Clinical characteristics of patients with familial idiopathic pulmonary fibrosis (f-IPF)

Ekaterina Krauss, Godja Gehrken, Fotios Drakopanagiotakis, Silke Tello, Ruth C Dartsch, Olga Maurer, Anita Windhorst, Daniel von der Beck, Matthias Griese, Werner Seeger, Andreas Guenther, Ekaterina Krauss, Godja Gehrken, Fotios Drakopanagiotakis, Silke Tello, Ruth C Dartsch, Olga Maurer, Anita Windhorst, Daniel von der Beck, Matthias Griese, Werner Seeger, Andreas Guenther

Abstract

Background: The aim of this study was to analyze the relative frequency, clinical characteristics, disease onset and progression in f-IPF vs. sporadic IPF (s-IPF).

Methods: Familial IPF index patients and their family members were recruited into the European IPF registry/biobank (eurIPFreg) at the Universities of Giessen and Marburg (UGMLC). Initially, we employed wide range criteria of f-IPF (e.g. relatives who presumably died of some kind of parenchymal lung disease). After narrowing down the search to occurrence of idiopathic interstitial pneumonia (IIP) in at least one first grade relative, 28 index patients were finally identified, prospectively interviewed and examined. Their family members were phenotyped with establishment of pedigree charts.

Results: Within the 28 IPF families, overall 79 patients with f-IPF were identified. In the same observation period, 286 f-IIP and s-IIP patients were recruited into the eurIPFreg at our UGMLC sites, corresponding to a familial versus s-IPF of 9.8%. The both groups showed no difference in demographics (61 vs. 79% males), smoking history, and exposure to any environmental triggers known to cause lung fibrosis. The f-IPF group differed by an earlier age at the onset of the disease (55.4 vs. 63.2 years; p < 0.001). On average, the f-IPF patients presented a significantly milder extent of functional impairment at the time point of inclusion vs. the s-IPF group (FVC 75% pred. vs. FVC 62% pred., p = 0.011). In contrast, the decline in FVC was found to be faster in the f-IPF vs. the s-IPF group (4.94% decline in 6 months in f-IPF vs. 2.48% in s-IPF, p = 0.12). The average age of death in f-IPF group was 67 years vs. 71.8 years in s-IPF group (p = 0.059). The f-IIP group displayed diverse inheritance patterns, mostly autosomal-dominant with variable penetrance. In the f-IPF, the younger generations showed a tendency for earlier manifestation of IPF vs. the older generation (58 vs. 66 years, p = 0.013).

Conclusions: The 28 f-IPF index patients presented an earlier onset and more aggressive natural course of the disease. The disease seems to affect consecutive generations at a younger age.

Trial registration: Nr. NCT02951416 http://www.www.clinicaltrials.gov.

Keywords: Diffuse parenchymal lung diseases (DPLD); European IPF biobank (eurIPFbank); European IPF registry (eurIPFreg); Familial idiopathic pulmonary fibrosis (f-IPF); Idiopathic pulmonary fibrosis (IPF); Interstitial idiopathic pneumonia (IIP).

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Decline of forced vital capacity (FVC) over time in both groups. Abbreviations: Patients with f-IPF, n = 21; s-IPF patients, n = 54. Day 0 corresponds to the first lung function test and approximately to the day of the first diagnosis. Each line represents the FVC course of a one patient; the points on the lines mark the individual values of FVC. Red trend line: Interpolated mean percent FVC decline of all patients; red area shows 95% confidence band for model prediction
Fig. 2
Fig. 2
Pedigree chart one. Generations (I-IV) with 13 members, index patient III: 3. Abbreviations: DPLD = diffuse parenchymal lung disease, IPF = idiopathic pulmonary fibrosis, def. = definite, NSIP = nonspecific interstitial pneumonia, CD = cause of death, FD = first diagnosis year / age at first diagnosis in years; LTX = lung transplantation
Fig. 3
Fig. 3
Pedigree chart two. Generations (I-VI) with 39 members, index patient III: 4; IPF = idiopathic pulmonary fibrosis, NSIP = non-specific interstitial pneumonia, CD = cause of death, colon Ca = colon carcinoma, RA = rheumatoid Arthritis, COPD = chronic obstructive pulmonary disease, FD = initial diagnosis year / age at first diagnosis in years, MOF = multi organ failure, radiol. = radiological, recrt = recurrent, DD = differential diagnosis, MTX = methotrexate
Fig. 4
Fig. 4
Pedigree chart three. Generations (I-VI) with 42 members, index patient IV: 6. Abbreviations: def. IPF = definitive idiopathic pulmonary fibrosis, Heart-Dis = heart disease; OP = operation; DPLD = diffuse parenchymal lung disease; CD = cause of death; Laryngeal Ca = laryngeal carcinoma; FD = initial diagnosis year / age at first diagnosis in years; rapidly prog. IPF = rapidly progressive idiopathic pulmonary fibrosis; resp. insuff. = respiratory insufficiency
Fig. 5
Fig. 5
Pedigree chart four. Generations I-V with 53 members, index patient III: 5. Abbreviations: def IPF = definitive idiopathic pulmonary fibrosis; DPLD = diffuse parenchymal lung disease; CD = cause of death; FD = initial diagnosis year / age at first diagnosis in years; colon Ca = colon carcinoma; LTX = lung transplantation; Mamma Ca = breast cancer; Heart Dis = heart disease; Joint Dis = joint disease

References

    1. Witt S, Krauss E, Barbero MAN, Müller V, Bonniaud P, Vancheri C, et al. Psychometric properties and minimal important differences of SF-36 in idiopathic pulmonary fibrosis. Respir Res. 2019;20(1):47. doi: 10.1186/s12931-019-1010-5.
    1. Loeh B, Korfei M, Mahavadi P, Wasnick R, von der Beck D, Günther A. Pathogenesis. In: Costabel U, Crestani B, Wells AU, editors. Idiopathic Pulmonary Fibrosis: European Respiratory Society. 2016. pp. 35–49.
    1. Loeh B, Brylski LT, Beck D von der, Seeger W, Krauss E, Bonniaud P et al. Lung CT densitometry in idiopathic pulmonary fibrosis for the prediction of natural course, severity, and mortality. Chest 2019.
    1. Korfei M, Ruppert C, Loeh B, Mahavadi P, Guenther A. The role of endoplasmic reticulum (ER) stress in pulmonary fibrosis. Endoplasmic Reticulum Stress in Diseases. 2016;3(1):243. doi: 10.1515/ersc-2016-0002.
    1. Mathai SK, Schwartz DA, Warg LA. Genetic susceptibility and pulmonary fibrosis. Curr Opin Pulm Med. 2014;20(5):429–435. doi: 10.1097/MCP.0000000000000074.
    1. Newton CA, Molyneaux PL, Oldham JM. Clinical genetics in interstitial lung disease. Front Med (Lausanne) 2018;5:116. doi: 10.3389/fmed.2018.00116.
    1. Borie R, Kannengiesser C, Nathan N, Tabèze L, Pradère P, Crestani B. Familial pulmonary fibrosis. Rev Mal Respir. 2015;32(4):413–434. doi: 10.1016/j.rmr.2014.07.017.
    1. Kaur A, Mathai SK, Schwartz DA. Genetics in idiopathic pulmonary fibrosis pathogenesis, prognosis, and treatment. Front Med (Lausanne) 2017;4:154. doi: 10.3389/fmed.2017.00154.
    1. Marshall H. Researchers identify mutations in familial pulmonary fibrosis. Lancet Respir Med. 2015;3(6):428. doi: 10.1016/S2213-2600(15)00195-2.
    1. Steele MP, Speer MC, Loyd JE, Brown KK, Herron A, Slifer SH, et al. Clinical and pathologic features of familial interstitial pneumonia. Am J Respir Crit Care Med. 2005;172(9):1146–1152. doi: 10.1164/rccm.200408-1104OC.
    1. Fernandez BA, Fox G, Bhatia R, Sala E, Noble B, Denic N, et al. A Newfoundland cohort of familial and sporadic idiopathic pulmonary fibrosis patients: clinical and genetic features. Respir Res. 2012;13:64. doi: 10.1186/1465-9921-13-64.
    1. van Moorsel CHM, van Oosterhout MFM, Barlo NP, de Jong PA, van der Vis JJ, Ruven HJT, et al. Surfactant protein C mutations are the basis of a significant portion of adult familial pulmonary fibrosis in a dutch cohort. Am J Respir Crit Care Med. 2010;182(11):1419–1425. doi: 10.1164/rccm.200906-0953OC.
    1. Garcia CK. Idiopathic pulmonary fibrosis: update on genetic discoveries. Proc Am Thorac Soc. 2011;8(2):158–162. doi: 10.1513/pats.201008-056MS.
    1. Lee H-L, Ryu JH, Wittmer MH, Hartman TE, Lymp JF, Tazelaar HD, et al. Familial idiopathic pulmonary fibrosis: clinical features and outcome. Chest. 2005;127(6):2034–2041. doi: 10.1378/chest.127.6.2034.
    1. Poletti V, Ravaglia C, Buccioli M, Tantalocco P, Piciucchi S, Dubini A, et al. Idiopathic pulmonary fibrosis: diagnosis and prognostic evaluation. Respiration. 2013;86(1):5–12. doi: 10.1159/000353580.
    1. Lawson WE, Loyd JE, Degryse AL. Genetics in pulmonary fibrosis--familial cases provide clues to the pathogenesis of idiopathic pulmonary fibrosis. Am J Med Sci. 2011;341(6):439–443. doi: 10.1097/MAJ.0b013e31821a9d7a.
    1. Hodgson-2002 Nationwide prevalence of sporadic and familial idiopathic pulmonary fibrosis: evidence of founder effect among multiplex families in Finland. Thorax. 2002;57:338–342. doi: 10.1136/thorax.57.4.338.
    1. Guenther A, Krauss E, Tello S, Wagner J, Paul B, Kuhn S, et al. The European IPF registry (eurIPFreg): baseline characteristics and survival of patients with idiopathic pulmonary fibrosis. Respir Res. 2018;19(1):141. doi: 10.1186/s12931-018-0845-5.
    1. Snetselaar R, van Moorsel CHM, Kazemier KM, van der Vis JJ, Zanen P, van Oosterhout MFM, et al. Telomere length in interstitial lung diseases. Chest. 2015;148(4):1011–1018. doi: 10.1378/chest.14-3078.
    1. Loyd JE. Pulmonary fibrosis in families. Am J Respir Cell Mol Biol. 2003;29(3 Suppl):S47–S50.
    1. van Moorsel CHM, Hoffman TW, van Batenburg AA, Klay D, van der Vis JJ, Grutters JC. Understanding idiopathic interstitial pneumonia: a gene-based review of stressed lungs. Biomed Res Int. 2015;2015:304186.
    1. Hoffman TW, van Moorsel CHM, Borie R, Crestani B. Pulmonary phenotypes associated with genetic variation in telomere-related genes. Curr Opin Pulm Med. 2018;24(3):269–280.
    1. Calado RT. Telomeres in lung diseases. Prog Mol Biol Transl Sci. 2014;125:173–183. doi: 10.1016/B978-0-12-397898-1.00008-6.
    1. Newton CA, Batra K, Torrealba J, Kozlitina J, Glazer CS, Aravena C, et al. Telomere-related lung fibrosis is diagnostically heterogeneous but uniformly progressive. Eur Respir J. 2016;48(6):1710–1720. doi: 10.1183/13993003.00308-2016.
    1. Armanios MY, Chen JJ-L, Cogan JD, Alder JK, Ingersoll RG, Markin C, et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med. 2007;356(13):1317–1326. doi: 10.1056/NEJMoa066157.
    1. Alder JK, Hanumanthu VS, Strong MA, DeZern AE, Stanley SE, Takemoto CM, et al. Diagnostic utility of telomere length testing in a hospital-based setting. Proc Natl Acad Sci U S A. 2018;115(10):E2358–E2365. doi: 10.1073/pnas.1720427115.
    1. Alder JK, Chen JJ-L, Lancaster L, Danoff S, Su S-C, Cogan JD, et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci U S A. 2008;105(35):13051–13056. doi: 10.1073/pnas.0804280105.
    1. Lehmann M, Korfei M, Mutze K, Klee S, Skronska-Wasek W, Alsafadi HN, et al. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur Respir J. 2017;50:2. doi: 10.1183/13993003.02367-2016.
    1. Wang Y, Kuan PJ, Xing C, Cronkhite JT, Torres F, Rosenblatt RL, et al. Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am J Hum Genet. 2009;84(1):52–59. doi: 10.1016/j.ajhg.2008.11.010.
    1. Siroux V, Crestani B. Is chronic exposure to air pollutants a risk factor for the development of idiopathic pulmonary fibrosis? Eur Respir J. 2018;51:1. doi: 10.1183/13993003.02663-2017.
    1. Sesé L, Nunes H, Cottin V, Sanyal S, Didier M, Carton Z, et al. Role of atmospheric pollution on the natural history of idiopathic pulmonary fibrosis. Thorax. 2018;73(2):145–150. doi: 10.1136/thoraxjnl-2017-209967.
    1. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788–824. doi: 10.1164/rccm.2009-040GL.
    1. Behr J, Günther A, Ammenwerth W, Bittmann I, Bonnet R, Buhl R, et al. S2K-Leitlinie zur Diagnostik und Therapie der idiopathischen Lungenfibrose. Pneumologie. 2013;67(2):81–111. doi: 10.1055/s-0032-1326009.
    1. Schwartz DA. IDIOPATHIC PULMONARY FIBROSIS IS A COMPLEX GENETIC DISORDER. Trans Am Clin Climatol Assoc. 2016;127:34–45.
    1. Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198(5):e44–e68. doi: 10.1164/rccm.201807-1255ST.
    1. Raghu G, Rochwerg B, Zhang Y, Garcia CAC, Azuma A, Behr J, et al. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline. Am J Respir Crit Care Med. 2015;192(2):e3–19. doi: 10.1164/rccm.201506-1063ST.
    1. Yan W, Zhu X, Wang J, Huang Y, He B. Clinical and genetic study on familial idiopathic pulmonary fibrosis in a Chinese family. Zhonghua Jie He He Hu Xi Za Zhi. 2015;38(11):833–838.
    1. Marshall RP, Puddicombe A, Cookson WO, Laurent GJ. Adult familial cryptogenic fibrosing alveolitis in the United Kingdom. Thorax. 2000;55(2):143–146. doi: 10.1136/thorax.55.2.143.
    1. Stanley SE, Merck SJ, Armanios M. Telomerase and the Genetics of Emphysema Susceptibility. Implications for Pathogenesis Paradigms and Patient Care. Ann Am Thorac Soc. 2016;13(Supplement_5):S447–S451. doi: 10.1513/AnnalsATS.201609-718AW.
    1. Steele MP, Luna LG, Coldren CD, Murphy E, Hennessy CE, Heinz D, et al. Relationship between gene expression and lung function in idiopathic interstitial pneumonias. BMC Genomics. 2015;16:869. doi: 10.1186/s12864-015-2102-3.
    1. Bennett D, Mazzei MA, Squitieri NC, Bargagli E, Refini RM, Fossi A, et al. Familial pulmonary fibrosis: clinical and radiological characteristics and progression analysis in different high resolution-CT patterns. Respir Med. 2017;126:75–83. doi: 10.1016/j.rmed.2017.03.020.
    1. Hironaka M, Fukayama M. Pulmonary fibrosis and lung carcinoma: a comparative study of metaplastic epithelia in honeycombed areas of usual interstitial pneumonia with or without lung carcinoma. Pathol Int. 1999;49(12):1060–1066. doi: 10.1046/j.1440-1827.1999.00989.x.
    1. Barbaro PM, Ziegler DS, Reddel RR. The wide-ranging clinical implications of the short telomere syndromes. Intern Med J. 2016;46(4):393–403. doi: 10.1111/imj.12868.
    1. Scholand MB, Coon H, Wolff R, Cannon-Albright L. Use of a genealogical database demonstrates heritability of pulmonary fibrosis. Lung. 2013;191(5):475–481. doi: 10.1007/s00408-013-9484-2.
    1. Chibbar R, Gjevre JA, Shih F, Neufeld H, Lemire EG, Fladeland DA, et al. Familial interstitial pulmonary fibrosis: a large family with atypical clinical features. Can Respir J. 2010;17(6):269–274. doi: 10.1155/2010/591523.
    1. Ravaglia C, Tomassetti S, Gurioli C, Piciucchi S, Dubini A, Gurioli C, et al. Features and outcome of familial idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis. 2014;31(1):28–36.
    1. Molina-Molina M, Borie R. Clinical implications of telomere dysfunction in lung fibrosis. Curr Opin Pulm Med. 2018;24(5):440–444. doi: 10.1097/MCP.0000000000000506.

Source: PubMed

Подписаться