Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives

Fengna Chu, Mingchao Shi, Yue Lang, Donghui Shen, Tao Jin, Jie Zhu, Li Cui, Fengna Chu, Mingchao Shi, Yue Lang, Donghui Shen, Tao Jin, Jie Zhu, Li Cui

Abstract

The gut environment and gut microbiome dysbiosis have been demonstrated to significantly influence a range of disorders in humans, including obesity, diabetes, rheumatoid arthritis, and multiple sclerosis (MS). MS is an autoimmune disease affecting the central nervous system (CNS). The etiology of MS is not clear, and it should involve both genetic and extrinsic factors. The extrinsic factors responsible for predisposition to MS remain elusive. Recent studies on MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have found that gastrointestinal microbiota may play an important role in the pathogenesis of MS/EAE. Thus, gut microbiome adjustment may be a future direction of treatment in MS. In this review, we discuss the characteristics of the gut microbiota, the connection between the brain and the gut, and the changes in gut microbiota in MS/EAE, and we explore the possibility of applying microbiota therapies in patients with MS.

Figures

Figure 1
Figure 1
The role of the gut microbiota in health and MS. The gut microbiota can affect the body's nervous system function in numerous ways, including the neural regulating pathway, the endocrine pathway-HPA axis, and the immunoregulating pathway (via lymphocyte, cytokines, chemokines, and antigens presenting effect of SCFAs). The normal microbiome has many functions: (1) maintenance of the motility and permeability of the gut; (2) synthesis and secretion of essential vitamins, such as vitamin B12, folate, vitamin K, nicotinic acid, biotin, riboflavin, pyridoxine, panthotenic acid, and thiamine; (3) maintenance of intestinal epithelial functions, such as absorption and secretion; and (4) local stimulation of the development of innate and adaptive immune systems via GALT secreting immune cells, cytokines, and IgAs. When the gut microbiota is in dysbiosis, several diseases may develop, such as MS. The pathology of MS includes increased BBB permeability, destruction of the myelin layer in the CNS, and inflammatory cell infiltration of perivascular tissues. The immunological changes of MS in the periphery are characterized by an increase in pro-inflammatory effector such as CD4+ T cells, monocytes, macrophages, inflammatory dendritic cells, and B cells and a decrease in CD8+ T cells and CD4+ CD25+ FoxP3+ Treg cells [, –90]. Patients with MS can exhibit gut microbial dysbiosis, with increases in Methanobrevibacter Akkermansia [128], Desulfovibrionaceae [132], Actinobacteria, Bifidobacterium, Streptococcus [137], Firmicutes, Euryarchaeota [133], Ruminococcus [138], Pseudomonas, Mycoplana, Haemophilus, Blautia, and Dorea [140] and decreases in Butyricimonas [128], Lachnospiraceae, Ruminococcaceae [132], Faecalibacterium, Prevotella, Anaerostipes, Clostridia XIVa and IV Clusters [137], Fusobacteria [133], Bacteroidaceae [138], C. perfringens type A [139], Parabacteroides, and Adlercreutzia [140]. BBB: blood-brain barrier; CNS: central nervous system; HPA axis: hypothalamic-pituitary-adrenal axis; SCFA: short chain fatty acids; APC: antigen presenting cell; GLAT: gut-associated lymphoid tissue; FoxP3: forkhead box 3; Treg: regulatory T cells.

References

    1. Perez-Lopez A., Behnsen J., Nuccio S. P., Raffatellu M. Mucosal immunity to pathogenic intestinal bacteria. Nature Reviews Immunology. 2016;16(3):135–148. doi: 10.1038/nri.2015.17.
    1. Reinoso Webb C., Koboziev I., Furr K. L., Grisham M. B. Protective and pro-inflammatory roles of intestinal bacteria. Pathophysiology. 2016;23(2):67–80. doi: 10.1016/j.pathophys.2016.02.002.
    1. Rosser E. C., Mauri C. A clinical update on the significance of the gut microbiota in systemic autoimmunity. Journal of Autoimmunity. 2016;74:85–93. doi: 10.1016/j.jaut.2016.06.009.
    1. Fraune S., Bosch T. C. Why bacteria matter in animal development and evolution. BioEssays. 2010;32(7):571–580. doi: 10.1002/bies.200900192.
    1. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–1023. doi: 10.1038/4441022a.
    1. Kau A. L., Ahern P. P., Griffin N. W., Goodman A. L., Gordon J. I. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327–336. doi: 10.1038/nature10213.
    1. Adrian Budhram S. P., Kremenchutzky M., Silverman M. Breaking down the gut microbiome composition in multiple sclerosis. Multiple Sclerosis Journal. 2017;23(5):628–636. doi: 10.1177/1352458516682105.
    1. Zhang X., Zhang D. Y., Jia H. J., et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nature Medicine. 2015;21(8):895–905. doi: 10.1038/nm.3914.
    1. Parashar A., Udayabanu M. Gut microbiota: implications in Parkinson’s disease. Parkinsonism & Related Disorders. 2017;38:1–7. doi: 10.1016/j.parkreldis.2017.02.002.
    1. Westfall S., Lomis N., Kahouli I., Dia S. Y., Singh S. P., Prakash S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cellular and Molecular Life Sciences. 2017;74(20):3769–3787. doi: 10.1007/s00018-017-2550-9.
    1. Galland L. The gut microbiome and the brain. Journal of Medicinal Food. 2014;17(12):1261–1272. doi: 10.1089/jmf.2014.7000.
    1. Swidsinski A., Loening-Baucke V., Lochs H., Hale L. P. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World Journal of Gastroenterology. 2005;11(8):1131–1140. doi: 10.3748/wjg.v11.i8.1131.
    1. Shahi S., Freedman S., Mangalam A. Gut microbiome in multiple sclerosis: the players involved and the roles they play. Gut Microbes. 2017;8(6):607–615. doi: 10.1080/19490976.2017.1349041.
    1. Picca A., Fanelli F., Calvani R., et al. Gut dysbiosis and muscle aging: searching for novel targets against sarcopenia. Mediators of Inflammation. 2018;2018:15. doi: 10.1155/2018/7026198.7026198
    1. Mielcarz D. W., Kasper L. H. The gut microbiome in multiple sclerosis. Current Treatment Options in Neurology. 2015;17(4):p. 18. doi: 10.1007/s11940-015-0344-7.
    1. Li J., Jia H., Cai X., et al. An integrated catalog of reference genes in the human gut microbiome. Nature Biotechnology. 2014;32(8):834–841. doi: 10.1038/nbt.2942.
    1. Hugon P., Dufour J. C., Colson P., Fournier P. E., Sallah K., Raoult D. A comprehensive repertoire of prokaryotic species identified in human beings. The Lancet Infectious Diseases. 2015;15(10):1211–1219. doi: 10.1016/S1473-3099(15)00293-5.
    1. Mowry E. M., Glenn J. D. The dynamics of the gut microbiome in multiple sclerosis in relation to disease. Neurologic Clinics. 2018;36(1):185–196. doi: 10.1016/j.ncl.2017.08.008.
    1. Blum H. E. The human microbiome. Advances in Medical Sciences. 2017;62(2):414–420. doi: 10.1016/j.advms.2017.04.005.
    1. Penders J., Thijs C., Vink C., et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118(2):511–521. doi: 10.1542/peds.2005-2824.
    1. Ghaisas S., Maher J., Kanthasamy A. Gut microbiome in health and disease: linking the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacology & Therapeutics. 2016;158:52–62. doi: 10.1016/j.pharmthera.2015.11.012.
    1. Backhed F., Roswall J., Peng Y., et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host & Microbe. 2015;17(5):690–703. doi: 10.1016/j.chom.2015.04.004.
    1. Yatsunenko T., Rey F. E., Manary M. J., et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227. doi: 10.1038/nature11053.
    1. Dominguez-Bello M. G., Costello E. K., Contreras M., et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(26):11971–11975. doi: 10.1073/pnas.1002601107.
    1. Bager P., Wohlfahrt J., Westergaard T. Caesarean delivery and risk of atopy and allergic disesase: meta-analyses. Clinical & Experimental Allergy. 2008;38(4):634–642. doi: 10.1111/j.1365-2222.2008.02939.x.
    1. Koenig J. E., Spor A., Scalfone N., et al. Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(Supplement 1):4578–4585. doi: 10.1073/pnas.1000081107.
    1. Rodriguez J. M., Murphy K., Stanton C., et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health and Disease. 2015;26, article 26050 doi: 10.3402/mehd.v26.26050.
    1. Simren M., Barbara G., Flint H. J., et al. Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut. 2013;62(1):159–176. doi: 10.1136/gutjnl-2012-302167.
    1. Dicksved J., Halfvarson J., Rosenquist M., et al. Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. The ISME Journal. 2008;2(7):716–727. doi: 10.1038/ismej.2008.37.
    1. Turnbaugh P. J., Hamady M., Yatsunenko T., et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–484. doi: 10.1038/nature07540.
    1. Erwin G., Zoetendal A. D. L. A. The host genotype affects the bacterial community in the human gastronintestinal tract. Microbial Ecology in Health and Disease. 2009;13(3):129–134. doi: 10.1080/089106001750462669.
    1. Mueller S., Saunier K., Hanisch C., et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Applied and Environmental Microbiology. 2006;72(2):1027–1033. doi: 10.1128/AEM.72.2.1027-1033.2006.
    1. Jašarević E., Morrison K. E., Bale T. L. Sex differences in the gut microbiome–brain axis across the lifespan. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016;371(1688, article 20150122) doi: 10.1098/rstb.2015.0122.
    1. Gomez A., Luckey D., Taneja V. The gut microbiome in autoimmunity: sex matters. Clinical Immunology. 2015;159(2):154–162. doi: 10.1016/j.clim.2015.04.016.
    1. Markle J. G., Frank D. N., Mortin-Toth S., et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339(6123):1084–1088. doi: 10.1126/science.1233521.
    1. Yurkovetskiy L., Burrows M., Khan A. A., et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39(2):400–412. doi: 10.1016/j.immuni.2013.08.013.
    1. David L. A., Maurice C. F., Carmody R. N., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. doi: 10.1038/nature12820.
    1. Zimmer J., Lange B., Frick J. S., et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. European Journal of Clinical Nutrition. 2012;66(1):53–60. doi: 10.1038/ejcn.2011.141.
    1. Power S. E., O'Toole P. W., Stanton C., Ross R. P., Fitzgerald G. F. Intestinal microbiota, diet and health. British Journal of Nutrition. 2014;111(03):387–402. doi: 10.1017/S0007114513002560.
    1. De Filippo C., Cavalieri D., Di Paola M., et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(33):14691–14696. doi: 10.1073/pnas.1005963107.
    1. Scott A., Sands S. T., Yankee T. M., Parker B. L., Ericsson A. C., LeVine S. M. The effect of omeprazole on the development of experimental autoimmune encephalomyelitis in c57bl/6j and sjl/j mice. BMC Research Notes. 2014;7(1):p. 605. doi: 10.1186/1756-0500-7-605.
    1. Ochoa-Reparaz J., Mielcarz D. W., Ditrio L. E., et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. The Journal of Immunology. 2009;183(10):6041–6050. doi: 10.4049/jimmunol.0900747.
    1. Biedermann L., Rogler G. The intestinal microbiota: its role in health and disease. European Journal of Pediatrics. 2015;174(2):151–167. doi: 10.1007/s00431-014-2476-2.
    1. Rezasoltani S. N. M. E., Norouzinia M., Asadzadeh A. H. The necessity of gut microbiome characterization in diseases prevention and therapy. Gastroenterology and Hepatology From Bed to Bench. 2017;10(2):150–151.
    1. LeBlanc J., Milani C., de Giori G., Sesma F., van Sinderen D., Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current Opinion in Biotechnology. 2013;24(2):160–168. doi: 10.1016/j.copbio.2012.08.005.
    1. Abou-Zeid A. A., Shehata Y. M., el-Sherbeny R. Microbial production of cobalamin (Vitamin B12) Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Zweite Naturwissenschaftliche Abteilung: Allgemeine, Landwirtschaftliche und Technische Mikrobiologie. 1973;128(3-4):285–296. doi: 10.1016/S0044-4057(73)80014-0.
    1. Pompei A., Cordisco L., Amaretti A., Zanoni S., Matteuzzi D., Rossi M. Folate production by bifidobacteria as a potential probiotic property. Applied and Environmental Microbiology. 2007;73(1):179–185. doi: 10.1128/aem.01763-06.
    1. Hill M. J. Intestinal flora and endogenous vitamin synthesis. European Journal of Cancer Prevention. 1997;6(Supplement 1):S43–S45. doi: 10.1097/00008469-199703001-00009.
    1. Correa-Oliveira R., Fachi J. L., Vieira A., Sato F. T., Vinolo M. A. Regulation of immune cell function by short-chain fatty acids. Clinical & Translational Immunology. 2016;5(4, article e73) doi: 10.1038/cti.2016.17.
    1. Gershon M. D. The enteric nervous system: a second brain. Hospital Practice. 1999;34(7):31–52. doi: 10.3810/hp.1999.07.153.
    1. Hansen M. B. The enteric nervous system I: organisation and classification. Basic & Clinical Pharmacology & Toxicology. 2003;92(3):105–113. doi: 10.1034/j.1600-0773.2003.t01-1-920301.x.
    1. Goyal R. K., Hirano I. The enteric nervous system. The New England Journal of Medicine. 1996;334(17):1106–1115. doi: 10.1056/NEJM199604253341707.
    1. Yano J. M., Yu K., Donaldson G. P., et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–276. doi: 10.1016/j.cell.2015.02.047.
    1. Crane J. D., Palanivel R., Mottillo E. P., et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nature Medicine. 2015;21(2):166–172. doi: 10.1038/nm.3766.
    1. Mayer E. A., Tillisch K., Gupta A. Gut/brain axis and the microbiota. The Journal of Clinical Investigation. 2015;125(3):926–938. doi: 10.1172/JCI76304.
    1. Weinstein L. I., Revuelta A., Pando R. H. Catecholamines and acetylcholine are key regulators of the interaction between microbes and the immune system. Annals of the New York Academy of Sciences. 2015;1351(1):39–51. doi: 10.1111/nyas.12792.
    1. Barrett E., Ross R. P., O'Toole P. W., Fitzgerald G. F., Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. Journal of Applied Microbiology. 2012;113(2):411–417. doi: 10.1111/j.1365-2672.2012.05344.x.
    1. Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathogens. 2013;9(11, article e1003726) doi: 10.1371/journal.ppat.1003726.
    1. Park A. J., Collins J., Blennerhassett P. A., et al. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterology & Motility. 2013;25(9):733–e575. doi: 10.1111/nmo.12153.
    1. Ait-Belgnaoui A., Durand H., Cartier C., et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012;37(11):1885–1895. doi: 10.1016/j.psyneuen.2012.03.024.
    1. Bellavance M. A., Rivest S. The HPA – immune axis and the immunomodulatory actions of glucocorticoids in the brain. Frontiers in Immunology. 2014;5:p. 136. doi: 10.3389/fimmu.2014.00136.
    1. Bailey M. T., Dowd S. E., Galley J. D., Hufnagle A. R., Allen R. G., Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain, Behavior, and Immunity. 2011;25(3):397–407. doi: 10.1016/j.bbi.2010.10.023.
    1. Hueston C., Deak T. The inflamed axis: the interaction between stress, hormones, and the expression of inflammatory-related genes within key structures comprising the hypothalamic–pituitary–adrenal axis. Physiology & Behavior. 2014;124:77–91. doi: 10.1016/j.physbeh.2013.10.035.
    1. Silverman M. N., Sternberg E. M. Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Annals of the New York Academy of Sciences. 2012;1261(1):55–63. doi: 10.1111/j.1749-6632.2012.06633.x.
    1. Macfarlane S., Macfarlane G. T. Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society. 2003;62(01):67–72. doi: 10.1079/PNS2002207.
    1. Louis P., Flint H. J. Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology. 2017;19(1):29–41. doi: 10.1111/1462-2920.13589.
    1. de Clercq N., Frissen M. N., Groen A. K., Nieuwdorp M. Gut microbiota and the gut-brain axis: new insights in the pathophysiology of metabolic syndrome. Psychosomatic Medicine. 2017;79(8):874–879. doi: 10.1097/psy.0000000000000495.
    1. Waldecker M., Kautenburger T., Daumann H., Busch C., Schrenk D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. The Journal of Nutritional Biochemistry. 2008;19(9):587–593. doi: 10.1016/j.jnutbio.2007.08.002.
    1. Arpaia N., Campbell C., Fan X., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–455. doi: 10.1038/nature12726.
    1. Braniste V., Al-Asmakh M., Kowal C., et al. The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine. 2014;6(263, article 263ra158) doi: 10.1126/scitranslmed.3009759.
    1. Erny D., Hrabe de Angelis A. L., Jaitin D., et al. Host microbiota constantly control maturation and function of microglia in the cns. Nature Neuroscience. 2015;18(7):965–977. doi: 10.1038/nn.4030.
    1. Maslowski K. M., Vieira A. T., Ng A., et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor gpr43. Nature. 2009;461(7268):1282–1286. doi: 10.1038/nature08530.
    1. Kadowaki A., Miyake S., Saga R., Chiba A., Mochizuki H., Yamamura T. Gut environment-induced intraepithelial autoreactive CD4+ T cells suppress central nervous system autoimmunity via LAG-3. Nature Communications. 2016;7, article 11639 doi: 10.1038/ncomms11639.
    1. Cénit M. C., Matzaraki V., Tigchelaar E. F., Zhernakova A. Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2014;1842(10):1981–1992. doi: 10.1016/j.bbadis.2014.05.023.
    1. The ENCODE Project Consortium, Birney E., Stamatoyannopoulos J. A., et al. Identification and analysis of functional elements in 1% of the human genome by the encode pilot project. Nature. 2007;447(7146):799–816. doi: 10.1038/nature05874.
    1. Petrosino J. F., Highlander S., Luna R. A., Gibbs R. A., Versalovic J. Metagenomic pyrosequencing and microbial identification. Clinical Chemistry. 2009;55(5):856–866. doi: 10.1373/clinchem.2008.107565.
    1. Chen K., Pachter L. Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Computational Biology. 2005;1(2, article e24) doi: 10.1371/journal.pcbi.0010024.
    1. Ochoa-Repáraz J., Kasper L. H. Gut microbiome and the risk factors in central nervous system autoimmunity. FEBS Letters. 2014;588(22):4214–4222. doi: 10.1016/j.febslet.2014.09.024.
    1. Wang Y., Kasper L. H. The role of microbiome in central nervous system disorders. Brain, Behavior, and Immunity. 2014;38:1–12. doi: 10.1016/j.bbi.2013.12.015.
    1. Telesford K. M., Yan W., Ochoa-Reparaz J., et al. A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39+ Foxp3+ T cells and Treg function. Gut Microbes. 2015;6(4):234–242. doi: 10.1080/19490976.2015.1056973.
    1. Clark R. B., Cervantes J. L., Maciejewski M. W., et al. Serine lipids of porphyromonas gingivalis are human and mouse toll-like receptor 2 ligands. Infection and Immunity. 2013;81(9):3479–3489. doi: 10.1128/IAI.00803-13.
    1. Dilokthornsakul P., Valuck R. J., Nair K. V., Corboy J. R., Allen R. R., Campbell J. D. Multiple sclerosis prevalence in the United States commercially insured population. Neurology. 2016;86(11):1014–1021. doi: 10.1212/WNL.0000000000002469.
    1. Kingwell E., Marriott J. J., Jette N., et al. Incidence and prevalence of multiple sclerosis in Europe: a systematic review. BMC Neurology. 2013;13(1):p. 128. doi: 10.1186/1471-2377-13-128.
    1. Dendrou C. A., Fugger L., Friese M. A. Immunopathology of multiple sclerosis. Nature Reviews Immunology. 2015;15(9):545–558. doi: 10.1038/nri3871.
    1. Gu C. Kir4.1: K+ channel illusion or reality in the autoimmune pathogenesis of multiple sclerosis. Frontiers in Molecular Neuroscience. 2016;9:p. 90. doi: 10.3389/fnmol.2016.00090.
    1. Fletcher J. M., Lalor S. J., Sweeney C. M., Tubridy N., Mills K. H. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clinical & Experimental Immunology. 2010;162(1):1–11. doi: 10.1111/j.1365-2249.2010.04143.x.
    1. Fan X., Lin C., Han J., Jiang X., Zhu J., Jin T. Follicular helper CD4+ T cells in human neuroautoimmune diseases and their animal models. Mediators of Inflammation. 2015;2015:11. doi: 10.1155/2015/638968.638968
    1. Stys P. K., Zamponi G. W., van Minnen J., Geurts J. J. Will the real multiple sclerosis please stand up? Nature Reviews Neuroscience. 2012;13(7):507–514. doi: 10.1038/nrn3275.
    1. Kuhlmann T., Ludwin S., Prat A., Antel J., Bruck W., Lassmann H. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathologica. 2017;133(1):13–24. doi: 10.1007/s00401-016-1653-y.
    1. Rangachari M., Kerfoot S. M., Arbour N., Alvarez J. I. Editorial: Lymphocytes in MS and EAE: more than just a CD4+ world. Frontiers in Immunology. 2017;8:p. 133. doi: 10.3389/fimmu.2017.00133.
    1. Chervonsky A. V. Influence of microbial environment on autoimmunity. Nature Immunology. 2010;11(1):28–35. doi: 10.1038/ni.1801.
    1. Rothhammer V., Quintana F. J. Environmental control of autoimmune inflammation in the central nervous system. Current Opinion in Immunology. 2016;43:46–53. doi: 10.1016/j.coi.2016.09.002.
    1. Bashinskaya V. V., Kulakova O. G., Boyko A. N., Favorov A. V., Favorova O. O. A review of genome-wide association studies for multiple sclerosis: classical and hypothesis-driven approaches. Human Genetics. 2015;134(11-12):1143–1162. doi: 10.1007/s00439-015-1601-2.
    1. Compston A., Coles A. Multiple sclerosis. The Lancet. 2008;372(9648):1502–1517. doi: 10.1016/S0140-6736(08)61620-7.
    1. Tao C., Simpson S., van der Mei I., et al. Higher latitude is significantly associated with an earlier age of disease onset in multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry. 2016;87(12):1343–1349. doi: 10.1136/jnnp-2016-314013.
    1. Brooks W. H., Le Dantec C., Pers J. O., Youinou P., Renaudineau Y. Epigenetics and autoimmunity. Journal of Autoimmunity. 2010;34(3):J207–J219. doi: 10.1016/j.jaut.2009.12.006.
    1. Selmaj I., Mycko M. P., Raine C. S., Selmaj K. W. The role of exosomes in cns inflammation and their involvement in multiple sclerosis. Journal of Neuroimmunology. 2017;306:1–10. doi: 10.1016/j.jneuroim.2017.02.002.
    1. Kucukali C. I., Kurtuncu M., Coban A., Cebi M., Tuzun E. Epigenetics of multiple sclerosis: an updated review. NeuroMolecular Medicine. 2015;17(2):83–96. doi: 10.1007/s12017-014-8298-6.
    1. Simpson S., Jr., Taylor B. V., van der Mei I. The role of epidemiology in ms research: past successes, current challenges and future potential. Multiple Sclerosis Journal. 2015;21(8):969–977. doi: 10.1177/1352458515574896.
    1. Fleck A.-K., Schuppan D., Wiendl H., Klotz L. Gut–cns-axis as possibility to modulate inflammatory disease activity—implications for multiple sclerosis. International Journal of Molecular Sciences. 2017;18(12, article 1526) doi: 10.3390/ijms18071526.
    1. Brenton J. N., Goldman M. D. A study of dietary modification: perceptions and attitudes of patients with multiple sclerosis. Multiple Sclerosis and Related Disorders. 2016;8:54–57. doi: 10.1016/j.msard.2016.04.009.
    1. Kasper J. J. L. H. Digesting the emerging role for the gut microbiome in central nervous system demyelination. Multiple Sclerosis Journal. 2014;20(12):1553–1559. doi: 10.1177/1352458514541579.
    1. Ly N. P., Litonjua A., Gold D. R., Celedon J. C. Gut microbiota, probiotics, and vitamin d: interrelated exposures influencing allergy, asthma, and obesity? The Journal of Allergy and Clinical Immunology. 2011;127(5):1087–1094. doi: 10.1016/j.jaci.2011.02.015.
    1. Biedermann L., Zeitz J., Mwinyi J., et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One. 2013;8(3, article e59260) doi: 10.1371/journal.pone.0059260.
    1. Rothhammer V., Mascanfroni I. D., Bunse L., et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nature Medicine. 2016;22(6):586–597. doi: 10.1038/nm.4106.
    1. Hoban A. E., Stilling R. M., Ryan F. J., et al. Regulation of prefrontal cortex myelination by the microbiota. Translational Psychiatry. 2016;6(4, article e774) doi: 10.1038/tp.2016.42.
    1. Hooper L. V., Littman D. R., Macpherson A. J. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–1273. doi: 10.1126/science.1223490.
    1. Lee Y. K., Menezes J. S., Umesaki Y., Mazmanian S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(Supplement 1):4615–4622. doi: 10.1073/pnas.1000082107.
    1. Berer K., Mues M., Koutrolos M., et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479(7374):538–541. doi: 10.1038/nature10554.
    1. Yokote H., Miyake S., Croxford J. L., Oki S., Mizusawa H., Yamamura T. Nkt cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. The American Journal of Pathology. 2008;173(6):1714–1723. doi: 10.2353/ajpath.2008.080622.
    1. Lavasani S., Dzhambazov B., Nouri M., et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by il-10 producing regulatory t cells. PLoS One. 2010;5(2, article e9009) doi: 10.1371/journal.pone.0009009.
    1. Ochoa-Reparaz J., Rynda A., Ascon M. A., et al. IL-13 production by regulatory T cells protects against experimental autoimmune encephalomyelitis independently of autoantigen. The Journal of Immunology. 2008;181(2):954–968. doi: 10.4049/jimmunol.181.2.954.
    1. Ezendam J., de Klerk A., Gremmer E. R., van Loveren H. Effects of Bifidobacterium animalis administered during lactation on allergic and autoimmune responses in rodents. Clinical & Experimental Immunology. 2008;154(3):424–431. doi: 10.1111/j.1365-2249.2008.03788.x.
    1. Ochoa-Reparaz J., Mielcarz D. W., Ditrio L. E., et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide a expression. The Journal of Immunology. 2010;185(7):4101–4108. doi: 10.4049/jimmunol.1001443.
    1. Ochoa-Reparaz J., Riccardi C., Rynda A., Jun S., Callis G., Pascual D. W. Regulatory T cell vaccination without autoantigen protects against experimental autoimmune encephalomyelitis. The Journal of Immunology. 2007;178(3):1791–1799. doi: 10.4049/jimmunol.178.3.1791.
    1. Yan Wang S. B.-H., Kiel M., Telesford J., et al. A commensal bacterial product elicits and modulates migratory capacity of CD39+ CD4 T regulatory subsets in the suppression of neuroinflammation. Gut Microbes. 2014;5(4):552–561. doi: 10.4161/gmic.29797.
    1. Round J. L., Mazmanian S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(27):12204–12209. doi: 10.1073/pnas.0909122107.
    1. Takata K., Kinoshita M., Okuno T., et al. The lactic acid bacterium Pediococcus acidilactici suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells. PLoS One. 2011;6(11, article e27644) doi: 10.1371/journal.pone.0027644.
    1. Maassen C. B., Claassen E. Strain-dependent effects of probiotic lactobacilli on EAE autoimmunity. Vaccine. 2008;26(17):2056–2057. doi: 10.1016/j.vaccine.2008.02.035.
    1. Mangalam A., Shahi S. K., Luckey D., et al. Human gut-derived commensal bacteria suppress CNS inflammatory and demyelinating disease. Cell Reports. 2017;20(6):1269–1277. doi: 10.1016/j.celrep.2017.07.031.
    1. Chitrala K. N., Guan H., Singh N. P., et al. Cd44 deletion leading to attenuation of experimental autoimmune encephalomyelitis results from alterations in gut microbiome in mice. European Journal of Immunology. 2017;47(7):1188–1199. doi: 10.1002/eji.201646792.
    1. Jun S., Ochoa-Reparaz J., Zlotkowska D., Hoyt T., Pascual D. W. Bystander-mediated stimulation of proteolipid protein-specific regulatory T (Treg) cells confers protection against experimental autoimmune encephalomyelitis (EAE) via TGF-β. Journal of Neuroimmunology. 2012;245(1-2):39–47. doi: 10.1016/j.jneuroim.2012.02.003.
    1. Jun S., Gilmore W., Callis G., Rynda A., Haddad A., Pascual D. W. A live diarrheal vaccine imprints a Th2 cell bias and acts as an anti-inflammatory vaccine. The Journal of Immunology. 2005;175(10):6733–6740. doi: 10.4049/jimmunol.175.10.6733.
    1. Atarashi K., Tanoue T., Shima T., et al. Induction of colonic regulatory T cells by indigenous clostridium species. Science. 2011;331(6015):337–341. doi: 10.1126/science.1198469.
    1. Atarashi K., Tanoue T., Oshima K., et al. Treg induction by a rationally selected mixture of clostridia strains from the human microbiota. Nature. 2013;500(7461):232–236. doi: 10.1038/nature12331.
    1. Cekanaviciute E., Yoo B. B., Runia T. F., et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(40):10713–10718. doi: 10.1073/pnas.1711235114.
    1. Berer K., Gerdes L. A., Cekanaviciute E., et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(40):10719–10724. doi: 10.1073/pnas.1711233114.
    1. Jangi S., Gandhi R., Cox L. M., et al. Alterations of the human gut microbiome in multiple sclerosis. Nature Communications. 2016;7, article 12015 doi: 10.1038/ncomms12015.
    1. Derrien M., Van Baarlen P., Hooiveld G., Norin E., Muller M., de Vos W. M. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader akkermansia muciniphila. Frontiers in Microbiology. 2011;2:p. 166. doi: 10.3389/fmicb.2011.00166.
    1. Ganesh B. P., Klopfleisch R., Loh G., Blaut M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS One. 2013;8(9, article e74963) doi: 10.1371/journal.pone.0074963.
    1. Furusawa Y., Obata Y., Fukuda S., et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–450. doi: 10.1038/nature12721.
    1. Tremlett H., Fadrosh D. W., Faruqi A. A., et al. Gut microbiota in early pediatric multiple sclerosis: a case-control study. European Journal of Neurology. 2016;23(8):1308–1321. doi: 10.1111/ene.13026.
    1. Tremlett H., Fadrosh D. W., Faruqi A. A., et al. Gut microbiota composition and relapse risk in pediatric MS: a pilot study. Journal of the Neurological Sciences. 2016;363:153–157. doi: 10.1016/j.jns.2016.02.042.
    1. Tremlett H., Fadrosh D. W., Faruqi A. A., et al. Associations between the gut microbiota and host immune markers in pediatric multiple sclerosis and controls. BMC Neurology. 2016;16(1):p. 182. doi: 10.1186/s12883-016-0703-3.
    1. Hold G. L., Pryde S. E., Russell V. J., Furrie E., Flint H. J. Assessment of microbial diversity in human colonic samples by 16s rDNA sequence analysis. FEMS Microbiology Ecology. 2002;39(1):33–39. doi: 10.1111/j.1574-6941.2002.tb00904.x.
    1. Manson J. M., Rauch M., Gilmore M. S. The commensal microbiology of the gastrointestinal tract. In: Huffnagle G. B., Noverr M. C., editors. GI Microbiota and Regulation of the Immune System. Vol. 635. New York, NY, USA: Springer; 2008. pp. 15–28. (Advances in Experimental Medicine and Biology).
    1. Wilson B. A., Miyake S., Kim S., et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia Xiva and IV clusters. PLoS One. 2015;10(9, article e0137429) doi: 10.1371/journal.pone.0137429.
    1. Cantarel B. L., Waubant E., Chehoud C., et al. Gut microbiota in multiple sclerosis. Journal of Investigative Medicine. 2015;63(5):729–734. doi: 10.1097/JIM.0000000000000192.
    1. Rumah K. R., Linden J., Fischetti V. A., Vartanian T. Isolation of Clostridium perfringens type b in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease. PLoS One. 2013;8(10, article e76359) doi: 10.1371/journal.pone.0076359.
    1. Chen J., Chia N., Kalari K. R., et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Scientific Reports. 2016;6(1, article 28484) doi: 10.1038/srep28484.
    1. Crost E. H., Tailford L. E., Le Gall G., Fons M., Henrissat B., Juge N. Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent. PLoS One. 2013;8(10, article e76341) doi: 10.1371/journal.pone.0076341.
    1. Schirmer M., Smeekens S. P., Vlamakis H., et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016;167(4):1125–1136.e8. doi: 10.1016/j.cell.2016.10.020.
    1. Branton W. G., Lu J. Q., Surette M. G., et al. Brain microbiota disruption within inflammatory demyelinating lesions in multiple sclerosis. Scientific Reports. 2016;6(1, article 37344) doi: 10.1038/srep37344.
    1. Kleinewietfeld M., Manzel A., Titze J., et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496(7446):518–522. doi: 10.1038/nature11868.
    1. Farrokhi V., Nemati R., Nichols F. C., et al. Bacterial lipodipeptide, lipid 654, is a microbiome-associated biomarker for multiple sclerosis. Clinical & Translational Immunology. 2013;2(11, article e8) doi: 10.1038/cti.2013.11.
    1. Yang Q., Zheng C., Cao J., et al. Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages. Cell Death & Differentiation. 2016;23(11):1850–1861. doi: 10.1038/cdd.2016.71.
    1. Piccio L., Stark J. L., Cross A. H. Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. Journal of Leukocyte Biology. 2008;84(4):940–948. doi: 10.1189/jlb.0208133.
    1. Tripathy D., Mohanty P., Dhindsa S., et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 2003;52(12):2882–2887. doi: 10.2337/diabetes.52.12.2882.
    1. Kwon H. K., Kim G. C., Kim Y., et al. Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in t helper cell immune response. Clinical Immunology. 2013;146(3):217–227. doi: 10.1016/j.clim.2013.01.001.
    1. de Oliveira G. L. V., Leite A. Z., Higuchi B. S., Gonzaga M. I., Mariano V. S. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology. 2017;152(1):1–12. doi: 10.1111/imm.12765.
    1. Jorg S., Kissel J., Manzel A., et al. High salt drives Th17 responses in experimental autoimmune encephalomyelitis without impacting myeloid dendritic cells. Experimental Neurology. 2016;279:212–222. doi: 10.1016/j.expneurol.2016.03.010.
    1. Hucke S., Eschborn M., Liebmann M., et al. Sodium chloride promotes pro-inflammatory macrophage polarization thereby aggravating cns autoimmunity. Journal of Autoimmunity. 2016;67:90–101. doi: 10.1016/j.jaut.2015.11.001.
    1. Haghikia A., Jorg S., Duscha A., et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity. 2016;44(4):951–953. doi: 10.1016/j.immuni.2016.04.006.
    1. Farez M., Fiol M., Gaitán M., Quintana F., Correale J. Sodium intake is associated with increased disease activity in multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry. 2015;86(1):26–31. doi: 10.1136/jnnp-2014-307928.
    1. Mattozzi C., Paolino G., Salvi M., et al. Peripheral blood regulatory T cell measurements correlate with serum vitamin D level in patients with psoriasis. European Review for Medical and Pharmacological Sciences. 2016;20(9):1675–1679.
    1. Kang S. W., Kim S. H., Lee N., et al. 1,25-dihyroxyvitamin D3 promotes foxp3 expression via binding to vitamin d response elements in its conserved noncoding sequence region. The Journal of Immunology. 2012;188(11):5276–5282. doi: 10.4049/jimmunol.1101211.
    1. Ochoa-Reparaz J., Mielcarz D. W., Haque-Begum S., Kasper L. H. Induction of a regulatory b cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora. Gut Microbes. 2010;1(2):103–108. doi: 10.4161/gmic.1.2.11515.
    1. Colpitts S. L. K. E. A bidirectional association between the gut microbiota and CNS disease in a biphasic murine model of multiple sclerosis. Gut Microbes. 2017;8(6):561–573. doi: 10.1080/19490976.2017.1353843.
    1. van den Hoogen W. J., Laman J. D., ‘t Hart B. A. Modulation of multiple sclerosis and its animal model experimental autoimmune encephalomyelitis by food and gut microbiota. Frontiers in Immunology. 2017;8, article 1081 doi: 10.3389/fimmu.2017.01081.
    1. Dethlefsen L., Relman D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(Supplement 1):4554–4561. doi: 10.1073/pnas.1000087107.
    1. Rumah K. R., Vartanian T. K., Fischetti V. A. Oral multiple sclerosis drugs inhibit the in vitro growth of epsilon toxin producing gut bacterium, Clostridium perfringens. Frontiers in Cellular and Infection Microbiology. 2017;7:p. 11. doi: 10.3389/fcimb.2017.00011.
    1. Bron P., Kleerebezem M., Brummer R., et al. Can probiotics modulate human disease by impacting intestinal barrier function? British Journal of Nutrition. 2017;117(01):93–107. doi: 10.1017/S0007114516004037.
    1. Gareau M. G., Sherman P. M., Walker W. A. Probiotics and the gut microbiota in intestinal health and disease. Nature Reviews Gastroenterology & Hepatology. 2010;7(9):503–514. doi: 10.1038/nrgastro.2010.117.
    1. Wang H., Lee I. S., Braun C., Enck P. Effect of probiotics on central nervous system functions in animals and humans: a systematic review. Journal of Neurogastroenterology and Motility. 2016;22(4):589–605. doi: 10.5056/jnm16018.
    1. Ochoa-Reparaz J., Mielcarz D. W., Wang Y., et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunology. 2010;3(5):487–495. doi: 10.1038/mi.2010.29.
    1. Ezendam J., van Loveren H. Lactobacillus casei shirota administered during lactation increases the duration of autoimmunity in rats and enhances lung inflammation in mice. The British Journal of Nutrition. 2008;99(01):83–90. doi: 10.1017/S0007114507803412.
    1. Takata K., Tomita T., Okuno T., et al. Dietary yeasts reduce inflammation in central nerve system via microflora. Annals of Clinical Translational Neurology. 2015;2(1):56–66. doi: 10.1002/acn3.153.
    1. Shapira L., Ayalon S., Brenner T. Effects of Porphyromonas gingivalis on the central nervous system: activation of glial cells and exacerbation of experimental autoimmune encephalomyelitis. Journal of Periodontology. 2002;73(5):511–516. doi: 10.1902/jop.2002.73.5.511.
    1. Nichols F. C., Housley W. J., O'Conor C. A., Manning T., Wu S., Clark R. B. Unique lipids from a common human bacterium represent a new class of toll-like receptor 2 ligands capable of enhancing autoimmunity. The American Journal of Pathology. 2009;175(6):2430–2438. doi: 10.2353/ajpath.2009.090544.
    1. Rezende R. M., Oliveira R. P., Medeiros S. R., et al. Hsp65-producing lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory t cells. Journal of Autoimmunity. 2013;40:45–57. doi: 10.1016/j.jaut.2012.07.012.
    1. Xu M. Q., Cao H. L., Wang W. Q., et al. Fecal microbiota transplantation broadening Its application beyond intestinal disorders. World Journal of Gastroenterology. 2015;21(1):102–111. doi: 10.3748/wjg.v21.i1.102.
    1. Kasubuchi M., Hasegawa S., Hiramatsu T., Ichimura A., Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015;7:2839–2849. doi: 10.3390/nu7042839.
    1. Adamczyk-Sowa M., Medrek A., Madej P., Michlicka W., Dobrakowski P. Does the gut microbiota influence immunity and inflammation in multiple sclerosis pathophysiology? Journal of Immunology Research. 2017;2017:14. doi: 10.1155/2017/7904821.7904821
    1. Choi H. H., Cho Y. S. Fecal microbiota transplantation: current applications, effectiveness, and future perspectives. Clinical endoscopy. 2016;49(3):257–265. doi: 10.5946/ce.2015.117.
    1. Borody T., Leis S., Campbell J., Torres M. Fecal microbiota transplantation (FMT) in multiple sclerosis (MS) The American Journal of Gastroenterology. 2011;s352:p. 106.
    1. Terrazas C., de Dios Ruiz-Rosado J., Amici S. A., et al. Helminth-induced ly6chi monocyte-derived alternatively activated macrophages suppress experimental autoimmune encephalomyelitis. Scientific Reports. 2017;7, article 40814 doi: 10.1038/srep40814.
    1. Correale J., Farez M. Association between parasite infection and immune responses in multiple sclerosis. Annals of Neurology. 2007;61(2):97–108. doi: 10.1002/ana.21067.
    1. Correale J., Farez M. F. The impact of parasite infections on the course of multiple sclerosis. Journal of Neuroimmunology. 2011;233(1-2):6–11. doi: 10.1016/j.jneuroim.2011.01.002.
    1. Liddle R. A. Parkinson’s disease from the gut. Brain Research. 2018 doi: 10.1016/j.brainres.2018.01.010.
    1. Winter G., Hart R. A. Gut microbiome and depression: what we know and what we need to know. Reviews in the Neurosciences. 2018;(0) doi: 10.1515/revneuro-2017-0072.
    1. Lionnet A., Leclair-Visonneau L., Neunlist M., et al. Does Parkinson’s disease start in the gut? Acta Neuropathologica. 2018;135(1):1–12. doi: 10.1007/s00401-017-1777-8.
    1. Ochoa-Reparaz J., Kirby T. O., Kasper L. H. The gut microbiome and multiple sclerosis. Cold Spring Harbor Perspectives in Medicine. 2018 doi: 10.1101/cshperspect.a029017.
    1. Freedman S. N., Shahi S. K., Mangalam A. K. The “gut feeling”: breaking down the role of gut microbiome in multiple sclerosis. Neurotherapeutics. 2018;15(1):109–125. doi: 10.1007/s13311-017-0588-x.
    1. Wang Y., Telesford K. M., Ochoa-Reparaz J., et al. An intestinal commensal symbiosis factor controls neuroinflammation via tlr2-mediated cd39 signalling. Nature Communications. 2014;5, article 4432 doi: 10.1038/ncomms5432.

Source: PubMed

Подписаться