Aberrant functional connectivity in depression as an index of state and trait rumination

David Rosenbaum, Alina Haipt, Kristina Fuhr, Florian B Haeussinger, Florian G Metzger, Hans-Christoph Nuerk, Andreas J Fallgatter, Anil Batra, Ann-Christine Ehlis, David Rosenbaum, Alina Haipt, Kristina Fuhr, Florian B Haeussinger, Florian G Metzger, Hans-Christoph Nuerk, Andreas J Fallgatter, Anil Batra, Ann-Christine Ehlis

Abstract

Depression has been shown to be related to a variety of aberrant brain functions and structures. Particularly the investigation of alterations in functional connectivity (FC) in major depressive disorder (MDD) has been a promising endeavor, since a better understanding of pathological brain networks may foster our understanding of the disease. However, the underling mechanisms of aberrant FC in MDD are largely unclear. Using functional near-infrared spectroscopy (fNIRS) we investigated FC in the cortical parts of the default mode network (DMN) during resting-state in patients with current MDD. Additionally, we used qualitative and quantitative measures of psychological processes (e.g., state/trait rumination, mind-wandering) to investigate their contribution to differences in FC between depressed and non-depressed subjects. Our results indicate that 40% of the patients report spontaneous rumination during resting-state. Depressed subjects showed reduced FC in parts of the DMN compared to healthy controls. This finding was linked to the process of state/trait rumination. While rumination was negatively correlated with FC in the cortical parts of the DMN, mind-wandering showed positive associations.

Conflict of interest statement

Prof. Dr. Anil Batra, Dr. Kristina Fuhr and Alina Haipt were partly supported by Milton Erickson Gesellschaft für klinische Hypnose e.V. Ann-Christine Ehlis was partly supported by IZKF Tübingen (Junior Research Group 2115-0-0).

Figures

Figure 1
Figure 1
Analysis scheme: Analysis steps 1, 2 and 4 were performed on the whole sample. In the third analysis step, only the depressed subjects were investigated.
Figure 2
Figure 2
Differences between non-depressed and depressed subjects in FC in the NBS analysis at t = 2.7 and in selected seed regions (red nodes in the network maps). Warm colors indicate higher FC in the non-depressed subjects. Seed regions are marked by a white star.
Figure 3
Figure 3
Correlations between trait rumination and FC in the three seed regions of the depression-related network. Seed regions are marked by a white star.
Figure 4
Figure 4
Correlations between state rumination and FC in the three seed regions of the depression-related network. Seed regions are marked by a white star.
Figure 5
Figure 5
Differences between “depressed low trait-ruminators” and “depressed high trait-ruminators”. Cold colors indicate lower FC in high-ruminators compared to low-ruminators.
Figure 6
Figure 6
Differences between “depressed low state-ruminators” and “depressed high state-ruminators”. Cold colors indicate lower FC in high-ruminators compared to low-ruminators.

References

    1. Tadayonnejad R, Ajilore O. Brain Network Dysfunction in Late-Life Depression: A Literature Review. J. Geriatr. Psychiatry Neurol. 2014;27:5–12. doi: 10.1177/0891988713516539.
    1. Alexopoulos GS, et al. Functional connectivity in the cognitive control network and the default mode network in late-life depression. J. Affect. Disord. 2012;139:56–65. doi: 10.1016/j.jad.2011.12.002.
    1. Kenny ER, et al. Functional Connectivity in Late-Life Depression Using Resting-State Functional Magnetic Resonance Imaging. Am. J. Geriatr. Psychiatry. 2010;18:643–651. doi: 10.1097/JGP.0b013e3181cabd0e.
    1. Sheline YI, Price JL, Yan Z, Mintun MA. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc. Natl. Acad. Sci. 2010;107:11020–11025. doi: 10.1073/pnas.1000446107.
    1. Lan, C.-C. et al. Functional Connectivity Density Mapping of Depressive Symptoms and Loneliness in Non-Demented Elderly Male. Front. Aging Neurosci. 7 (2016).
    1. Rosenbaum D, et al. State-dependent altered connectivity in late-life depression: a functional near-infrared spectroscopy study. Neurobiol. Aging. 2016;39:57–68. doi: 10.1016/j.neurobiolaging.2015.11.022.
    1. Horn A, Ostwald D, Reisert M, Blankenburg F. The structural–functional connectome and the default mode network of the human brain. NeuroImage. 2014;102:142–151. doi: 10.1016/j.neuroimage.2013.09.069.
    1. Smith JM, Alloy LB. A roadmap to rumination: A review of the definition, assessment, and conceptualization of this multifaceted construct. Clin. Psychol. Rev. 2009;29:116–128. doi: 10.1016/j.cpr.2008.10.003.
    1. Eshun S. Role of Gender and Rumination in Suicide Ideation: A Comparison of College Samples From Ghana and the United States. Cross-Cult. Res. 2000;34:250–263. doi: 10.1177/106939710003400303.
    1. Lyubomirsky S, Kasri F, Zehm K. Dysphoric Rumination Impairs Concentration on Academic Tasks. Cogn. Ther. Res. 2003;27:309–330. doi: 10.1023/A:1023918517378.
    1. Lyubomirsky S, Nolen-Hoeksema S. Effects of self-focused rumination on negative thinking and interpersonal problem solving. J. Pers. Soc. Psychol. 1995;69:176–190. doi: 10.1037/0022-3514.69.1.176.
    1. Philippot P, Brutoux F. Induced rumination dampens executive processes in dysphoric young adults. J. Behav. Ther. Exp. Psychiatry. 2008;39:219–227. doi: 10.1016/j.jbtep.2007.07.001.
    1. Connolly CG, et al. Resting-State Functional Connectivity of Subgenual Anterior Cingulate Cortex in Depressed Adolescents. Biol. Psychiatry. 2013;74:898–907. doi: 10.1016/j.biopsych.2013.05.036.
    1. Berman MG, et al. Depression, rumination and the default network. Soc. Cogn. Affect. Neurosci. 2011;6:548–555. doi: 10.1093/scan/nsq080.
    1. Berman MG, et al. Does resting-state connectivity reflect depressive rumination? A tale of two analyses. NeuroImage. 2014;103:267–279. doi: 10.1016/j.neuroimage.2014.09.027.
    1. Jacobs RH, et al. Increased Coupling of Intrinsic Networks in Remitted Depressed Youth Predicts Rumination and Cognitive Control. PLoS ONE. 2014;9:e104366. doi: 10.1371/journal.pone.0104366.
    1. Nolen-Hoeksema S, Morrow J. A prospective study of depression and posttraumatic stress symptoms after a natural disaster: The 1989 Loma Prieta earthquake. J. Pers. Soc. Psychol. 1991;61:115–121. doi: 10.1037/0022-3514.61.1.115.
    1. Camargo A, Azuaje F, Wang H, Zheng H. Permutation - based statistical tests for multiple hypotheses. Source Code Biol. Med. 2008;3:15. doi: 10.1186/1751-0473-3-15.
    1. Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 2002;15:1–25. doi: 10.1002/hbm.1058.
    1. Gao W, Lin W. Frontal parietal control network regulates the anti-correlated default and dorsal attention networks. Hum. Brain Mapp. 2012;33:192–202. doi: 10.1002/hbm.21204.
    1. Yang R, et al. Decreased functional connectivity to posterior cingulate cortex in major depressive disorder. Psychiatry Res. Neuroimaging. 2016;255:15–23. doi: 10.1016/j.pscychresns.2016.07.010.
    1. Bluhm R, et al. Resting state default-mode network connectivity in early depression using a seed region-of-interest analysis: Decreased connectivity with caudate nucleus. Psychiatry Clin. Neurosci. 2009;63:754–761. doi: 10.1111/j.1440-1819.2009.02030.x.
    1. Guo W, et al. Decreased interhemispheric resting-state functional connectivity in first-episode, drug-naive major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2013;41:24–29. doi: 10.1016/j.pnpbp.2012.11.003.
    1. Manoliu, A. et al. Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder. Front. Hum. Neurosci. 7 (2014).
    1. de Kwaasteniet, B. P. et al. Decreased Resting-State Connectivity between Neurocognitive Networks in Treatment Resistant Depression. Front. Psychiatry6 (2015).
    1. Keune PM, Bostanov V, Kotchoubey B, Hautzinger M. Mindfulness versus rumination and behavioral inhibition: A perspective from research on frontal brain asymmetry. Personal. Individ. Differ. 2012;53:323–328. doi: 10.1016/j.paid.2012.03.034.
    1. Zhang J, et al. Disrupted Brain Connectivity Networks in Drug-Naive, First-Episode Major Depressive Disorder. Biol. Psychiatry. 2011;70:334–342. doi: 10.1016/j.biopsych.2011.05.018.
    1. Chen Y, Wang C, Zhu X, Tan Y, Zhong Y. Aberrant connectivity within the default mode network in first-episode, treatment-naïve major depressive disorder. J. Affect. Disord. 2015;183:49–56. doi: 10.1016/j.jad.2015.04.052.
    1. Cooney RE, Joormann J, Eugène F, Dennis EL, Gotlib IH. Neural correlates of rumination in depression. Cogn. Affect. Behav. Neurosci. 2010;10:470–478. doi: 10.3758/CABN.10.4.470.
    1. Ho TC, et al. Emotion-Dependent Functional Connectivity of the Default Mode Network in Adolescent Depression. Biol. Psychiatry. 2015;78:635–646. doi: 10.1016/j.biopsych.2014.09.002.
    1. Yuen GS, et al. The salience network in the apathy of late-life depression: Salience network in apathy of late-life depression. Int. J. Geriatr. Psychiatry. 2014;29:1116–1124. doi: 10.1002/gps.4171.
    1. Hamilton JP, et al. Default-Mode and Task-Positive Network Activity in Major Depressive Disorder: Implications for Adaptive and Maladaptive Rumination. Biol. Psychiatry. 2011;70:327–333. doi: 10.1016/j.biopsych.2011.02.003.
    1. Burkhouse, K. L. et al. Neural correlates of rumination in adolescents with remitted major depressive disorder and healthy controls. Cogn. Affect. Behav. Neurosci., 10.3758/s13415-016-0486-4 (2016).
    1. Hamilton JP, Farmer M, Fogelman P, Gotlib IH. Depressive Rumination, the Default-Mode Network, and the Dark Matter of Clinical Neuroscience. Biol. Psychiatry. 2015;78:224–230. doi: 10.1016/j.biopsych.2015.02.020.
    1. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity. JAMA Psychiatry. 2015;72:603–11. doi: 10.1001/jamapsychiatry.2015.0071.
    1. Wang Y, et al. Interhemispheric resting state functional connectivity abnormalities in unipolar depression and bipolar depression. Bipolar Disord. 2015;17:486–495. doi: 10.1111/bdi.12315.
    1. Wang L, et al. Interhemispheric Functional Connectivity and Its Relationships with Clinical Characteristics in Major Depressive Disorder: A Resting State fMRI Study. PLoS ONE. 2013;8:e60191. doi: 10.1371/journal.pone.0060191.
    1. Xu K, et al. Impaired interhemispheric connectivity in medicationnaive patients with major depressive disorder. J. Psychiatry Neurosci. 2013;38:43–48. doi: 10.1503/jpn.110132.
    1. Hou, Z., Sui, Y., Song, X. & Yuan, Y. Disrupted Interhemispheric Synchrony in Default Mode Network Underlying the Impairment of Cognitive Flexibility in Late-Onset Depression. Front. Aging Neurosci. 8, 10.3389/fnagi.2016.00230 (2016).
    1. Hermesdorf M, et al. Major depressive disorder: Findings of reduced homotopic connectivity and investigation of underlying structural mechanisms: Reduced Homotopic Connectivity in Depression. Hum. Brain Mapp. 2016;37:1209–1217. doi: 10.1002/hbm.23097.
    1. Ridley, B. et al. Alien Hand, Restless Brain: Salience Network and Interhemispheric Connectivity Disruption Parallel Emergence and Extinction of Diagonistic Dyspraxia. Front. Hum. Neurosci. 10 (2016).
    1. O’Reilly JX, et al. Causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys. Proc. Natl. Acad. Sci. 2013;110:13982–13987. doi: 10.1073/pnas.1305062110.
    1. Sasai S, et al. A NIRS–fMRI study of resting state network. NeuroImage. 2012;63:179–193. doi: 10.1016/j.neuroimage.2012.06.011.
    1. Wittchen H.-U., Wunderlich, U., Gruschwitz, S. & Zaudig, M. SKID I. Strukturiertes Klinisches Interview für DSM-IV. Achse I: Psychische Störungen. Interviewheft und Beurteilungsheft. Eine deutschsprachige, erweiterte Bearb. d. amerikanischen Originalversion des SKID I. (Hogrefe, 1997).
    1. Spitzer RL, Kroenke K, Williams JB. Validation and utility of a self-report version of PRIME-MD: the PHQ primary care study. Primary Care Evaluation of Mental Disorders. Patient Health Questionnaire. JAMA. 1999;282:1737–1744. doi: 10.1001/jama.282.18.1737.
    1. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry. 1979;134:382–389. doi: 10.1192/bjp.134.4.382.
    1. Haeussinger F, et al. Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: An easy-to-use filter method. NeuroImage. 2014;95:69–79. doi: 10.1016/j.neuroimage.2014.02.035.
    1. Haeussinger FB, et al. Simulation of Near-Infrared Light Absorption Considering Individual Head and Prefrontal Cortex Anatomy: Implications for Optical Neuroimaging. PLoS ONE. 2011;6:e26377. doi: 10.1371/journal.pone.0026377.
    1. Ehlis A-C, Schneider S, Dresler T, Fallgatter AJ. Application of functional near-infrared spectroscopy in psychiatry. NeuroImage. 2014;85:478–488. doi: 10.1016/j.neuroimage.2013.03.067.
    1. Deppermann, S. et al. Functional co-activation within the prefrontal cortex supports the maintenance of behavioural performance in fear-relevant situations before an iTBS modulated virtual reality challenge in participants with spider phobia. Behav. Brain Res., doi:10.1016/j.bbr.2016.03.028 (2016).
    1. Lu C-M, et al. Use of fNIRS to assess resting state functional connectivity. J. Neurosci. Methods. 2010;186:242–249. doi: 10.1016/j.jneumeth.2009.11.010.
    1. Mesquita RC, Franceschini MA, Boas DA. Resting state functional connectivity of the whole head with near-infrared spectroscopy. Biomed. Opt. Express. 2010;1:324–336. doi: 10.1364/BOE.1.000324.
    1. Zhang H, et al. Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements. NeuroImage. 2010;51:1150–1161. doi: 10.1016/j.neuroimage.2010.02.080.
    1. Jasper H. Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr. Clin. Neurophysiol. 1958;10:370–375. doi: 10.1016/0013-4694(58)90053-1.
    1. Zalesky A, Fornito A, Bullmore ET. Network-based statistic: Identifying differences in brain networks. NeuroImage. 2010;53:1197–1207. doi: 10.1016/j.neuroimage.2010.06.041.
    1. Xia M, Wang J, He Y. BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics. PLoS ONE. 2013;8:e68910. doi: 10.1371/journal.pone.0068910.
    1. Brigadoi S, et al. Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data. NeuroImage. 2014;85:181–191. doi: 10.1016/j.neuroimage.2013.04.082.
    1. Cui X, Bray S, Reiss AL. Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics. NeuroImage. 2010;49:3039–3046. doi: 10.1016/j.neuroimage.2009.11.050.
    1. Molavi B, Dumont GA. Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiol. Meas. 2012;33:259–270. doi: 10.1088/0967-3334/33/2/259.
    1. Zhang X, Noah JA, Hirsch J. Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering. Neurophotonics. 2016;3:015004. doi: 10.1117/1.NPh.3.1.015004.
    1. Silver NC, Dunlap WP. Averaging correlation coefficients: Should Fisher’s z transformation be used? J. Appl. Psychol. 1987;72:146–148. doi: 10.1037/0021-9010.72.1.146.
    1. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage. 2010;52:1059–1069. doi: 10.1016/j.neuroimage.2009.10.003.

Source: PubMed

Подписаться