Predictors of Response to Ketamine in Treatment Resistant Major Depressive Disorder and Bipolar Disorder

Carola Rong, Caroline Park, Joshua D Rosenblat, Mehala Subramaniapillai, Hannah Zuckerman, Dominika Fus, Yena L Lee, Zihang Pan, Elisa Brietzke, Rodrigo B Mansur, Danielle S Cha, Leanna M W Lui, Roger S McIntyre, Carola Rong, Caroline Park, Joshua D Rosenblat, Mehala Subramaniapillai, Hannah Zuckerman, Dominika Fus, Yena L Lee, Zihang Pan, Elisa Brietzke, Rodrigo B Mansur, Danielle S Cha, Leanna M W Lui, Roger S McIntyre

Abstract

Objectives: Extant evidence indicates that ketamine exerts rapid antidepressant effects in treatment-resistant depressive (TRD) symptoms as a part of major depressive disorder (MDD) and bipolar disorder (BD). The identification of depressed sub-populations that are more likely to benefit from ketamine treatment remains a priority. In keeping with this view, the present narrative review aims to identify the pretreatment predictors of response to ketamine in TRD as part of MDD and BD.

Method: Electronic search engines PubMed/MEDLINE, ClinicalTrials.gov, and Scopus were searched for relevant articles from inception to January 2018. The search term ketamine was cross-referenced with the terms depression, major depressive disorder, bipolar disorder, predictors, and response and/or remission.

Results: Multiple baseline pretreatment predictors of response were identified, including clinical (i.e., Body Mass Index (BMI), history of suicide, family history of alcohol use disorder), peripheral biochemistry (i.e., adiponectin levels, vitamin B12 levels), polysomnography (abnormalities in delta sleep ratio), neurochemistry (i.e., glutamine/glutamate ratio), neuroimaging (i.e., anterior cingulate cortex activity), genetic variation (i.e., Val66Met BDNF allele), and cognitive functioning (i.e., processing speed). High BMI and a positive family history of alcohol use disorder were the most replicated predictors.

Conclusions: A pheno-biotype of depression more, or less likely, to benefit with ketamine treatment is far from complete. Notwithstanding, metabolic-inflammatory alterations are emerging as possible pretreatment response predictors of depressive symptom improvement, most notably being cognitive impairment. Sophisticated data-driven computational methods that are iterative and agnostic are more likely to provide actionable baseline pretreatment predictive information.

Keywords: MDD; depression; ketamine; predictors; remission; response.

Conflict of interest statement

R.S.M. has received speaking fees from Allergan, AstraZeneca, Bristol-Meyers, Janssen-Ortho, Lundbeck, Otsuka, Purdue, Pfizer, Shire, Sunovion, Neurocrine and Takeda. The other authors report no potential conflict of interest.

References

    1. WHO|Depression World Health Organization. [(accessed on 15 April 2016)];2017 Feb; Available online:
    1. Ishak W.W., Greenberg J.M., Cohen R.M. Predicting Relapse in Major Depressive Disorder Using Patient-Reported Outcomes of Depressive Symptom Severity, Functioning, and Quality of Life in the Individual Burden of Illness Index for Depression (IBI-D) J. Affect. Disord. 2013;151:59–65. doi: 10.1016/j.jad.2013.05.048.
    1. Berton O., Nestler E.J. New Approaches to Antidepressant Drug Discovery: Beyond Monoamines. Nat. Rev. Neurosci. 2006;7:137–151. doi: 10.1038/nrn1846.
    1. Kleine-Budde K., Müller R., Kawohl W., Bramesfeld A., Moock J., Rössler W. The Cost of Depression—A Cost Analysis from a Large Database. J. Affect. Disord. 2013;147:137–143. doi: 10.1016/j.jad.2012.10.024.
    1. Coyle C.M., Laws K.R. The Use of Ketamine as an Antidepressant: A Systematic Review and Meta-Analysis. Hum. Psychopharmacol. Clin. Exp. 2015;30:152–163. doi: 10.1002/hup.2475.
    1. Lee Y., Syeda K., Maruschak N.A., Cha D.S., Mansur R.B., Wium-Andersen I.K., Woldeyohannes H.O., Rosenblat J.D., McIntyre R.S. A New Perspective on the Anti-Suicide Effects With Ketamine Treatment. J. Clin. Psychopharmacol. 2016;36:50–56. doi: 10.1097/JCP.0000000000000441.
    1. Wilkinson S.T., Ballard E.D., Bloch M.H., Mathew S.J., Murrough J.W., Feder A., Sos P., Wang G., Zarate C.A., Jr., Sanacora G. The Effect of a Single Dose of Intravenous Ketamine on Suicidal Ideation: A Systematic Review and Individual Participant Data Meta-Analysis. Am. J. Psychiatry. 2018;175:150–158. doi: 10.1176/appi.ajp.2017.17040472.
    1. Zhang M.W.B., Ho R. Controversies of the Effect of Ketamine on Cognition. Front. Psychiatry Front. Res. Found. 2016;7:47. doi: 10.3389/fpsyt.2016.00047.
    1. HSR Project Search System: View HSRProject Record. n.d. [(accessed on 28 February 2018)]; Available online: .
    1. Ho R.C.M., Zhang M.W. Ketamine as a Rapid Antidepressant: The Debate and Implications. BJPsych Adv. 2016;22:222–233. doi: 10.1192/apt.bp.114.014274.
    1. Andrade C. Ketamine for Depression, 1: Clinical Summary of Issues Related to Efficacy, Adverse Effects, and Mechanism of Action. J. Clin. Psychiatry. 2017;78:e415–e419. doi: 10.4088/JCP.17f11567.
    1. Naughton M., Clarke G., O’Leary O.F., Cryan J.F., Dinan T.G. A Review of Ketamine in Affective Disorders: Current Evidence of Clinical Efficacy, Limitations of Use and Pre-Clinical Evidence on Proposed Mechanisms of Action. J. Affect. Disord. 2014;156:24–35. doi: 10.1016/j.jad.2013.11.014.
    1. Zhang M.W., Harris K.M., Ho R.C. Is off-Label Repeat Prescription of Ketamine as a Rapid Antidepressant Safe? Controversies, Ethical Concerns, and Legal Implications. BMC Med. Ethics. 2016;17:4. doi: 10.1186/s12910-016-0087-3.
    1. Kishimoto T., Chawla J.M., Hagi K., Zarate C.A., Kane J.M., Bauer M., Correll C.U. Single-Dose Infusion Ketamine and Non-Ketamine N-Methyl-D-Aspartate Receptor Antagonists for Unipolar and Bipolar Depression: A Meta-Analysis of Efficacy, Safety and Time Trajectories. Psychol. Med. 2016;46:1459–1472. doi: 10.1017/S0033291716000064.
    1. Zhang M.W.B., Ho R.C.M. Ketamine’s Potential as a Rapid Antidepressant Was Overplayed. BMJ. 2015;351:h4467. doi: 10.1136/bmj.h4467.
    1. Andrade C. Ketamine for Depression, 4: In What Dose, at What Rate, by What Route, for How Long, and at What Frequency? J. Clin. Psychiatry. 2017;78:e852–e857. doi: 10.4088/JCP.17f11738.
    1. Phelps L.E., Brutsche N., Moral J.R., Luckenbaugh D.A., Manji H.K., Zarate C.A. Family History of Alcohol Dependence and Initial Antidepressant Response to an N-Methyl-d-Aspartate Antagonist. Biol. Psychiatry. 2009;65:181–184. doi: 10.1016/j.biopsych.2008.09.029.
    1. Luckenbaugh D.A., Ibrahim L., Brutsche N., Franco-Chaves J., Mathews D., Marquardt C.A., Cassarly C., Zarate C.A. Family History of Alcohol Dependence and Antidepressant Response to an N-Methyl-d-Aspartate Antagonist in Bipolar Depression. Bipolar Disord. 2012;14:880–887. doi: 10.1111/bdi.12003.
    1. Niciu M.J., Luckenbaugh D.A., Ionescu D.F., Richards E.M., Voort J.L.V., Ballard E.D., Brutsche N.E., Furey M.L., Zarate C.A., Jr. Ketamine’s Antidepressant Efficacy Is Extended for at Least Four Weeks in Subjects with a Family History of an Alcohol Use Disorder. Int. J. Neuropsychopharmacol. Off. Sci. J. Coll. Int. Neuropsychopharmacol. 2014;18 doi: 10.1093/ijnp/pyu039.
    1. Machado-Vieira R., Gold P.W., Luckenbaugh D.A., Ballard E.D., Richards E.M., Henter I.D., de Sousa R.T., Niciu M.J., Yuan P., Zarate C.A., Jr. The Role of Adipokines in the Rapid Antidepressant Effects of Ketamine. Mol. Psychiatry. 2017;22:127–133. doi: 10.1038/mp.2016.36.
    1. Permoda-Osip A., Dorszewska J., Bartkowska-Sniatkowska A., Chlopocka-Wozniak M., Rybakowski J.K. Vitamin B12 Level May Be Related to the Efficacy of Single Ketamine Infusion in Bipolar Depression. Pharmacopsychiatry. 2013;46:227–228. doi: 10.1055/s-0033-1349861.
    1. Duncan W.C., Jr., Selter J., Brutsche N., Sarasso S., Zarate C.A., Jr. Baseline Delta Sleep Ratio Predicts Acute Ketamine Mood Response in Major Depressive Disorder. J. Affect. Disord. 2013;145:115–119. doi: 10.1016/j.jad.2012.05.042.
    1. Salvadore G., van der Veen J.W., Zhang Y., Marenco S., Machado-Vieira R., Baumann J., Ibrahim L.A., Luckenbaugh D.A., Shen J., Drevets W.C., et al. An Investigation of Amino-Acid Neurotransmitters as Potential Predictors of Clinical Improvement to Ketamine in Depression. Int. J. Neuropsychopharmacol. Off. Sci. J. Coll. Int. Neuropsychopharmacol. 2012;15:1063–1072. doi: 10.1017/S1461145711001593.
    1. Salvadore G., Cornwell B.R., Colon-Rosario V., Coppola R., Grillon C., Zarate C.A., Jr., Manji H.K. Increased Anterior Cingulate Cortical Activity in Response to Fearful Faces: A Neurophysiological Biomarker That Predicts Rapid Antidepressant Response to Ketamine. Biol. Psychiatry. 2009;65:289–295. doi: 10.1016/j.biopsych.2008.08.014.
    1. Laje G., Lally N., Mathews D., Brutsche N., Chemerinski A., Akula N., Kelmendi B., Simen A., McMahon F.J., Sanacora G., et al. Brain-Derived Neurotrophic Factor Val66Met Polymorphism and Antidepressant Efficacy of Ketamine in Depressed Patients. Biol. Psychiatry. 2012;72:e27–e28. doi: 10.1016/j.biopsych.2012.05.031.
    1. Murrough J.W., Wan L.B., Iacoviello B., Collins K.A., Solon C., Glicksberg B., Perez A.M., Mathew S.J., Charney D.S., Iosifescu D.V., et al. Neurocognitive Effects of Ketamine in Treatment-Resistant Major Depression: Association with Antidepressant Response. Psychopharmacology. 2013 doi: 10.1007/s00213-013-3255-x.
    1. Quek Y.-H., Tam W.W.S., Zhang M.W.B., Ho R.C.M. Exploring the Association between Childhood and Adolescent Obesity and Depression: A Meta-Analysis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2017;18:742–754. doi: 10.1111/obr.12535.
    1. Hwang W.J., Kim J.A., Rankin S.H. Depressive Symptom and Related Factors: A Cross-Sectional Study of Korean Female Workers Working at Traditional Markets. Int. J. Environ. Res. Public Health. 2017;14 doi: 10.3390/ijerph14121465.
    1. Yang J.L., Liu D.X., Jiang H., Pan F., Ho C.S., Ho R.C. The Effects of High-Fat-Diet Combined with Chronic Unpredictable Mild Stress on Depression-like Behavior and Leptin/LepRb in Male Rats. Sci. Rep. 2016;6:35239. doi: 10.1038/srep35239.
    1. Niciu M.J., Luckenbaugh D.A., Ionescu D.F., Guevara S., Machado-Vieira R., Richards E.M., Brutsche N.E., Nolan N.M., Zarate C.A., Jr. Clinical Predictors of Ketamine Response in Treatment-Resistant Major Depression. J. Clin. Psychiatry. 2014;75:e417–e423. doi: 10.4088/JCP.13m08698.
    1. Liu Y., Ho R.C.M., Mak A. Interleukin (IL)-6, Tumour Necrosis Factor Alpha (TNF-α) and Soluble Interleukin-2 Receptors (sIL-2R) Are Elevated in Patients with Major Depressive Disorder: A Meta-Analysis and Meta-Regression. J. Affect. Disord. 2012;139:230–239. doi: 10.1016/j.jad.2011.08.003.
    1. Lu Y., Ho C.S., Liu X., Chua A.N., Wang W., McIntyre R.S., Ho R.C. Chronic Administration of Fluoxetine and pro-Inflammatory Cytokine Change in a Rat Model of Depression. PLoS ONE. 2017;12:e0186700. doi: 10.1371/journal.pone.0186700.
    1. Shelton R.C., Pencina M.J., Barrentine L.W., Ruiz J.A., Fava M., Zajecka J.M., Papakostas G.I. Association of Obesity and Inflammatory Marker Levels on Treatment Outcome: Results from a Double-Blind, Randomized Study of Adjunctive l-Methylfolate Calcium in Patients with MDD Who Are Inadequate Responders to SSRIs. J. Clin. Psychiatry. 2015;76:1635–1641. doi: 10.4088/JCP.14m09587.
    1. Wang N., Yu H.-Y., Shen X.-F., Gao Z.-Q., Yang C., Yang J.-J., Zhang G.-F. The Rapid Antidepressant Effect of Ketamine in Rats Is Associated with down-Regulation of pro-Inflammatory Cytokines in the Hippocampus. Upsala J. Med. Sci. 2015;120:241–248. doi: 10.3109/03009734.2015.1060281.
    1. Hintikka J., Tolmunen T., Tanskanen A., Viinamäki H. High Vitamin B12 Level and Good Treatment Outcome May Be Associated in Major Depressive Disorder. BMC Psychiatry. 2003;3 doi: 10.1186/1471-244X-3-17.
    1. Kudlow P.A., Cha D.S., Lam R.W., McIntyre R.S. Sleep Architecture Variation: A Mediator of Metabolic Disturbance in Individuals with Major Depressive Disorder. Sleep Med. 2013;14:943–949. doi: 10.1016/j.sleep.2013.04.017.
    1. Germain A., Nofzinger E.A., Kupfer D.J., Buysse D.J. Neurobiology of Non-REM Sleep in Depression: Further Evidence for Hypofrontality and Thalamic Dysregulation. Am. J. Psychiatry. 2004;161:1856–1863. doi: 10.1176/ajp.161.10.1856.
    1. Skolnick P. Modulation of Glutamate Receptors: Strategies for the Development of Novel Antidepressants. Amino Acids. 2002;23:153–159. doi: 10.1007/s00726-001-0121-7.
    1. Lu C.Y., Liu D.X., Jiang H., Pan F., Ho C.S.H., Ho R.C.M. Effects of Traumatic Stress Induced in the Juvenile Period on the Expression of Gamma-Aminobutyric Acid Receptor Type A Subunits in Adult Rat Brain. Neural Plasticity. 2017;2017:5715816. doi: 10.1155/2017/5715816.
    1. Sanacora G., Zarate C.A., Krystal J.H., Manji H.K. Targeting the Glutamatergic System to Develop Novel, Improved Therapeutics for Mood Disorders. Nat. Rev. Drug Discov. 2008;7:426–437. doi: 10.1038/nrd2462.
    1. Lee B.-H., Kim Y.-K. The Roles of BDNF in the Pathophysiology of Major Depression and in Antidepressant Treatment. Psychiatry Investig. 2010;7:231–235. doi: 10.4306/pi.2010.7.4.231.
    1. Liu R.-J., Lee F.S., Li X.Y., Bambico F., Duman R.S., Aghajanian G.K. Brain-Derived Neurotrophic Factor Val66Met Allele Impairs Basal and Ketamine-Stimulated Synaptogenesis in Prefrontal Cortex. Biol. Psychiatry. 2012;71:996–1005. doi: 10.1016/j.biopsych.2011.09.030.
    1. McIntyre R.S., Cha D.S., Soczynska J.K., Woldeyohannes H.O., Gallaugher L.A., Kudlow P., Alsuwaidan M., Baskaran A. Cognitive Deficits and Functional Outcomes in Major Depressive Disorder: Determinants, Substrates, and Treatment Interventions. Depress. Anxiety. 2013;30:515–527. doi: 10.1002/da.22063.
    1. Ling A., Lim M.L., Gwee X., Ho R.C.M., Collinson S.L., Ng T.-P. Insomnia and Daytime Neuropsychological Test Performance in Older Adults. Sleep Med. 2016;17:7–12. doi: 10.1016/j.sleep.2015.07.037.
    1. Harmer C.J., O’Sullivan U., Favaron E., Massey-Chase R., Ayres R., Reinecke A., Goodwin G.M., Cowen P.J. Effect of Acute Antidepressant Administration on Negative Affective Bias in Depressed Patients. Am. J. Psychiatry. 2009;166:1178–1184. doi: 10.1176/appi.ajp.2009.09020149.
    1. Rosenblat J.D., Cha D.S., Mansur R.B., McIntyre R.S. Inflamed Moods: A Review of the Interactions between Inflammation and Mood Disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2014;53:23–34. doi: 10.1016/j.pnpbp.2014.01.013.
    1. Miller A.H. Conceptual Confluence: The Kynurenine Pathway as a Common Target for Ketamine and the Convergence of the Inflammation and Glutamate Hypotheses of Depression. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2013;38:1607–1608. doi: 10.1038/npp.2013.140.
    1. Wege N., Angerer P., Li J. Effects of Lifetime Unemployment Experience and Job Insecurity on Two-Year Risk of Physician-Diagnosed Incident Depression in the German Working Population. Int. J. Environ. Res. Public Health. 2017;14 doi: 10.3390/ijerph14080904.
    1. Lee Y., Rosenblat J.D., Lee J., Carmona N.E., Subramaniapillai M., Shekotikhina M., Mansur R.B., Brietzke E., Lee J.-H., Ho R.C., et al. Efficacy of Antidepressants on Measures of Workplace Functioning in Major Depressive Disorder: A Systematic Review. J. Affect. Disord. 2018;227:406–415. doi: 10.1016/j.jad.2017.11.003.

Source: PubMed

Подписаться