007;8:49–62. doi: 10.1038/nrm2083.
    1. Espinosa L., Bigas A., Mulero M.C. Alternative nuclear functions for NF-κB family members. Am. J. Cancer Res. 2011;1:446–459.
    1. Thu Y.M., Richmond A. NF-κB inducing kinase: A key regulator in the immune system and in cancer. Cytokine Growth Factor Rev. 2010;21:213–226. doi: 10.1016/j.cytogfr.2010.06.002.
    1. Aoki T., Kataoka H., Ishibashi R., Nozaki K., Egashira K., Hashimoto N. Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke. 2009;40:942–951. doi: 10.1161/STROKEAHA.108.532556.
    1. Moriwaki T., Takagi Y., Sadamasa N., Aoki T., Nozaki K., Hashimoto N. Impaired progression of cerebral aneurysms in interleukin-1β-deficient mice. Stroke. 2006;37:900–905. doi: 10.1161/01.STR.0000204028.39783.d9.
    1. Sadamasa N., Nozaki K., Kita-Matsuo H., Saito S., Moriwaki T., Aoki T., Kawarazaki S., Kataoka H., Takagi Y., Ishikawa M., et al. Gene expression during the development of experimentally induced cerebral aneurysms. J. Vasc. Res. 2008;45:343–349. doi: 10.1159/000119200.
    1. Sadamasa N., Nozaki K., Takagi Y., Moriwaki T., Kawanabe Y., Ishikawa M., Hashimoto N. Cerebral aneurysm progression suppressed by blockage of endothelin B receptor. J. Neurosurg. 2007;106:330–336. doi: 10.3171/jns.2007.106.2.330.
    1. Tronc F., Mallat Z., Lehoux S., Wassef M., Esposito B., Tedgui A. Role of matrix metalloproteinases in blood flow-induced arterial enlargement: Interaction with NO. Arterioscler. Thromb. Vasc. Biol. 2000;20:E120–E126. doi: 10.1161/01.ATV.20.12.e120.
    1. Owens G.K. Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity. Novartis Found. Symp. 2007;283:174–191.
    1. Aoki T., Kataoka H., Moriwaki T., Nozaki K., Hashimoto N. Role of TIMP-1 and TIMP-2 in the progression of cerebral aneurysms. Stroke. 2007;38:2337–2345. doi: 10.1161/STROKEAHA.107.481838.
    1. Jayaraman T., Paget A., Shin Y.S., Li X., Mayer J., Chaudhry H., Niimi Y., Silane M., Berenstein A. TNF-α-mediated inflammation in cerebral aneurysms: A potential link to growth and rupture. Vasc. Health Risk Manag. 2008;4:805–817. doi: 10.2147/VHRM.S2700.
    1. Aoki T., Frosen J., Fukuda M., Bando K., Shioi G., Tsuji K., Ollikainen E., Nozaki K., Laakkonen J., Narumiya S. Prostaglandin E2-EP2-NF-κB signaling in macrophages as a potential therapeutic target for intracranial aneurysms. Sci. Signal. 2017;10:eaah6037. doi: 10.1126/scisignal.aah6037.
    1. Frosen J., Tulamo R., Heikura T., Sammalkorpi S., Niemela M., Hernesniemi J., Levonen A.L., Horkko S., Yla-Herttuala S. Lipid accumulation, lipid oxidation, and low plasma levels of acquired antibodies against oxidized lipids associate with degeneration and rupture of the intracranial aneurysm wall. Acta Neuropathol. Commun. 2013;1:71. doi: 10.1186/2051-5960-1-71.
    1. Kurki M.I., Hakkinen S.K., Frosen J., Tulamo R., von und zu Fraunberg M., Wong G., Tromp G., Niemela M., Hernesniemi J., Jaaskelainen J.E., et al. Upregulated signaling pathways in ruptured human saccular intracranial aneurysm wall: An emerging regulative role of Toll-like receptor signaling and nuclear factor-κB, hypoxia-inducible factor-1A, and ETS transcription factors. Neurosurgery. 2011;68:1667–1675. doi: 10.1227/NEU.0b013e318210f001.
    1. Wang Z., Kolega J., Hoi Y., Gao L., Swartz D.D., Levy E.I., Mocco J., Meng H. Molecular alterations associated with aneurysmal remodeling are localized in the high hemodynamic stress region of a created carotid bifurcation. Neurosurgery. 2009;65:169–177. doi: 10.1227/01.NEU.0000343541.85713.01.
    1. Aoki T., Kataoka H., Ishibashi R., Nozaki K., Morishita R., Hashimoto N. Reduced collagen biosynthesis is the hallmark of cerebral aneurysm: Contribution of interleukin-1β and nuclear factor-κB. Arterioscler. Thromb. Vasc. Biol. 2009;29:1080–1086. doi: 10.1161/ATVBAHA.108.180760.
    1. Chyatte D., Bruno G., Desai S., Todor D.R. Inflammation and intracranial aneurysms. Neurosurgery. 1999;45:1137–1146. doi: 10.1097/00006123-199911000-00024.
    1. Aoki T., Kataoka H., Shimamura M., Nakagami H., Wakayama K., Moriwaki T., Ishibashi R., Nozaki K., Morishita R., Hashimoto N. NF-κB is a key mediator of cerebral aneurysm formation. Circulation. 2007;116:2830–2840. doi: 10.1161/CIRCULATIONAHA.107.728303.
    1. Kadirvel R., Ding Y.H., Dai D., Lewis D.A., Raghavakaimal S., Cloft H.J., Kallmes D.F. Gene expression profiling of experimental saccular aneurysms using deoxyribonucleic acid microarrays. Ann. Neurosci. 2014;21:108. doi: 10.5214/ans.0972.7531.210307.
    1. Perkins N.D. The diverse and complex roles of NF-κB subunits in cancer. Nat. Rev. Cancer. 2012;12:121–132. doi: 10.1038/nrc3204.
    1. Lee N.K., Lee S.Y. Modulation of life and death by the tumor necrosis factor receptor-associated factors (TRAFs) J. Biochem. Mol. Biol. 2002;35:61–66. doi: 10.5483/BMBRep.2002.35.1.061.
    1. Shi C.S., Kehrl J.H. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci. Signal. 2010;3:ra42. doi: 10.1126/scisignal.2000751.
    1. Vural A., Kehrl J.H. Autophagy in macrophages: Impacting inflammation and bacterial infection. Scientifica. 2014;2014:825463. doi: 10.1155/2014/825463.
    1. Pietrocola F., Izzo V., Niso-Santano M., Vacchelli E., Galluzzi L., Maiuri M.C., Kroemer G. Regulation of autophagy by stress-responsive transcription factors. Semin. Cancer Biol. 2013;23:310–322. doi: 10.1016/j.semcancer.2013.05.008.
    1. Nivon M., Richet E., Codogno P., Arrigo A.P., Kretz-Remy C. Autophagy activation by NFκB is essential for cell survival after heat shock. Autophagy. 2009;5:766–783. doi: 10.4161/auto.8788.
    1. Nivon M., Abou-Samra M., Richet E., Guyot B., Arrigo A.P., Kretz-Remy C. NF-κB regulates protein quality control after heat stress through modulation of the BAG3-HspB8 complex. J. Cell Sci. 2012;125:1141–1151. doi: 10.1242/jcs.091041.
    1. Nivon M., Fort L., Muller P., Richet E., Simon S., Guey B., Fournier M., Arrigo A.P., Hetz C., Atkin J.D., et al. NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation. Mol. Biol. Cell. 2016;27:1712–1727. doi: 10.1091/mbc.E15-12-0835.
    1. Copetti T., Bertoli C., Dalla E., Demarchi F., Schneider C. p65/RelA modulates BECN1 transcription and autophagy. Mol. Cell. Biol. 2009;29:2594–2608. doi: 10.1128/MCB.01396-08.
    1. Copetti T., Demarchi F., Schneider C. p65/RelA binds and activates the beclin 1 promoter. Autophagy. 2009;5:858–859. doi: 10.4161/auto.8822.
    1. Baldwin A.S. Regulation of cell death and autophagy by IKK and NF-κB: Critical mechanisms in immune function and cancer. Immunol. Rev. 2012;246:327–345. doi: 10.1111/j.1600-065X.2012.01095.x.
    1. Criollo A., Chereau F., Malik S.A., Niso-Santano M., Marino G., Galluzzi L., Maiuri M.C., Baud V., Kroemer G. Autophagy is required for the activation of NFκB. Cell Cycle. 2012;11:194–199. doi: 10.4161/cc.11.1.18669.
    1. Hsieh S.L., Chen C.T., Wang J.J., Kuo Y.H., Li C.C., Hsieh L.C., Wu C.C. Sedanolide induces autophagy through the PI3K, p53 and NF-κB signaling pathways in human liver cancer cells. Int. J. Oncol. 2015;47:2240–2246. doi: 10.3892/ijo.2015.3206.
    1. Khan S., Jena G., Tikoo K., Kumar V. Valproate attenuates the proteinuria, podocyte and renal injury by facilitating autophagy and inactivation of NF-κB/iNOS signaling in diabetic rat. Biochimie. 2015;110:1–16. doi: 10.1016/j.biochi.2014.12.015.
    1. Van der Vaart M., Korbee C.J., Lamers G.E., Tengeler A.C., Hosseini R., Haks M.C., Ottenhoff T.H., Spaink H.P., Meijer A.H. The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLR-MYD88 to autophagic defense [corrected] Cell Host Microbe. 2014;15:753–767. doi: 10.1016/j.chom.2014.05.005.
    1. Wang Y., Dong X.X., Cao Y., Liang Z.Q., Han R., Wu J.C., Gu Z.L., Qin Z.H. p53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms. Eur. J. Neurosci. 2009;30:2258–2270. doi: 10.1111/j.1460-9568.2009.07025.x.
    1. Boyd J.M., Malstrom S., Subramanian T., Venkatesh L.K., Schaeper U., Elangovan B., D’Sa-Eipper C., Chinnadurai G. Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell. 1994;79:1121. doi: 10.1016/0092-8674(94)90202-X.
    1. Chinnadurai G., Vijayalingam S., Gibson S.B. BNIP3 subfamily BH3-only proteins: Mitochondrial stress sensors in normal and pathological functions. Oncogene. 2008;27:S114–S127. doi: 10.1038/onc.2009.49.
    1. Baetz D., Regula K.M., Ens K., Shaw J., Kothari S., Yurkova N., Kirshenbaum L.A. Nuclear factor-κB-mediated cell survival involves transcriptional silencing of the mitochondrial death gene BNIP3 in ventricular myocytes. Circulation. 2005;112:3777–3785. doi: 10.1161/CIRCULATIONAHA.105.573899.
    1. Shaw J., Zhang T., Rzeszutek M., Yurkova N., Baetz D., Davie J.R., Kirshenbaum L.A. Transcriptional silencing of the death gene BNIP3 by cooperative action of NF-κB and histone deacetylase 1 in ventricular myocytes. Circ. Res. 2006;99:1347–1354. doi: 10.1161/01.RES.0000251744.06138.50.
    1. Herrero-Martin G., Hoyer-Hansen M., Garcia-Garcia C., Fumarola C., Farkas T., Lopez-Rivas A., Jaattela M. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 2009;28:677–685. doi: 10.1038/emboj.2009.8.
    1. Trocoli A., Djavaheri-Mergny M. The complex interplay between autophagy and NF-κB signaling pathways in cancer cells. Am. J. Cancer Res. 2011;1:629–649.
    1. Schroder K., Tschopp J. The inflammasomes. Cell. 2010;140:821–832. doi: 10.1016/j.cell.2010.01.040.
    1. Rathinam V.A., Fitzgerald K.A. Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell. 2016;165:792–800. doi: 10.1016/j.cell.2016.03.046.
    1. Schroder K., Zhou R., Tschopp J. The NLRP3 inflammasome: A sensor for metabolic danger? Science. 2010;327:296–300. doi: 10.1126/science.1184003.
    1. Tschopp J., Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 2010;10:210–215. doi: 10.1038/nri2725.
    1. Baum J.L., Niedra R., Davis C., Yue B.Y. Mass culture of human corneal endothelial cells. Arch. Ophthalmol. 1979;97:1136–1140. doi: 10.1001/archopht.1979.01020010590018.
    1. Yuk J.M., Jo E.K. Crosstalk between autophagy and inflammasomes. Mol. Cells. 2013;36:393–399. doi: 10.1007/s10059-013-0298-0.
    1. Deretic V. Autophagy: An emerging immunological paradigm. J. Immunol. 2012;189:15–20. doi: 10.4049/jimmunol.1102108.
    1. Levine B., Deretic V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat. Rev. Immunol. 2007;7:767–777. doi: 10.1038/nri2161.
    1. Levine B., Mizushima N., Virgin H.W. Autophagy in immunity and inflammation. Nature. 2011;469:323–335. doi: 10.1038/nature09782.
    1. Qing G., Yan P., Qu Z., Liu H., Xiao G. Hsp90 regulates processing of NF-κB2 p100 involving protection of NF-κB-inducing kinase (NIK) from autophagy-mediated degradation. Cell Res. 2007;17:520–530. doi: 10.1038/cr.2007.47.
    1. Gao H., Lin L., Haq I.U., Zeng S.M. Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells. Biochem. Biophys. Res. Commun. 2016;473:311–3446. doi: 10.1016/j.bbrc.2016.03.101.
    1. Li D.D., Wang L.L., Deng R., Tang J., Shen Y., Guo J.F., Wang Y., Xia L.P., Feng G.K., Liu Q.Q., et al. The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene. 2009;28:886–898. doi: 10.1038/onc.2008.441.
    1. Mizushima N., Komatsu M. Autophagy: Renovation of cells and tissues. Cell. 2011;147:728–741. doi: 10.1016/j.cell.2011.10.026.
    1. Gao L., Jauregui C.E., Teng Y. Targeting autophagy as a strategy for drug discovery and therapeutic modulation. Future Med. Chem. 2017;9:335–345. doi: 10.4155/fmc-2016-0210.
    1. Sarkar S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: Autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem. Soc. Trans. 2013;41:1103–1130. doi: 10.1042/BST20130134.
    1. Sarkar S., Floto R.A., Berger Z., Imarisio S., Cordenier A., Pasco M., Cook L.J., Rubinsztein D.C. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 2005;170:1101–1111. doi: 10.1083/jcb.200504035.
    1. Sarkar S., Ravikumar B., Floto R.A., Rubinsztein D.C. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ. 2009;16:46–56. doi: 10.1038/cdd.2008.110.
    1. De Meyer G.R., Grootaert M.O., Michiels C.F., Kurdi A., Schrijvers D.M., Martinet W. Autophagy in vascular disease. Circ. Res. 2015;116:468–479. doi: 10.1161/CIRCRESAHA.116.303804.
    1. Fang L., Li X., Zhong Y., Yu J., Yu L., Dai H., Yan M. Autophagy protects human brain microvascular endothelial cells against methylglyoxal-induced injuries, reproducible in a cerebral ischemic model in diabetic rats. J. Neurochem. 2015;135:431–440. doi: 10.1111/jnc.13277.
    1. Li H., Li J., Li Y., Singh P., Cao L., Xu L.J., Li D., Wang Y., Xie Z., Gui Y., et al. Sonic hedgehog promotes autophagy of vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 2012;303:H1319–H1331. doi: 10.1152/ajpheart.00160.2012.
    1. Salabei J.K., Cummins T.D., Singh M., Jones S.P., Bhatnagar A., Hill B.G. PDGF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress. Biochem. J. 2013;451:375–388. doi: 10.1042/BJ20121344.
    1. Salabei J.K., Hill B.G. Autophagic regulation of smooth muscle cell biology. Redox Biol. 2015;4:97–103. doi: 10.1016/j.redox.2014.12.007.
    1. Grootaert M.O., da Costa Martins P.A., Bitsch N., Pintelon I., De Meyer G.R., Martinet W., Schrijvers D.M. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy. 2015;11:2014–2032. doi: 10.1080/15548627.2015.1096485.
    1. Serruys P.W., Regar E., Carter A.J. Rapamycin eluting stent: The onset of a new era in interventional cardiology. Heart. 2002;87:305–307. doi: 10.1136/heart.87.4.305.
    1. Komatsu M., Waguri S., Koike M., Sou Y.S., Ueno T., Hara T., Mizushima N., Iwata J., Ezaki J., Murata S., et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131:1149–1163. doi: 10.1016/j.cell.2007.10.035.
    1. Chen Y., Huang L., Zhang H., Diao X., Zhao S., Zhou W. Reduction in Autophagy by (−)-Epigallocatechin-3-Gallate (EGCG): A Potential Mechanism of Prevention of Mitochondrial Dysfunction after Subarachnoid Hemorrhage. Mol. Neurobiol. 2016;54:392–405. doi: 10.1007/s12035-015-9629-9.
    1. Fujii M., Yan J., Rolland W.B., Soejima Y., Caner B., Zhang J.H. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl. Stroke Res. 2013;4:432–446. doi: 10.1007/s12975-013-0257-2.
    1. Chen S., Wu H., Tang J., Zhang J., Zhang J.H. Neurovascular events after subarachnoid hemorrhage: Focusing on subcellular organelles. Acta Neurochir. Suppl. 2015;120:39–46.
    1. Jing C.H., Wang L., Liu P.P., Wu C., Ruan D., Chen G. Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience. 2012;213:144–153. doi: 10.1016/j.neuroscience.2012.03.055.
    1. Yan F., Li J., Chen J., Hu Q., Gu C., Lin W., Chen G. Endoplasmic reticulum stress is associated with neuroprotection against apoptosis via autophagy activation in a rat model of subarachnoid hemorrhage. Neurosci. Lett. 2014;563:160–165. doi: 10.1016/j.neulet.2014.01.058.
    1. Macdonald R.L. Delayed neurological deterioration after subarachnoid haemorrhage. Nat. Rev. Neurol. 2014;10:44–58. doi: 10.1038/nrneurol.2013.246.
    1. Liu Y., Cai H., Wang Z., Li J., Wang K., Yu Z., Chen G. Induction of autophagy by cystatin C: A potential mechanism for prevention of cerebral vasospasm after experimental subarachnoid hemorrhage. Eur. J. Med. Res. 2013;18:21. doi: 10.1186/2047-783X-18-21.
    1. He P., Peng Z., Luo Y., Wang L., Yu P., Deng W., An Y., Shi T., Ma D. High-throughput functional screening for autophagy-related genes and identification of TM9SF1 as an autophagosome-inducing gene. Autophagy. 2009;5:52–60. doi: 10.4161/auto.5.1.7247.
    1. Wang C., Qu B., Wang Z., Ju J., Wang Y., Wang Z., Cao P., Wang D. Proteomic identification of differentially expressed proteins in vascular wall of patients with ruptured intracranial aneurysms. Atherosclerosis. 2015;238:201–206. doi: 10.1016/j.atherosclerosis.2014.11.027.
    1. Nascimbeni A.C., Fanin M., Masiero E., Angelini C., Sandri M. Impaired autophagy contributes to muscle atrophy in glycogen storage disease type II patients. Autophagy. 2012;8:1697–1700. doi: 10.4161/auto.21691.
    1. Nascimbeni A.C., Fanin M., Masiero E., Angelini C., Sandri M. The role of autophagy in the pathogenesis of glycogen storage disease type II (GSDII) Cell Death Differ. 2012;19:1698–1708. doi: 10.1038/cdd.2012.52.
    1. Raben N., Takikita S., Pittis M.G., Bembi B., Marie S.K., Roberts A., Page L., Kishnani P.S., Schoser B.G., Chien Y.H., et al. Deconstructing Pompe disease by analyzing single muscle fibers: To see a world in a grain of sand. Autophagy. 2007;3:546–552. doi: 10.4161/auto.4591.
    1. Di Rocco M., Buzzi D., Taro M. Glycogen storage disease type II: Clinical overview. Acta Myol. 2007;26:42–44.
    1. Montagnese F., Granata F., Musumeci O., Rodolico C., Mondello S., Barca E., Cucinotta M., Ciranni A., Longo M., Toscano A. Intracranial arterial abnormalities in patients with late onset Pompe disease (LOPD) J. Inherit. Metab. Dis. 2016;39:391–398. doi: 10.1007/s10545-015-9913-x.
    1. Zhang B., Zhao Y., Liu J., Li L., Shan J., Zhao D., Yan C. Late-onset Pompe disease with complicated intracranial aneurysm: A Chinese case report. Neuropsychiatr. Dis. Treat. 2016;12:713–717. doi: 10.2147/NDT.S94892.
    1. Peric S., Fumic K., Bilic K., Reuser A., Rakocevic Stojanovic V. Rupture of the middle cerebral artery aneurysm as a presenting symptom of late-onset Pompe disease in an adult with a novel GAA gene mutation. Acta Neurol. Belg. 2014;114:165–166. doi: 10.1007/s13760-013-0265-8.
    1. Cagnazzo F., Gambacciani C., Morganti R., Perrini P. Intracranial aneurysms in patients with autosomal dominant polycystic kidney disease: Prevalence, risk of rupture, and management. A systematic review. Acta Neurochir. (Wien.) 2017;159:811–821. doi: 10.1007/s00701-017-3142-z.
    1. Niemczyk M., Gradzik M., Fliszkiewicz M., Kulesza A., Golebiowski M., Paczek L. Natural history of intracranial aneurysms in autosomal dominant polycystic kidney disease. Neurol. Neurochir. Pol. 2017;51:476–480. doi: 10.1016/j.pjnns.2017.08.007.
    1. Aguilar A. Polycystic kidney disease: Autophagy boost to treat ADPKD? Nat. Rev. Nephrol. 2017;13:134. doi: 10.1038/nrneph.2017.1.
    1. Huber T.B., Edelstein C.L., Hartleben B., Inoki K., Jiang M., Koya D., Kume S., Lieberthal W., Pallet N., Quiroga A., et al. Emerging role of autophagy in kidney function, diseases and aging. Autophagy. 2012;8:1009–1031. doi: 10.4161/auto.19821.
    1. Zhu P., Sieben C.J., Xu X., Harris P.C., Lin X. Autophagy activators suppress cystogenesis in an autosomal dominant polycystic kidney disease model. Hum. Mol. Genet. 2017;26:158–172. doi: 10.1093/hmg/ddw376.

Source: PubMed

Подписаться