Canadian Consensus for Biomarker Testing and Treatment of TRK Fusion Cancer in Adults

D Gwyn Bebb, Shantanu Banerji, Normand Blais, Patrice Desmeules, Sharlene Gill, Andrea Grin, Harriet Feilotter, Aaron R Hansen, Martin Hyrcza, Monika Krzyzanowska, Barbara Melosky, Jonathan Noujaim, Bibiana Purgina, Dean Ruether, Christine E Simmons, Denis Soulieres, Emina Emilia Torlakovic, Ming-Sound Tsao, D Gwyn Bebb, Shantanu Banerji, Normand Blais, Patrice Desmeules, Sharlene Gill, Andrea Grin, Harriet Feilotter, Aaron R Hansen, Martin Hyrcza, Monika Krzyzanowska, Barbara Melosky, Jonathan Noujaim, Bibiana Purgina, Dean Ruether, Christine E Simmons, Denis Soulieres, Emina Emilia Torlakovic, Ming-Sound Tsao

Abstract

The tyrosine receptor kinase (TRK) inhibitors larotrectinib and entrectinib were recently approved in Canada for the treatment of solid tumours harbouring neurotrophic tyrosine receptor kinase (NTRK) gene fusions. These NTRK gene fusions are oncogenic drivers found in most tumour types at a low frequency (<5%), and at a higher frequency (>80%) in a small number of rare tumours (e.g., secretory carcinoma of the salivary gland and of the breast). They are generally mutually exclusive of other common oncogenic drivers. Larotrectinib and entrectinib have demonstrated impressive overall response rates and tolerability in Phase I/II trials in patients with TRK fusion cancer with no other effective treatment options. Given the low frequency of TRK fusion cancer and the heterogeneous molecular testing landscape in Canada, identifying and optimally managing such patients represents a new challenge. We provide a Canadian consensus on when and how to test for NTRK gene fusions and when to consider treatment with a TRK inhibitor. We focus on five tumour types: thyroid carcinoma, colorectal carcinoma, non-small cell lung carcinoma, soft tissue sarcoma, and salivary gland carcinoma. Based on the probability of the tumour harbouring an NTRK gene fusion, we also suggest a tumour-agnostic consensus for NTRK gene fusion testing and treatment. We recommend considering a TRK inhibitor in all patients with TRK fusion cancer with no other effective treatment options.

Trial registration: ClinicalTrials.gov NCT02122913 NCT02637687 NCT02576431.

Keywords: NTRK; TRK fusion; entrectinib; larotrectinib; molecular testing; oncogenic drivers; targeted therapy; tumour-agnostic.

Conflict of interest statement

We have read and understood Current Oncology’s policy on conflicts of interest disclosure and declare the following interests: D.G.B.: Advisory Boards: A.Z., B.I., Lilly, B.M.S., Merck, Amgen, Pfizer, Novartis, Roche, Bayer; Research Funding: A.Z., B.I., Pfizer; Meeting Sponsorships: POET Annual Meeting: Takeda, A.Z., B.I., Lilly, B.M.S., Merck, Pfizer, Novartis, Roche, Bayer, Illumina, Glans-Look Lung Cancer Research Day: A.Z., B.I., Roche. Ownership and Director, Medical Affairs: OncoHelix. S.B.: Advisory Board/Honorarium: AstraZeneca, Bayer, Boehringer-Ingelheim, Bristol-Myers-Squibb, GlaxoSmithKline, Lilly, Merck, Novartis, Pfizer, Roche, Takeda. N.B.: Nothing to disclose. P.D.: Consultant (Astra-Zeneca, Eli Lilly); Presentations (Pfizer, Astra-Zeneca); Research funding (Pfizer, Novartis, Roche). S.G.: Advisory Boards and Speaking honoraria: Bayer, Amgen, Roche, Pfizer. A.G.: Nothing to disclose. H.F.: has received honoraria for either advisory boards or speaking engagements from EMD Serono, Pfizer, Bayer, Amgen, Astellas, Merck, Roche and Astra Zeneca; has current research and clinical lab support from EMD Serono and Astra Zeneca, past research support from Thermo Fisher, and her clinical lab has a contract arrangement with Bayer. A.R.H.: institutional support for clinical trials conduct from Novartis, Bristol-Myers Squibb, Pfizer, Boerhinger-Ingelheim, GlaxoSmithKline, Roche/Genentech, Karyopharm, AstraZeneca/ Medimmune, Merck, Astellas and Bayer and compensated consulting/advisory boards for AstraZeneca, Merck and GlaxoSmithKline. M.H.: Advisory Board Honoraria: Bayer, Merck, Roche. M.K.: Honoraria: Novartis, Eisai, Bayer; Consulting or Advisory Role: Eisai; Research Funding: Eisai (Inst), Exelixis (Inst), Ipsen (Inst). B.M.: Advisory Board/Honorarium: Bayer, Pfizer, Astra Zeneca, Boehringer Ingleheim, Roche. J.N.: Nothing to disclose. B.P.: I have received stipends from Bayer. D.R.: Nothing to disclose. C.S.: Nothing to disclose. D.S.: Ad boards participation with Bayer. E.T.: Torlakovic reports grants and other from BMS, grants from Pfizer, grants and other from Merck, grants and other from Roche, grants and other from AstraZeneca, outside the submitted work. M.S.T.: Honoraria: Bayer, Hoffmann La Roche; Research Grant: Bayer.

Figures

Figure 1
Figure 1
Biomarker testing and treatment for neurotrophic tyrosine receptor kinase (NTRK) gene fusions in thyroid carcinoma. White boxes with black outlines represent either NTRK gene fusion testing or treatment with a TRKi. Black boxes with white text indicate all other steps that do not include either NTRK gene fusion testing or treatment with a TRKi. a Consider obtaining fresh tissue to confirm diagnosis and provide more recent tissue for biomarker testing. ATC = anaplastic thyroid carcinoma; DTC = differentiated thyroid carcinoma; EBRT = external beam radiation therapy; FNA = fine needle aspiration; IHC = immunohistochemistry; L = line; MTC = medullary thyroid carcinoma; NGS = next generation sequencing; RAI = radioactive iodine; TRK = tyrosine receptor kinase; TRKi = TRK inhibitor. Brenner et al. 2020 [34].
Figure 2
Figure 2
Biomarker testing and treatment for neurotrophic tyrosine receptor kinase (NTRK) gene fusions in colorectal carcinoma. White boxes with black outlines represent either NTRK gene fusion testing or treatment with a TRKi. Black boxes with white text indicate all other steps that do not include either NTRK gene fusion testing or treatment with a TRKi. BRAF = B-Raf proto-oncogene, serine/threonine kinase; CRC = colorectal carcinoma; d = deficient; FOLFIRI = folinic acid, fluorouracil, and irinotecan; FOLFOX = folinic acid, fluorouracil, and oxaliplatin; IHC = immunohistochemistry; L = line; MLH1 = mutL homolog 1; MMR = mismatch repair; MSI = microsatellite instability; MSI-H = MSI high; MSS = microsatellite sable; NGS = next generation sequencing; p = proficient; PCR = polymerase chain reaction; RAS = RAS type GTPase family; TRK = tyrosine receptor kinase; TRKi = TRK inhibitor. Brenner et al. 2020 [34]; Chou et al. 2019 [44]; Cocco et al. 2019 [54].
Figure 3
Figure 3
Biomarker testing and treatment for neurotrophic tyrosine receptor kinase (NTRK) gene fusions in lung cancer. White boxes with black outlines represent either NTRK gene fusion testing or treatment with a TRKi. Black boxes with white text indicate all other steps that do not include either NTRK gene fusion testing or treatment with a TRKi. a Patients with ECOG PS 3 were eligible for enrollment in the larotrectinib clinical trials [16]. ALK = ALK receptor tyrosine kinase; BRAF = B-Raf proto-oncogene, serine/threonine kinase; ECOG PS = Eastern Cooperative Oncology Group performance status; EGFR = epidermal growth factor receptor; ERBB2 = erb-b2 receptor tyrosine kinase 2; FISH = fluorescence in situ hybridization; IHC = immunohistochemistry; KRAS = KRAS proto-oncogene, GTPase; L = line; MET = MET proto-oncogene, receptor tyrosine kinase; NGS = next generation sequencing; NRG1 = neuregulin 1; NSCLC = non-small cell lung carcinoma; PD-L1 = programmed death ligand 1; RET = ret proto-oncogene; ROS1 = ROS proto-oncogene 1, receptor tyrosine kinase; TRK = tyrosine receptor kinase; TRKi = TRK inhibitor. Brenner et al. 2020 [34]; Farago et al. 2018 [61]; Solomon et al. 2019 [83]; Benayed et al. 2019 [84].
Figure 4
Figure 4
Biomarker testing and treatment for neurotrophic tyrosine receptor kinase (NTRK) gene fusions in sarcoma. White boxes with black outlines represent either NTRK gene fusion testing or treatment with a TRKi. Black boxes with white text indicate all other steps that do not include either NTRK gene fusion testing or treatment with a TRKi. BRAF = B-Raf proto-oncogene, serine/threonine kinase; GIST = gastrointestinal stromal tumour; IHC = immunohistochemistry; KIT = KIT proto-oncogene, receptor tyrosine kinase; L = line; NGS = next generation sequencing; PDGFRA = platelet derived growth factor receptor alpha; STS = soft tissue sarcoma; TRK = tyrosine receptor kinase; TRKi = TRK inhibitor. Ducimetière et al. 2011 [88]; Canadian Cancer Society [91].
Figure 5
Figure 5
Biomarker testing and treatment for neurotrophic tyrosine receptor kinase (NTRK) gene fusions in salivary tumours. White boxes with black outlines represent either NTRK gene fusion testing or treatment with a TRKi. Black boxes with white text indicate all other steps that do not include either NTRK gene fusion testing or treatment with a TRKi. FISH = fluorescence in situ hybridization; L = line; HER2 = erb-b2 receptor tyrosine kinase 2; IHC = immunohistochemistry; NGS = next generation sequencing; NOS = not otherwise specified; SDC = salivary ductal carcinoma; TRK = tyrosine receptor kinase; TRKi = TRK inhibitor; VEGFR TKI = vascular endothelial growth factor receptor tyrosine kinase inhibitor. Canadian Cancer Society [112]; Luk et al. 2015 [113]; Majewska et al. 2015 [114]; Black et al. 2019 [115]; Ito et al. 2015 [116]; Skalova et al. 2018 [117].
Figure 6
Figure 6
Biomarker testing and treatment for neurotrophic tyrosine receptor kinase (NTRK) gene fusions. White boxes with black outlines represent either NTRK gene fusion testing or treatment with a TRKi. Black boxes with white text indicate all other steps that do not include either NTRK gene fusion testing or treatment with a TRKi. ETV6 = ETS variant transcription factor 6; IHC = immunohistochemistry; NGS = next generation sequencing; SOC = standard of care; TRK = tyrosine receptor kinase; TRKi = TRK inhibitor.

References

    1. Vaishnavi A., Le A.T., Doebele R.C. TRKing Down an Old Oncogene in a New Era of Targeted Therapy. Cancer Discov. 2015;5:25–34. doi: 10.1158/-14-0765.
    1. Greco A., Miranda C., Pierotti M.A. Rearrangements of NTRK1 Gene in Papillary Thyroid Carcinoma. Mol. Cell. Endocrinol. 2010;321:44–49. doi: 10.1016/j.mce.2009.10.009.
    1. Chao M.V. Neurotrophins and Their Receptors: A Convergence Point for Many Signalling Pathways. Nat. Rev. Neurosci. 2003;4:299–309. doi: 10.1038/nrn1078.
    1. Pulciani S., Santos E., Lauver A.V., Long L.K., Aaronson S.A., Barbacid M. Oncogenes in Solid Human Tumours. Nature. 1982;300:539–542. doi: 10.1038/300539a0.
    1. Knezevich S.R., McFadden D.E., Tao W., Lim J.F., Sorensen P.H. A Novel ETV6-NTRK3 Gene Fusion in Congenital Fibrosarcoma. Nat. Genet. 1998;18:184–187. doi: 10.1038/ng0298-184.
    1. Tognon C., Knezevich S.R., Huntsman D., Roskelley C.D., Melnyk N., Mathers J.A., Becker L., Carneiro F., MacPherson N., Horsman D., et al. Expression of the ETV6-NTRK3 Gene Fusion as a Primary Event in Human Secretory Breast Carcinoma. Cancer Cell. 2002;2:367–376. doi: 10.1016/S1535-6108(02)00180-0.
    1. Skalova A., Vanecek T., Sima R., Laco J., Weinreb I., Perez-Ordonez B., Starek I., Geierova M., Simpson R.H., Passador-Santos F., et al. Mammary Analogue Secretory Carcinoma of Salivary Glands, Containing the ETV6-NTRK3 Fusion Gene: A Hitherto Undescribed Salivary Gland Tumor Entity. Am. J. Surg. Pathol. 2010;34:599–608. doi: 10.1097/PAS.0b013e3181d9efcc.
    1. Stephens R.M., Loeb D.M., Copeland T.D., Pawson T., Greene L.A., Kaplan D.R. Trk Receptors Use Redundant Signal Transduction Pathways Involving SHC and PLC-Gamma 1 to Mediate NGF Responses. Neuron. 1994;12:691–705. doi: 10.1016/0896-6273(94)90223-2.
    1. Holgado-Madruga M., Moscatello D.K., Emlet D.R., Dieterich R., Wong A.J. Grb2-Associated Binder-1 Mediates Phosphatidylinositol 3-Kinase Activation and the Promotion of Cell Survival by Nerve Growth Factor. Proc. Natl. Acad. Sci. USA. 1997;94:12419–12424. doi: 10.1073/pnas.94.23.12419.
    1. Qian X., Riccio A., Zhang Y., Ginty D.D. Identification and Characterization of Novel Substrates of Trk Receptors in Developing Neurons. Neuron. 1998;21:1017–1029. doi: 10.1016/S0896-6273(00)80620-0.
    1. U.S. National Library of Medicine NTRK1 Neurotrophic Receptor Tyrosine Kinase 1 [Homo sapiens (human)] [(accessed on 1 April 2020)]; Available online: .
    1. U.S. National Library of Medicine NTRK2 Neurotrophic Receptor Tyrosine Kinase 2 [Homo sapiens (human)] [(accessed on 1 April 2020)]; Available online: .
    1. U.S. National Library of Medicine NTRK3 Neurotrophic Receptor Tyrosine Kinase 3 [Homo sapiens (human)] [(accessed on 1 April 2020)]; Available online: .
    1. Lassen U. How I Treat NTRK Gene fusion-Positive Cancers. ESMO Open. 2019;4:e000612. doi: 10.1136/esmoopen-2019-000612.
    1. Rosen E.Y., Goldman D.A., Hechtman J.F., Benayed R., Schram A.M., Cocco E., Shifman S., Gong Y., Kundra R., Solomon J.P., et al. TRK Fusions Are Enriched in Cancers with Uncommon Histologies and the Absence of Canonical Driver Mutations. Clin. Cancer Res. 2020;26:1624–1632. doi: 10.1158/1078-0432.CCR-19-3165.
    1. Hong D.S., DuBois S.G., Kummar S., Farago A.F., Albert C.M., Rohrberg K.S., van Tilburg C.M., Nagasubramanian R., Berlin J.D., Federman N., et al. Larotrectinib in Patients with TRK Fusion-Positive Solid Tumours: A Pooled Analysis of Three Phase 1/2 Clinical Trials. Lancet Oncol. 2020;21:531–540. doi: 10.1016/S1470-2045(19)30856-3.
    1. Doebele R.C., Drilon A., Paz-Ares L., Siena S., Shaw A.T., Farago A.F., Blakely C.M., Seto T., Cho B.C., Tosi D., et al. Entrectinib in Patients with Advanced or Metastatic NTRK Fusion-Positive Solid Tumours: Integrated Analysis of Three Phase 1-2 Trials. Lancet Oncol. 2020;21:271–282. doi: 10.1016/S1470-2045(19)30691-6.
    1. Tao J.J., Schram A.M., Hyman D.M. Basket Studies: Redefining Clinical Trials in the Era of Genome-Driven Oncology. Annu. Rev. Med. 2018;69:319–331. doi: 10.1146/annurev-med-062016-050343.
    1. Health Canada Summary Basis of Decision—Vitrakvi—Health Canada. [(accessed on 9 April 2020)]; Available online: .
    1. Hong D.S., Bauer T.M., Lee J.J., Dowlati A., Brose M.S., Farago A.F., Taylor M., Shaw A.T., Montez S., Meric-Bernstam F., et al. Larotrectinib in Adult Patients with Solid Tumours: A Multi-Centre, Open-Label, Phase I Dose-Escalation Study. Ann. Oncol. 2019;30:325–331. doi: 10.1093/annonc/mdy539.
    1. Laetsch T.W., DuBois S.G., Mascarenhas L., Turpin B., Federman N., Albert C.M., Nagasubramanian R., Davis J.L., Rudzinski E., Feraco A.M., et al. Larotrectinib for Paediatric Solid Tumours Harbouring NTRK Gene Fusions: Phase 1 Results from a Multicentre, Open-Label, Phase 1/2 Study. Lancet Oncol. 2018;19:705–714. doi: 10.1016/S1470-2045(18)30119-0.
    1. Health Canada Rozlytrek—Notice of Compliance with Conditions—Qualifying Notice. [(accessed on 9 April 2020)]; Available online: .
    1. Desai A.V., Robinson G.W., Basu E.M., Foster J., Gauvain K., Sabnis A., Shusterman S., Macy M.E., Maese L., Yoon J., et al. Updated Entrectinib Data in Children and Adolescents with Recurrent or Refractory Solid tumors, Including Primary CNS Tumors. J. Clin. Oncol. 2020;38:107. doi: 10.1200/JCO.2020.38.15_suppl.107.
    1. Drilon A., Nagasubramanian R., Blake J.F., Ku N., Tuch B.B., Ebata K., Smith S., Lauriault V., Kolakowski G.R., Brandhuber B.J., et al. A Next-Generation TRK Kinase Inhibitor Overcomes Acquired Resistance to Prior TRK Kinase Inhibition in Patients with TRK Fusion-Positive Solid Tumors. Cancer Discov. 2017;7:963–972. doi: 10.1158/-17-0507.
    1. Drilon A., Ou S.I., Cho B.C., Kim D.W., Lee J., Lin J.J., Zhu V.W., Ahn M.J., Camidge D.R., Nguyen J., et al. Repotrectinib (TPX-0005) Is a Next-Generation ROS1/TRK/ALK Inhibitor That Potently Inhibits ROS1/TRK/ALK Solvent-Front Mutations. Cancer Discov. 2018;8:1227–1236. doi: 10.1158/-18-0484.
    1. Papadopoulos K.P., Borazanci E., Shaw A.T., Katayama R., Shimizu Y., Zhu V.W., Sun T.Y., Wakelee H.A., Madison R., Schrock A.B., et al. US Phase 1 First-in-Human Study of Taletrectinib (DS-6051b/AB-106), a ROS1/TRK Inhibitor, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2020 doi: 10.1158/1078-0432.CCR-20-1630.
    1. Cutz J.C., Craddock K.J., Torlakovic E., Brandao G., Carter R.F., Bigras G., Deschenes J., Izevbaye I., Xu Z., Greer W., et al. Canadian Anaplastic Lymphoma Kinase Study: A Model for Multicenter Standardization and Optimization of ALK Testing in Lung Cancer. J. Thorac. Oncol. 2014;9:1255–1263. doi: 10.1097/JTO.0000000000000239.
    1. Conde E., Hernandez S., Martinez R., Angulo B., De Castro J., Collazo-Lorduy A., Jimenez B., Muriel A., Mate J.L., Moran T., et al. Assessment of a New ROS1 Immunohistochemistry Clone (SP384) for the Identification of ROS1 Rearrangements in Patients with Non-Small Cell Lung Carcinoma: The ROSING Study. J. Thorac. Oncol. 2019;14:2120–2132. doi: 10.1016/j.jtho.2019.07.005.
    1. Hechtman J.F., Benayed R., Hyman D.M., Drilon A., Zehir A., Frosina D., Arcila M.E., Dogan S., Klimstra D.S., Ladanyi M., et al. Pan-Trk Immunohistochemistry Is an Efficient and Reliable Screen for the Detection of NTRK Fusions. Am. J. Surg. Pathol. 2017;41:1547–1551. doi: 10.1097/PAS.0000000000000911.
    1. Solomon J.P., Linkov I., Rosado A., Mullaney K., Rosen E.Y., Frosina D., Jungbluth A.A., Zehir A., Benayed R., Drilon A., et al. NTRK Fusion Detection across Multiple Assays and 33,997 Cases: Diagnostic Implications and Pitfalls. Mod. Pathol. 2020;33:38–46. doi: 10.1038/s41379-019-0324-7.
    1. Penault-Llorca F., Rudzinski E.R., Sepulveda A.R. Testing Algorithm for Identification of Patients with TRK Fusion Cancer. J. Clin. Pathol. 2019;72:460–467. doi: 10.1136/jclinpath-2018-205679.
    1. Beadling C., Wald A.I., Warrick A., Neff T.L., Zhong S., Nikiforov Y.E., Corless C.L., Nikiforova M.N. A Multiplexed Amplicon Approach for Detecting Gene Fusions by Next-Generation Sequencing. J. Mol. Diagn. 2016;18:165–175. doi: 10.1016/j.jmoldx.2015.10.002.
    1. Tsao M.S., Torlakovic E., Stockley T., Lo B. CANTRK: A Canadian Multi-Centre NTRK Gene Fusion Testing Validation in Solid Tumors Project. ST07; Proceedings of the Association for Molecular Pathology Annual Meeting; 16–20 November 2020.
    1. Brenner D.R., Weir H.K., Demers A.A., Ellison L.F., Louzado C., Shaw A., Turner D., Woods R.R., Smith L.M. Projected Estimates of Cancer in Canada in 2020. CMAJ. 2020;192:E199–E205. doi: 10.1503/cmaj.191292.
    1. Younis E. Oncogenesis of Thyroid Cancer. Asian Pac. J. Cancer Prev. 2017;18:1191–1199. doi: 10.22034/apjcp.2017.18.5.1191.
    1. Filetti S., Durante C., Hartl D., Leboulleux S., Locati L.D., Newbold K., Papotti M.G., Berruti A. Thyroid Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2019;30:1856–1883. doi: 10.1093/annonc/mdz400.
    1. Chu Y.H., Dias-Santagata D., Farahani A.A., Boyraz B., Faquin W.C., Nosé V., Sadow P.M. Clinicopathologic and Molecular Characterization of NTRK-Rearranged Thyroid Carcinoma (NRTC) Mod. Pathol. 2020 doi: 10.1038/s41379-020-0574-4.
    1. Hundahl S.A., Fleming I.D., Fremgen A.M., Menck H.R. A National Cancer Data Base Report on 53,856 Cases of Thyroid Carcinoma Treated in the U.S., 1985–1995. Cancer. 1998;83:2638–2648. doi: 10.1002/(SICI)1097-0142(19981215)83:12<2638::AID-CNCR31>;2-1.
    1. Pan-Canadian Oncology Drug Review Final Recommendation Sorafenib (Nexavar) [(accessed on 15 September 2020)]; Available online: .
    1. Schlumberger M., Tahara M., Wirth L.J., Robinson B., Brose M.S., Elisei R., Habra M.A., Newbold K., Shah M.H., Hoff A.O., et al. Lenvatinib Versus Placebo in Radioiodine-Refractory Thyroid Cancer. N. Engl. J. Med. 2015;372:621–630. doi: 10.1056/NEJMoa1406470.
    1. Wells S.A., Jr., Robinson B.G., Gagel R.F., Dralle H., Fagin J.A., Santoro M., Baudin E., Elisei R., Jarzab B., Vasselli J.R., et al. Vandetanib in Patients with Locally Advanced or Metastatic Medullary Thyroid Cancer: A Randomized, Double-Blind Phase III Trial. J. Clin. Oncol. 2012;30:134–141. doi: 10.1200/JCO.2011.35.5040.
    1. Elisei R., Schlumberger M.J., Muller S.P., Schoffski P., Brose M.S., Shah M.H., Licitra L., Jarzab B., Medvedev V., Kreissl M.C., et al. Cabozantinib in Progressive Medullary Thyroid Cancer. J. Clin. Oncol. 2013;31:3639–3646. doi: 10.1200/JCO.2012.48.4659.
    1. Waguespack S.G., Drilon A., Farago A.F., Sohal D., Oh D., Ma P., McDermott R., Nanda S., Kummar S., Lee J.L., et al. Treatment of Advanced TRK Fusion Thyroid Cancer with Larotrectinib. OP-01-01; Proceedings of the 42nd Annual Meeting of the European Thyroid Association; Budapest, Hungary. 7–10 September 2019.
    1. Chou A., Fraser T., Ahadi M., Fuchs T., Sioson L., Clarkson A., Sheen A., Singh N., Corless C.L., Gill A.J. NTRK Gene Rearrangements Are Highly Enriched in MLH1/PMS2 Deficient, BRAF Wild-Type Colorectal Carcinomas—A Study of 4569 Cases. Mod. Pathol. 2019 doi: 10.1038/s41379-019-0417-3.
    1. Lasota J., Chłopek M., Lamoureux J., Christiansen J., Kowalik A., Wasąg B., Felisiak-Gołąbek A., Agaimy A., Biernat W., Canzonieri V., et al. Colonic Adenocarcinomas Harboring NTRK Fusion Genes: A Clinicopathologic and Molecular Genetic Study of 16 Cases and Review of the Literature. Am. J. Surg. Pathol. 2020;44:162–173. doi: 10.1097/PAS.0000000000001377.
    1. Koopman M., Kortman G.A., Mekenkamp L., Ligtenberg M.J., Hoogerbrugge N., Antonini N.F., Punt C.J., van Krieken J.H. Deficient Mismatch Repair System in Patients with Sporadic Advanced Colorectal Cancer. Br. J. Cancer. 2009;100:266–273. doi: 10.1038/sj.bjc.6604867.
    1. Lothe R.A., Peltomäki P., Meling G.I., Aaltonen L.A., Nyström-Lahti M., Pylkkänen L., Heimdal K., Andersen T.I., Møller P., Rognum T.O., et al. Genomic Instability in Colorectal Cancer: Relationship to Clinicopathological Variables and Family History. Cancer Res. 1993;53:5849–5852.
    1. Kane M.F., Loda M., Gaida G.M., Lipman J., Mishra R., Goldman H., Jessup J.M., Kolodner R. Methylation of the hMLH1 Promoter Correlates with Lack of Expression of hMLH1 in Sporadic Colon Tumors and Mismatch Repair-Defective Human Tumor Cell Lines. Cancer Res. 1997;57:808–811.
    1. Cunningham J.M., Christensen E.R., Tester D.J., Kim C.Y., Roche P.C., Burgart L.J., Thibodeau S.N. Hypermethylation of the hMLH1 Promoter in Colon Cancer with Microsatellite Instability. Cancer Res. 1998;58:3455–3460.
    1. Peltomäki P. Role of DNA Mismatch Repair Defects in the Pathogenesis of Human Cancer. J. Clin. Oncol. 2003;21:1174–1179. doi: 10.1200/JCO.2003.04.060.
    1. Wang J., Yi Y., Xiao Y., Dong L., Liang L., Teng L., Ying J.M., Lu T., Liu Y., Guan Y., et al. Prevalence of Recurrent Oncogenic Fusion in Mismatch Repair-Deficient Colorectal Carcinoma with Hypermethylated MLH1 and Wild-Type BRAF and KRAS. Mod. Pathol. 2019;32:1053–1064. doi: 10.1038/s41379-019-0212-1.
    1. Berlin J., Hong D.S., Deeken J.F., Boni V., Oh D., Patel J.D., Nanda S., Brega N., Childs B.H., Hyman D.M., et al. Efficacy and Safety of Larotrectinib in Patients with TRK Fusion Gastrointestinal Cancer. J. Clin. Oncol. 2020;38:824. doi: 10.1200/JCO.2020.38.4_suppl.824.
    1. Pietrantonio F., Di Nicolantonio F., Schrock A.B., Lee J., Tejpar S., Sartore-Bianchi A., Hechtman J.F., Christiansen J., Novara L., Tebbutt N., et al. ALK, ROS1, and NTRK Rearrangements in Metastatic Colorectal Cancer. J. Natl. Cancer Inst. 2017;109 doi: 10.1093/jnci/djx089.
    1. Cocco E., Benhamida J., Middha S., Zehir A., Mullaney K., Shia J., Yaeger R., Zhang L., Wong D., Villafania L., et al. Colorectal Carcinomas Containing Hypermethylated MLH1 Promoter and Wild-Type BRAF/KRAS Are Enriched for Targetable Kinase Fusions. Cancer Res. 2019;79:1047–1053. doi: 10.1158/0008-5472.CAN-18-3126.
    1. Abrahao A.B.K., Karim S., Colwell B., Berry S., Biagi J. The Predictive Effect of Primary Tumour Location in the Treatment of Metastatic Colorectal Cancer: A Canadian Consensus Statement. Curr. Oncol. 2017;24:390–400. doi: 10.3747/co.24.3757.
    1. Arnold D., Lueza B., Douillard J.Y., Peeters M., Lenz H.J., Venook A., Heinemann V., Van Cutsem E., Pignon J.P., Tabernero J., et al. Prognostic and Predictive Value of Primary Tumour Side in Patients with RAS Wild-Type Metastatic Colorectal Cancer Treated with Chemotherapy and EGFR Directed Antibodies in Six Randomized Trials. Ann. Oncol. 2017;28:1713–1729. doi: 10.1093/annonc/mdx175.
    1. Merck Canada Inc Keytruda (Pembrolizumab) Product Monograph. [(accessed on 9 October 2020)]; Available online: .
    1. Andre T., Shiu K.-K., Kim T.W., Jensen B.V., Jensen L.H., Punt C.J.A., Smith D.M., Garcia-Carbonero R., Benavides M., Gibbs P., et al. Pembrolizumab Versus Chemotherapy for Microsatellite Instability-High/Mismatch Repair Deficient Metastatic Colorectal Cancer: The Phase 3 KEYNOTE-177 Study. LBA4; Proceedings of the American Society of Clinical Oncology; 29 May–2 June 2020.
    1. Le D.T., Kim T.W., Van Cutsem E., Geva R., Jager D., Hara H., Burge M., O’Neil B., Kavan P., Yoshino T., et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J. Clin. Oncol. 2020;38:11–19. doi: 10.1200/JCO.19.02107.
    1. Kennecke H., Berry S., Maroun J., Kavan P., Aucoin N., Couture F., Poulin-Costello M., Gillesby B. A Retrospective Observational Study to Estimate the Attrition of Patients across Lines of Systemic Treatment for Metastatic Colorectal Cancer in Canada. Curr. Oncol. 2019;26:e748–e754. doi: 10.3747/co.26.4861.
    1. Farago A.F., Taylor M.S., Doebele R.C., Zhu V.W., Kummar S., Spira A.I., Boyle T.A., Haura E.B., Arcila M.E., Benayed R., et al. Clinicopathologic Features of Non-Small-Cell Lung Cancer Harboring an NTRK Gene Fusion. JCO Precis. Oncol. 2018;2018 doi: 10.1200/PO.18.00037.
    1. Hanna N.H., Temin S., Masters G. Therapy for Stage IV Non-Small-Cell Lung Cancer without Driver Alterations: ASCO and OH (CCO) Joint Guideline Update Summary. JCO Oncol. Pract. 2020;16:e844–e848. doi: 10.1200/JOP.19.00770.
    1. Reck M., Rodríguez-Abreu D., Robinson A.G., Hui R., Csőszi T., Fülöp A., Gottfried M., Peled N., Tafreshi A., Cuffe S., et al. Pembrolizumab Versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016;375:1823–1833. doi: 10.1056/NEJMoa1606774.
    1. Gadgeel S., Rodriguez-Abreu D., Speranza G., Esteban E., Felip E., Domine M., Hui R., Hochmair M.J., Clingan P., Powell S.F., et al. Updated Analysis from KEYNOTE-189: Pembrolizumab or Placebo Plus Pemetrexed and Platinum for Previously Untreated Metastatic Nonsquamous Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2020 doi: 10.1200/JCO.19.03136.
    1. Paz-Ares L., Luft A., Vicente D., Tafreshi A., Gumus M., Mazieres J., Hermes B., Cay Senler F., Csoszi T., Fulop A., et al. Pembrolizumab Plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018;379:2040–2051. doi: 10.1056/NEJMoa1810865.
    1. National Comprehensive Cancer Network Non-Small Cell Lung Cancer. [(accessed on 24 June 2020)]; Available online: .
    1. Soria J.C., Ohe Y., Vansteenkiste J., Reungwetwattana T., Chewaskulyong B., Lee K.H., Dechaphunkul A., Imamura F., Nogami N., Kurata T., et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018;378:113–125. doi: 10.1056/NEJMoa1713137.
    1. Mok T.S., Wu Y.L., Thongprasert S., Yang C.H., Chu D.T., Saijo N., Sunpaweravong P., Han B., Margono B., Ichinose Y., et al. Gefitinib or Carboplatin-Paclitaxel in Pulmonary Adenocarcinoma. N. Engl. J. Med. 2009;361:947–957. doi: 10.1056/NEJMoa0810699.
    1. Rosell R., Carcereny E., Gervais R., Vergnenegre A., Massuti B., Felip E., Palmero R., Garcia-Gomez R., Pallares C., Sanchez J.M., et al. Erlotinib Versus Standard Chemotherapy as First-Line Treatment for European Patients with Advanced EGFR Mutation-Positive Non-Small-Cell Lung Cancer (EURTAC): A Multicentre, Open-Label, Randomised Phase 3 Trial. Lancet Oncol. 2012;13:239–246. doi: 10.1016/S1470-2045(11)70393-X.
    1. Park K., Tan E.H., O’Byrne K., Zhang L., Boyer M., Mok T., Hirsh V., Yang J.C., Lee K.H., Lu S., et al. Afatinib Versus Gefitinib as First-Line Treatment of Patients with EGFR Mutation-Positive Non-Small-Cell Lung Cancer (LUX-Lung 7): A Phase 2B, Open-Label, Randomised Controlled Trial. Lancet Oncol. 2016;17:577–589. doi: 10.1016/S1470-2045(16)30033-X.
    1. Wu Y.L., Cheng Y., Zhou X., Lee K.H., Nakagawa K., Niho S., Tsuji F., Linke R., Rosell R., Corral J., et al. Dacomitinib Versus Gefitinib as First-Line Treatment for Patients with EGFR-Mutation-Positive Non-Small-Cell Lung Cancer (ARCHER 1050): A Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2017;18:1454–1466. doi: 10.1016/S1470-2045(17)30608-3.
    1. Peters S., Camidge D.R., Shaw A.T., Gadgeel S., Ahn J.S., Kim D.W., Ou S.I., Pérol M., Dziadziuszko R., Rosell R., et al. Alectinib Versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017;377:829–838. doi: 10.1056/NEJMoa1704795.
    1. Solomon B.J., Mok T., Kim D.W., Wu Y.L., Nakagawa K., Mekhail T., Felip E., Cappuzzo F., Paolini J., Usari T., et al. First-Line Crizotinib Versus Chemotherapy in ALK-Positive Lung Cancer. N. Engl. J. Med. 2014;371:2167–2177. doi: 10.1056/NEJMoa1408440.
    1. Camidge D.R., Kim H.R., Ahn M.J., Yang J.C., Han J.Y., Lee J.S., Hochmair M.J., Li J.Y., Chang G.C., Lee K.H., et al. Brigatinib Versus Crizotinib in ALK-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018;379:2027–2039. doi: 10.1056/NEJMoa1810171.
    1. Hida T., Nokihara H., Kondo M., Kim Y.H., Azuma K., Seto T., Takiguchi Y., Nishio M., Yoshioka H., Imamura F., et al. Alectinib Versus Crizotinib in Patients with ALK-Positive Non-Small-Cell Lung Cancer (J-ALEX): An Open-Label, Randomised Phase 3 Trial. Lancet. 2017;390:29–39. doi: 10.1016/S0140-6736(17)30565-2.
    1. Soria J.C., Tan D.S.W., Chiari R., Wu Y.L., Paz-Ares L., Wolf J., Geater S.L., Orlov S., Cortinovis D., Yu C.J., et al. First-Line Ceritinib Versus Platinum-Based Chemotherapy in Advanced ALK-Rearranged Non-Small-Cell Lung Cancer (ASCEND-4): A Randomised, Open-Label, Phase 3 Study. Lancet. 2017;389:917–929. doi: 10.1016/S0140-6736(17)30123-X.
    1. Chu Q.S. Targeting Non-Small Cell Lung Cancer: Driver Mutation Beyond Epidermal Growth Factor Mutation and Anaplastic Lymphoma Kinase Fusion. Ther. Adv. Med. Oncol. 2020;12:1758835919895756. doi: 10.1177/1758835919895756.
    1. Farago A., Kummar S., Moreno V., Patel J., Lassen U., Rosen L., Ku N., Cox M., Nanda S., Childs B., et al. MA09.07 Activity of Larotrectinib in TRK Fusion Lung Cancer. J. Thorac. Oncol. 2019;14:S283–S284. doi: 10.1016/j.jtho.2019.08.570.
    1. Drilon A.E., DuBois S.G., Farago A.F., Geoerger B., Grilley-Olson J.E., Hong D.S., Sohal D., van Tilburg C.M., Ziegler D.S., Ku N., et al. Activity of Larotrectinib in TRK Fusion Cancer Patients with Brain Metastases or Primary Central Nervous System Tumors. J. Clin. Oncol. 2019;37:2006. doi: 10.1200/JCO.2019.37.15_suppl.2006.
    1. Paz-Ares L., Doebele R.C., Farago A.F., Liu S.V., Chawla S.P., Tosi D., Blakely C.M., Krauss J.C., Sigal D., Bazhenova L., et al. Entrectinib in NTRK Fusion-Positive Non-Small Cell Lung Cancer (NSCLC): Integrated Analysis of Patients (pts) Enrolled in STARTRK-2, STARTRK-1 and ALKA-372-001. Ann. Oncol. 2019;30(Suppl. 2):ii48–ii49. doi: 10.1093/annonc/mdz063.011.
    1. Kalemkerian G.P., Narula N., Kennedy E.B., Biermann W.A., Donington J., Leighl N.B., Lew M., Pantelas J., Ramalingam S.S., Reck M., et al. Molecular Testing Guideline for the Selection of Patients with Lung Cancer for Treatment with Targeted Tyrosine Kinase Inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update. J. Clin. Oncol. 2018;36:911–919. doi: 10.1200/jco.2017.76.7293.
    1. Provencio M., Isla D., Sánchez A., Cantos B. Inoperable Stage III Non-Small Cell Lung Cancer: Current Treatment and Role of Vinorelbine. J. Thorac. Dis. 2011;3:197–204. doi: 10.3978/j.issn.2072-1439.2011.01.02.
    1. Solomon J.P., Benayed R., Hechtman J.F., Ladanyi M. Identifying Patients with NTRK Fusion Cancer. Ann. Oncol. 2019;30:viii16–viii22. doi: 10.1093/annonc/mdz384.
    1. Benayed R., Offin M., Mullaney K., Sukhadia P., Rios K., Desmeules P., Ptashkin R., Won H., Chang J., Halpenny D., et al. High Yield of RNA Sequencing for Targetable Kinase Fusions in Lung Adenocarcinomas with no Mitogenic Driver Alteration Detected by DNA Sequencing and Low Tumor Mutation Burden. Clin. Cancer Res. 2019;25:4712–4722. doi: 10.1158/1078-0432.CCR-19-0225.
    1. Canadian Cancer Statistics Advisory Committee Canadian Cancer Statistics 2019. [(accessed on 7 May 2020)]; Available online: .
    1. National Cancer Institute Cancer Stat Facts: Soft Tissue Including Heart Cancer. [(accessed on 20 August 2020)]; Available online: .
    1. Smrke A., Wang Y., Simmons C. Update on Systemic Therapy for Advanced Soft-Tissue Sarcoma. Curr. Oncol. 2020;27:25–33. doi: 10.3747/co.26.5475.
    1. Ducimetière F., Lurkin A., Ranchère-Vince D., Decouvelaere A.V., Péoc’h M., Istier L., Chalabreysse P., Muller C., Alberti L., Bringuier P.P., et al. Incidence of Sarcoma Histotypes and Molecular Subtypes in a Prospective Epidemiological Study with Central Pathology Review and Molecular Testing. PLoS ONE. 2011;6:e20294. doi: 10.1371/journal.pone.0020294.
    1. Mastrangelo G., Coindre J.M., Ducimetière F., Dei Tos A.P., Fadda E., Blay J.Y., Buja A., Fedeli U., Cegolon L., Frasson A., et al. Incidence of Soft Tissue Sarcoma and Beyond: A Population-Based Prospective Study in 3 European Regions. Cancer. 2012;118:5339–5348. doi: 10.1002/cncr.27555.
    1. Canadian Cancer Society Bone Cancer Statistics. [(accessed on 14 May 2020)]; Available online: .
    1. Canadian Cancer Society Soft Tissue Sarcoma Statistics. [(accessed on 22 April 2020)]; Available online: .
    1. Wong D.D., Vargas A.C., Bonar F., Maclean F., Kattampallil J., Stewart C., Sulaiman B., Santos L., Gill A.J. NTRK-Rearranged Mesenchymal Tumours: Diagnostic Challenges, Morphological Patterns and Proposed Testing Algorithm. Pathology. 2020 doi: 10.1016/j.pathol.2020.02.004.
    1. Italiano A. KIT and PDGFRA Wild-Type Gastrointestinal Stromal Tumours (GISTS): ESMO Biomarker Factsheet. [(accessed on 23 April 2020)]; Available online: .
    1. Szucs Z., Thway K., Fisher C., Bulusu R., Constantinidou A., Benson C., van der Graaf W.T., Jones R.L. Molecular Subtypes of Gastrointestinal Stromal Tumors and Their Prognostic and Therapeutic Implications. Future Oncol. 2017;13:93–107. doi: 10.2217/fon-2016-0192.
    1. Von Mehren M., Joensuu H. Gastrointestinal Stromal Tumors. J. Clin. Oncol. 2018;36:136–143. doi: 10.1200/JCO.2017.74.9705.
    1. Boikos S.A., Pappo A.S., Killian J.K., LaQuaglia M.P., Weldon C.B., George S., Trent J.C., von Mehren M., Wright J.A., Schiffman J.D., et al. Molecular Subtypes of KIT/PDGFRA Wild-Type Gastrointestinal Stromal Tumors: A Report from the National Institutes of Health Gastrointestinal Stromal Tumor Clinic. JAMA Oncol. 2016;2:922–928. doi: 10.1001/jamaoncol.2016.0256.
    1. Agaimy A., Terracciano L.M., Dirnhofer S., Tornillo L., Foerster A., Hartmann A., Bihl M.P. V600E BRAF Mutations Are Alternative Early Molecular Events in a Subset of KIT/PDGFRA Wild-Type Gastrointestinal Stromal Tumours. J. Clin. Pathol. 2009;62:613–616. doi: 10.1136/jcp.2009.064550.
    1. Agaram N.P., Wong G.C., Guo T., Maki R.G., Singer S., Dematteo R.P., Besmer P., Antonescu C.R. Novel V600E BRAF Mutations in Imatinib-Naive and Imatinib-Resistant Gastrointestinal Stromal Tumors. Genes Chromosomes Cancer. 2008;47:853–859. doi: 10.1002/gcc.20589.
    1. Rossi S., Gasparotto D., Miceli R., Toffolatti L., Gallina G., Scaramel E., Marzotto A., Boscato E., Messerini L., Bearzi I., et al. KIT, PDGFRA, and BRAF Mutational Spectrum Impacts on the Natural History of Imatinib-Naive Localized GIST: A Population-Based Study. Am. J. Surg. Pathol. 2015;39:922–930. doi: 10.1097/PAS.0000000000000418.
    1. Atiq M.A., Davis J.L., Hornick J.L., Dickson B.C., Fletcher C.D.M., Fletcher J.A., Folpe A.L., Mariño-Enríquez A. Mesenchymal Tumors of the Gastrointestinal Tract with NTRK Rearrangements: A Clinicopathological, Immunophenotypic, and Molecular Study of Eight Cases, Emphasizing Their Distinction from Gastrointestinal Stromal Tumor (GIST) Mod. Pathol. 2020 doi: 10.1038/s41379-020-0623-z.
    1. Debiec-Rychter M., Sciot R., Le Cesne A., Schlemmer M., Hohenberger P., van Oosterom A.T., Blay J.Y., Leyvraz S., Stul M., Casali P.G., et al. KIT Mutations and Dose Selection for Imatinib in Patients with Advanced Gastrointestinal Stromal Tumours. Eur. J. Cancer. 2006;42:1093–1103. doi: 10.1016/j.ejca.2006.01.030.
    1. Bramwell V.H., Anderson D., Charette M.L. Doxorubicin-Based Chemotherapy for the Palliative Treatment of Adult Patients with Locally Advanced or Metastatic Soft Tissue Sarcoma. Cochrane Database Syst. Rev. 2003 doi: 10.1002/14651858.CD003293.
    1. Demetri G.D., Le Cesne A., Chawla S.P., Brodowicz T., Maki R.G., Bach B.A., Smethurst D.P., Bray S., Hei Y.J., Blay J.Y. First-Line Treatment of Metastatic or Locally Advanced Unresectable Soft Tissue Sarcomas with Conatumumab in Combination with Doxorubicin or Doxorubicin Alone: A Phase I/II Open-Label and Double-Blind Study. Eur. J. Cancer. 2012;48:547–563. doi: 10.1016/j.ejca.2011.12.008.
    1. Blay J.Y., Leahy M.G., Nguyen B.B., Patel S.R., Hohenberger P., Santoro A., Staddon A.P., Penel N., Piperno-Neumann S., Hendifar A., et al. Randomised Phase III Trial of Trabectedin Versus Doxorubicin-Based Chemotherapy as First-Line Therapy in Translocation-Related Sarcomas. Eur. J. Cancer. 2014;50:1137–1147. doi: 10.1016/j.ejca.2014.01.012.
    1. Gelderblom H., Blay J.Y., Seddon B.M., Leahy M., Ray-Coquard I., Sleijfer S., Kerst J.M., Rutkowski P., Bauer S., Ouali M., et al. Brostallicin Versus Doxorubicin as First-Line Chemotherapy in Patients with Advanced or Metastatic Soft Tissue Sarcoma: An European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group Randomised Phase II and Pharmacogenetic Study. Eur. J. Cancer. 2014;50:388–396. doi: 10.1016/j.ejca.2013.10.002.
    1. Judson I., Verweij J., Gelderblom H., Hartmann J.T., Schoffski P., Blay J.Y., Kerst J.M., Sufliarsky J., Whelan J., Hohenberger P., et al. Doxorubicin Alone Versus Intensified Doxorubicin Plus Ifosfamide for First-Line Treatment of Advanced or Metastatic Soft-Tissue Sarcoma: A Randomised Controlled Phase 3 Trial. Lancet Oncol. 2014;15:415–423. doi: 10.1016/S1470-2045(14)70063-4.
    1. Bui-Nguyen B., Butrynski J.E., Penel N., Blay J.Y., Isambert N., Milhem M., Kerst J.M., Reyners A.K., Litiere S., Marreaud S., et al. A Phase IIb Multicentre Study Comparing the Efficacy of Trabectedin to Doxorubicin in Patients with Advanced or Metastatic Untreated Soft Tissue Sarcoma: The TRUSTS Trial. Eur. J. Cancer. 2015;51:1312–1320. doi: 10.1016/j.ejca.2015.03.023.
    1. Tap W.D., Jones R.L., Van Tine B.A., Chmielowski B., Elias A.D., Adkins D., Agulnik M., Cooney M.M., Livingston M.B., Pennock G., et al. Olaratumab and Doxorubicin Versus Doxorubicin Alone for Treatment of Soft-Tissue Sarcoma: An Open-Label Phase 1b and Randomised Phase 2 Trial. Lancet. 2016;388:488–497. doi: 10.1016/S0140-6736(16)30587-6.
    1. Seddon B., Strauss S.J., Whelan J., Leahy M., Woll P.J., Cowie F., Rothermundt C., Wood Z., Benson C., Ali N., et al. Gemcitabine and Docetaxel Versus Doxorubicin as First-Line Treatment in Previously Untreated Advanced Unresectable or Metastatic Soft-Tissue Sarcomas (GeDDiS): A Randomised Controlled Phase 3 Trial. Lancet Oncol. 2017;18:1397–1410. doi: 10.1016/S1470-2045(17)30622-8.
    1. Demetri G.D., Albert C.M., Daniel S.W., Stefan B., Orbach D., DuBois S.G., Federman N., Geoerger B., Kummar S., Laetsch T.W., et al. Larotrectinib Efficacy and Safety in Patients with TRK Fusion Sarcomas; Proceedings of the CTOS Annual Meeting; Tokyo, Japan. 13–16 November 2019.
    1. Drilon A. TRK Fusion-Positive Cancer and TRK Inhibitor Therapy. [(accessed on 14 May 2020)]; Available online: .
    1. Canadian Cancer Society Salivary Gland Cancer Statistics. [(accessed on 23 April 2020)]; Available online: .
    1. Luk P.P., Selinger C.I., Eviston T.J., Lum T., Yu B., O’Toole S.A., Clark J.R., Gupta R. Mammary Analogue Secretory Carcinoma: An Evaluation of Its Clinicopathological and Genetic Characteristics. Pathology. 2015;47:659–666. doi: 10.1097/PAT.0000000000000322.
    1. Majewska H., Skálová A., Stodulski D., Klimková A., Steiner P., Stankiewicz C., Biernat W. Mammary Analogue Secretory Carcinoma of Salivary Glands: A New Entity Associated with ETV6 Gene Rearrangement. Virchows Arch. 2015;466:245–254. doi: 10.1007/s00428-014-1701-8.
    1. Black M., Liu C.Z., Onozato M., Iafrate A.J., Darvishian F., Jour G., Cotzia P. Concurrent Identification of Novel EGFR-SEPT14 Fusion and ETV6-RET Fusion in Secretory Carcinoma of the Salivary Gland. Head Neck Pathol. 2019 doi: 10.1007/s12105-019-01074-6.
    1. Ito Y., Ishibashi K., Masaki A., Fujii K., Fujiyoshi Y., Hattori H., Kawakita D., Matsumoto M., Miyabe S., Shimozato K., et al. Mammary Analogue Secretory Carcinoma of Salivary Glands: A Clinicopathologic and Molecular Study Including 2 Cases Harboring ETV6-X Fusion. Am. J. Surg. Pathol. 2015;39:602–610. doi: 10.1097/PAS.0000000000000392.
    1. Skalova A., Vanecek T., Martinek P., Weinreb I., Stevens T.M., Simpson R.H.W., Hyrcza M., Rupp N.J., Baneckova M., Michal M., Jr., et al. Molecular Profiling of Mammary Analog Secretory Carcinoma Revealed a Subset of Tumors Harboring a Novel ETV6-RET Translocation: Report of 10 Cases. Am. J. Surg. Pathol. 2018;42:234–246. doi: 10.1097/PAS.0000000000000972.
    1. Skálová A., Banečkova M., Thompson L.D.R., Ptáková N., Stevens T.M., Brcic L., Hyrcza M., Michal M., Jr., Simpson R.H.W., Santana T., et al. Expanding the Molecular Spectrum of Secretory Carcinoma of Salivary Glands with a Novel VIM-RET FUSION. Am. J. Surg. Pathol. 2020;44:1295–1307. doi: 10.1097/PAS.0000000000001535.
    1. Lin H.H., Limesand K.H., Ann D.K. Current State of Knowledge on Salivary Gland Cancers. Crit. Rev. Oncog. 2018;23:139–151. doi: 10.1615/CritRevOncog.2018027598.
    1. National Comprehensive Cancer Network Head and Neck Cancers. [(accessed on 13 June 2020)]; Available online: .
    1. Gilbert J., Li Y., Pinto H.A., Jennings T., Kies M.S., Silverman P., Forastiere A.A. Phase II Trial of Taxol in Salivary Gland Malignancies (E1394): A Trial of the Eastern Cooperative Oncology Group. Head Neck. 2006;28:197–204. doi: 10.1002/hed.20327.
    1. Licitra L., Cavina R., Grandi C., Palma S.D., Guzzo M., Demicheli R., Molinari R. Cisplatin, Doxorubicin and Cyclophosphamide in Advanced Salivary Gland Carcinoma. A Phase II Trial of 22 Patients. Ann. Oncol. 1996;7:640–642. doi: 10.1093/oxfordjournals.annonc.a010684.
    1. Tchekmedyian V., Sherman E.J., Dunn L., Tran C., Baxi S., Katabi N., Antonescu C.R., Ostrovnaya I., Haque S.S., Pfister D.G., et al. Phase II Study of Lenvatinib in Patients with Progressive, Recurrent or Metastatic Adenoid Cystic Carcinoma. J. Clin. Oncol. 2019;37:1529–1537. doi: 10.1200/JCO.18.01859.
    1. Keam B., Kang E.J., Ahn M.-J., Ock C.-Y., Lee K.W., Kwon J.H., Yang Y., Choi Y.H., Kim M.K., Ji J.H., et al. Randomized Phase II Study of Axitinib Versus Observation in Patients with Recurred or Metastatic Adenoid Cystic Carcinoma. J. Clin. Oncol. 2020;38:6503. doi: 10.1200/JCO.2020.38.15_suppl.6503.
    1. Cocco E., Scaltriti M., Drilon A. NTRK Fusion-Positive Cancers and TRK Inhibitor Therapy. Nat. Rev. Clin. Oncol. 2018;15:731–747. doi: 10.1038/s41571-018-0113-0.
    1. Stransky N., Cerami E., Schalm S., Kim J.L., Lengauer C. The Landscape of Kinase Fusions in Cancer. Nat. Commun. 2014;5:4846. doi: 10.1038/ncomms5846.
    1. Greco A., Mariani C., Miranda C., Lupas A., Pagliardini S., Pomati M., Pierotti M.A. The DNA Rearrangement That Generates the TRK-T3 Oncogene Involves a Novel Gene on Chromosome 3 Whose Product Has a Potential Coiled-Coil Domain. Mol. Cell. Biol. 1995;15:6118–6127. doi: 10.1128/MCB.15.11.6118.
    1. Pan-Canadian Oncology Drug Review Final Recommendation Larotrectinib (Vitrakvi) [(accessed on 9 April 2020)]; Available online: .
    1. Institut National D’excellence en Santé et en Services Sociaux VITRAKVI—Tumeurs Solides Porteuses d’une Fusion d’un Gène NTRK Avis Transmis à la Ministre en Octobre 2019. [(accessed on 9 April 2020)]; Available online: .
    1. Pan-Canadian Oncology Drug Review Entrectinib (TBD) for Neurotrophic Tyrosine Receptor Kinase (NTRK) Fusion-Positive Solid Tumours. [(accessed on 30 July 2020)]; Available online: .
    1. National Institute for Health and Care Excellence Larotrectinib for Treating NTRK Fusion-Positive Solid Tumours. [(accessed on 30 July 2020)]; Available online: .
    1. National Institute for Health and Care Excellence Entrectinib for Treating NTRK Fusion-Positive Solid Tumours. [(accessed on 30 July 2020)]; Available online: .

Source: PubMed

Подписаться