Coenzyme Q10: Novel Formulations and Medical Trends

Carmen J Pastor-Maldonado, Juan M Suárez-Rivero, Suleva Povea-Cabello, Mónica Álvarez-Córdoba, Irene Villalón-García, Manuel Munuera-Cabeza, Alejandra Suárez-Carrillo, Marta Talaverón-Rey, José A Sánchez-Alcázar, Carmen J Pastor-Maldonado, Juan M Suárez-Rivero, Suleva Povea-Cabello, Mónica Álvarez-Córdoba, Irene Villalón-García, Manuel Munuera-Cabeza, Alejandra Suárez-Carrillo, Marta Talaverón-Rey, José A Sánchez-Alcázar

Abstract

The aim of this review is to shed light over the most recent advances in Coenzyme Q10 (CoQ10) applications as well as to provide detailed information about the functions of this versatile molecule, which have proven to be of great interest in the medical field. Traditionally, CoQ10 clinical use was based on its antioxidant properties; however, a wide range of highly interesting alternative functions have recently been discovered. In this line, CoQ10 has shown pain-alleviating properties in fibromyalgia patients, a membrane-stabilizing function, immune system enhancing ability, or a fundamental role for insulin sensitivity, apart from potentially beneficial properties for familial hypercholesterolemia patients. In brief, it shows a remarkable amount of functions in addition to those yet to be discovered. Despite its multiple therapeutic applications, CoQ10 is not commonly prescribed as a drug because of its low oral bioavailability, which compromises its efficacy. Hence, several formulations have been developed to face such inconvenience. These were initially designed as lipid nanoparticles for CoQ10 encapsulation and distribution through biological membranes and eventually evolved towards chemical modifications of the molecule to decrease its hydrophobicity. Some of the most promising formulations will also be discussed in this review.

Keywords: Coenzyme Q10; mitochondria; ubiquinone.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
CoQ10 applications in the medical field. Traditionally, CoQ10 has been used as a therapeutic agent for diabetic cardiovascular diseases, diabetic nephropathy, neuroprotection, and heart failure owing to its antioxidant activity. In fact, it is widely known that the excessive generation of ROS is a common underlying factor of all these diseases which severely worsens the outcome for the patients. More recently, several studies have proved CoQ10’s potential application against ultraviolet B (UVB) radiation damage, multiple system atrophy (MSA), or as an immunity and inflammatory marker. Both in MSA and inflammation, CoQ10 levels are below the normal range in patients, the reason why its supplementation led to an improvement in their development and well-being. Furthermore, due to its ROS-scavenging function, CoQ10 has proved to be significantly beneficial for skin cells’ protection against UVB radiation and insulin sensitivity. Surprising though it may seem, it is also highly beneficial for familial hypercholesterolemia patients who, in general, present a secondary CoQ10 deficiency derived from their disease. Finally, it has shown a remarkable membrane stabilizing property, since it increases the lipid packing order and the mechanical stability of the IMM-mimicking membranes, the reason why it could potentially be used as a therapy for Barth syndrome patients.
Figure 2
Figure 2
Highlights of CoQ10 formulations. The initial trend in CoQ10 formulations’ design was to use non-polar agents as delivery systems due to several advantages they present (increase drug solubility in intestines, recruit lymphatic drug transport, or modify enterocyte-based drug transport and disposition). However, there is rising interest in the development of water-soluble delivery mechanisms in order to prevent the common drawbacks of lipid-based formulations, such as rate of dispersion, degree of emulsification, particle size, or drug precipitation from the formulation upon dispersion. The first attempts towards this goal include the development of lipid-free CoQ10 nanoformulations, micellar CoQ10 solutions, and hydrophilic CoQ10 inclusion complexes.

References

    1. Festenstein G.N., Heaton F.W., Lowe J.S., Morton R.A. A constituent of the unsaponifiable portion of animal tissue lipids (lambda max. 272 m mu) Biochem. J. 1955;59:558–566. doi: 10.1042/bj0590558.
    1. Crane F.L., Hatefi Y., Lester R.L., Widmer C. Isolation of a quinone from beef heart mitochondria. Biochim. Biophys. Acta. 1957;25:220–221. doi: 10.1016/0006-3002(57)90457-2.
    1. Overvad K., Diamant B., Holm L., Hùlmer G., Mortensen S.A., Stender S. Review Coenzyme Q 10 in health and disease. Eur. J. Clin. Nutr. 1999;53:764–770. doi: 10.1038/sj.ejcn.1600880.
    1. Tacchino F., Succurro A., Ebenhöh O., Gerace D. Optimal efficiency of the Q-cycle mechanism around physiological temperatures from an open quantum systems approach. Sci. Rep. 2019;9:16657. doi: 10.1038/s41598-019-52842-x.
    1. Nelson D.L., Cox M.M., Lehninger A.L. Lehninger Principles of Biochemistry. W. H. Freeman; New York, NY, USA: 2017.
    1. Ernster L., Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 1995;1271:195–204. doi: 10.1016/0925-4439(95)00028-3.
    1. Parikh S., Saneto R., Falk M.J., Anselm I., Cohen B.H., Haas R., Medicine Society T.M. A modern approach to the treatment of mitochondrial disease. Curr. Treat. Options Neurol. 2009;11:414–430. doi: 10.1007/s11940-009-0046-0.
    1. Groneberg D.A., Kindermann B., Althammer M., Klapper M., Vormann J., Littarru G.P., Döring F. Coenzyme Q10 affects expression of genes involved in cell signalling, metabolism and transport in human CaCo-2 cells. Int. J. Biochem. Cell Biol. 2005;37:1208–1218. doi: 10.1016/j.biocel.2004.11.017.
    1. Crane F.L. New functions for CoenzymeQ10. Protoplasma. 1999;209:iii. doi: 10.1007/BF01294706.
    1. Alleva R., Tomasetti M., Andera L., Gellert N., Borghi B., Weber C., Murphy M.P., Neuzil J. Coenzyme Q blocks biochemical but not receptor-mediated apoptosis by increasing mitochondrial antioxidant protection. FEBS Lett. 2001;503:46–50. doi: 10.1016/S0014-5793(01)02694-1.
    1. Bhagavan H.N., Chopra R.K. Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion. 2007;7:S78–S88. doi: 10.1016/j.mito.2007.03.003.
    1. Hidaka T., Fujii K., Funahashi I., Fukutomi N., Hosoe K. Safety assessment of coenzyme Q 10 (CoQ 10) BioFactors. 2008;32:199–208. doi: 10.1002/biof.5520320124.
    1. Rodríguez-Hernández Á., Cordero M.D., Salviati L., Artuch R., Pineda M., Briones P., Izquierdo L.G., Cotán D., Navas P., Sánchez-Alcázar J.A. Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. Autophagy. 2009;5:19–32. doi: 10.4161/auto.5.1.7174.
    1. Farough S., Karaa A., Walker M.A., Slate N., Dasu T., Verbsky J., Fusunyan R., Canapari C., Kinane T.B., Van Cleave J., et al. Coenzyme Q10 and immunity: A case report and new implications for treatment of recurrent infections in metabolic diseases. Clin. Immunol. 2014;155:209–212. doi: 10.1016/j.clim.2014.09.010.
    1. Fox C.S., Coady S., Sorlie P.D., D’Agostino R.B., Pencina M.J., Vasan R.S., Meigs J.B., Levy D., Savage P.J. Increasing cardiovascular disease burden due to diabetes mellitus: The Framingham Heart Study. Circulation. 2007;115:1544–1550. doi: 10.1161/CIRCULATIONAHA.106.658948.
    1. Faria A., Persaud S.J. Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential. Pharmacol. Ther. 2017;172:50–62. doi: 10.1016/j.pharmthera.2016.11.013.
    1. Mortensen S.A., Rosenfeldt F., Kumar A., Dolliner P., Filipiak K.J., Pella D., Alehagen U., Steurer G., Littarru G.P. The effect of coenzyme Q10on morbidity and mortality in chronic heart failure: Results from Q-SYMBIO: A randomized double-blind trial. JACC Heart Fail. 2014;2:641–649. doi: 10.1016/j.jchf.2014.06.008.
    1. Yue T., Xu H.L., Chen P.P., Zheng L., Huang Q., Sheng W.S., Zhuang Y.D., Jiao L.Z., Chi T.T., ZhuGe D.L., et al. Combination of coenzyme Q10-loaded liposomes with ultrasound targeted microbubbles destruction (UTMD) for early theranostics of diabetic nephropathy. Int. J. Pharm. 2017;528:664–674. doi: 10.1016/j.ijpharm.2017.06.070.
    1. Mima A. Inflammation and oxidative stress in diabetic nephropathy: New insights on its inhibition as new therapeutic targets. J. Diabetes Res. 2013;2013 doi: 10.1155/2013/248563.
    1. Brownlee M. Biochemicstry and molecular cell biology of diabetic complications. Nature. 2001;414:813–820. doi: 10.1038/414813a.
    1. ElBayoumi T.A., Torchilin V.P. In: Current Trends in Liposome Research BT-Liposomes: Methods and Protocols, Volume 1: Pharmaceutical Nanocarriers. Weissig V., editor. Humana Press; Totowa, NJ, USA: 2010. pp. 1–27.
    1. Zhang Y., Ye C., Xu Y., Dong X., Li J., Liu R., Gao Y. Ultrasound-mediated microbubble destruction increases renal interstitial capillary permeability in early diabetic nephropathy rats. Ultrasound Med. Biol. 2014;40:1273–1281. doi: 10.1016/j.ultrasmedbio.2013.12.006.
    1. Fanciulli A., Wenning G.K. Multiple-System Atrophy. N. Engl. J. Med. 2015;372:249–263. doi: 10.1056/NEJMra1311488.
    1. Hughes A.J., Daniel S.E., Ben-Shlomo Y., Lees A.J. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain. 2002;125:861–870. doi: 10.1093/brain/awf080.
    1. Koga S., Aoki N., Uitti R.J., Van Gerpen J.A., Cheshire W.P., Josephs K.A., Wszolek Z.K., Langston J.W., Dickson D.W. When DLB, PD, and PSP masquerade as MSA. Neurology. 2015;85:404–412. doi: 10.1212/WNL.0000000000001807.
    1. Kasai T., Tokuda T., Ohmichi T., Ishii R., Tatebe H., Nakagawa M., Mizuno T. Serum Levels of Coenzyme Q10 in Patients with Multiple System Atrophy. PLoS ONE. 2016;11:e0147574. doi: 10.1371/journal.pone.0147574.
    1. Mitsui J., Matsukawa T., Yasuda T., Ishiura H., Tsuji S. Plasma coenzyme q10 levels in patients with multiple system atrophy. JAMA Neurol. 2016;73:977–980. doi: 10.1001/jamaneurol.2016.1325.
    1. Compta Y., Giraldo D.M., Muñoz E., Antonelli F., Fernández M., Bravo P., Soto M., Cámara A., Torres F., Martí M.J., et al. Cerebrospinal fluid levels of coenzyme Q10 are reduced in multiple system atrophy. Parkinsonism Relat. Disord. 2018;46:16–23. doi: 10.1016/j.parkreldis.2017.10.010.
    1. American N. Mutations in COQ2 in Familial and Sporadic Multiple-System Atrophy. N. Engl. J. Med. 2013;369:233–244. doi: 10.1056/NEJMoa1212115.
    1. Mitsui J., Koguchi K., Momose T., Takahashi M., Matsukawa T., Yasuda T., Tokushige S.I., Ishiura H., Goto J., Nakazaki S., et al. Three-Year Follow-Up of High-Dose Ubiquinol Supplementation in a Case of Familial Multiple System Atrophy with Compound Heterozygous COQ2 Mutations. Cerebellum. 2017;16:664–672. doi: 10.1007/s12311-017-0846-9.
    1. Rötig A., Appelkvist E.-L., Geromel V., Chretien D., Kadhom N., Edery P., Lebideau M., Dallner G., Munnich A., Ernster L., et al. Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet. 2018;356:391–395. doi: 10.1016/S0140-6736(00)02531-9.
    1. Bird L. Getting enough energy for immunity. Nat. Rev. Immunol. 2019;19:269. doi: 10.1038/s41577-019-0159-y.
    1. Arias A., García-Villoria J., Rojo A., Buján N., Briones P., Ribes A. Analysis of coenzyme Q10 in lymphocytes by HPLC–MS/MS. J. Chromatogr. B. 2012;908:23–26. doi: 10.1016/j.jchromb.2012.09.027.
    1. Folkers K., Hanioka T., Xia L.-J., McRee J.T., Langsjoen P. Coenzyme Q10 increases T4/T8 ratios of lymphocytes in ordinary subjects and relevance to patients having the aids related complex. Biochem. Biophys. Res. Commun. 1991;176:786–791. doi: 10.1016/S0006-291X(05)80254-2.
    1. Folkers K., Morita M., McRee J. The Activities of Coenzyme Q10 and Vitamin B6 for Immune Responses. Biochem. Biophys. Res. Commun. 1993;193:88–92. doi: 10.1006/bbrc.1993.1593.
    1. Fan L., Feng Y., Chen G.C., Qin L.Q., Fu C.l., Chen L.H. Effects of coenzyme Q10 supplementation on inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Pharm. Res. 2017;119:128–136. doi: 10.1016/j.phrs.2017.01.032.
    1. Herder C., Illig T., Rathmann W., Martin S., Haastert B., Mller-Scholze S., Holle R., Thorand B., Koenig W., Wichmann H.E., et al. Inflammation and type 2 diabetes: Results from KORA Augsburg. Gesundheitswesen. 2005;67(Suppl. S1) doi: 10.1055/s-2005-858252.
    1. Libby P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 2006;83:456S–460S. doi: 10.1093/ajcn/83.2.456S.
    1. Tudorache E., Oancea C., Avram C., Fira-Mladinescu O., Petrescu L., Timar B. Balance impairment and systemic inflammation in chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2015;10:1847. doi: 10.2147/COPD.S89814.
    1. Coussens L.M., Werb Z. Inflammation and cancer. Nature. 2002;420:860. doi: 10.1038/nature01322.
    1. Rosner M.H., Ronco C., Okusa M.D. The Role of Inflammation in the Cardio-Renal Syndrome: A Focus on Cytokines and Inflammatory Mediators. Semin. Nephrol. 2018;32:70–78. doi: 10.1016/j.semnephrol.2011.11.010.
    1. Tarry-Adkins J.L., Fernandez-Twinn D.S., Hargreaves I.P., Neergheen V., Aiken C.E., Martin-Gronert M.S., McConnell J.M., Ozanne S.E. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth1. Am. J. Clin. Nutr. 2016;103:579–588. doi: 10.3945/ajcn.115.119834.
    1. Hernández-Camacho J.D., Bernier M., López-Lluch G., Navas P. Coenzyme Q(10) Supplementation in Aging and Disease. Front. Physiol. 2018;9:44. doi: 10.3389/fphys.2018.00044.
    1. Haidari M., Javadi E., Sadeghi B., Hajilooi M., Ghanbili J. Evaluation of C-reactive protein, a sensitive marker of inflammation, as a risk factor for stable coronary artery disease. Clin. Biochem. 2001;34:309–315. doi: 10.1016/S0009-9120(01)00227-2.
    1. Nakanishi S., Yamane K., Kamei N., Okubo M., Kohno N. Elevated C-Reactive Protein Is a Risk Factor for the Development of Type 2 Diabetes in Japanese Americans. Diabetes Care. 2003;26:2754–2757. doi: 10.2337/diacare.26.10.2754.
    1. Oh D.J., Kim H.R., Lee M.K., Woo Y.S. Proflie of Human β-Defensins 1,2 and Proinflammatory Cytokines (TNF-α, IL-6) in Patients with Chronic Kidney Disease. Kidney Blood Press. Res. 2013;37:602–610. doi: 10.1159/000355740.
    1. Saxena M., Srivastava N., Banerjee M. Association of IL-6, TNF-α and IL-10 gene polymorphisms with type 2 diabetes mellitus. Mol. Biol. Rep. 2013;40:6271–6279. doi: 10.1007/s11033-013-2739-4.
    1. Liu Y. IL-6 Haplotypes, Inflammation, and Risk for Cardiovascular Disease in a Multiethnic Dialysis Cohort. J. Am. Soc. Nephrol. 2006;17:863–870. doi: 10.1681/ASN.2005050465.
    1. Ebadi M., Sharma S.K., Wanpen S., Amornpan A. Coenzyme Q10 inhibits mitochondrial complex-1 down-regulation and nuclear factor-kappa B activation. J. Cell. Mol. Med. 2004;8:213–222. doi: 10.1111/j.1582-4934.2004.tb00276.x.
    1. Schmelzer C., Lindner I., Rimbach G., Niklowitz P., Menke T., Döring F. Functions of coenzyme Q10 in inflammation and gene expression. BioFactors. 2008;32:179–183. doi: 10.1002/biof.5520320121.
    1. Amor S., Puentes F., Baker D., Van Der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010;129:154–169. doi: 10.1111/j.1365-2567.2009.03225.x.
    1. Yacoubian T.A., Standaert D.G. Targets for neuroprotection in Parkinson’s disease. Biochim. Biophys. Acta-Mol. Basis Dis. 2009;1792:676–687. doi: 10.1016/j.bbadis.2008.09.009.
    1. Alam Z.I., Jenner A., Daniel S.E., Lees A.J., Cairns N., Marsden C.D., Jenner P., Halliwell B. Oxidative DNA damage in the parkinsonian brain: An apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem. 1997;69:1196–1203. doi: 10.1046/j.1471-4159.1997.69031196.x.
    1. Hastings T.G., Lewis D.A., Zigmond M.J. In: Reactive Dopamine Metabolites and Neurotoxicity BT-Biological Reactive Intermediates V: Basic Mechanistic Research in Toxicology and Human Risk Assessment. Snyder R., Sipes I.G., Jollow D.J., Monks T.J., Kocsis J.J., Kalf G.F., Greim H., Witmer C.M., editors. Springer US; Boston, MA, USA: 1996. pp. 97–106.
    1. Schapira A.H.V., Cooper J.M., Dexter D., Jenner P., Clark J.B., Marsden C.D. Mitochondrial Complex I Deficiency in Parkinson’s Disease. Lancet. 2018;333:1269. doi: 10.1016/S0140-6736(89)92366-0.
    1. Glickman R.D. Ultraviolet phototoxicity to the retina. Eye Contact Lens. 2011;37:196–205. doi: 10.1097/ICL.0b013e31821e45a9.
    1. Zhang X., Tohari A.M., Marcheggiani F., Zhou X., Reilly J., Tiano L., Shu X. Therapeutic Potential of Co-enzyme Q10 in Retinal Diseases. Curr. Med. Chem. 2017;24:4329–4339. doi: 10.2174/0929867324666170801100516.
    1. Qu J., Kaufman Y., Washington I. Coenzyme Q10 in the Human Retina. Investig. Opthalmol. Vis. Sci. 2009;50:1814. doi: 10.1167/iovs.08-2656.
    1. Martucci A., Nucci C. Evidence on neuroprotective properties of coenzyme Q10 in the treatment of glaucoma. Neural Regen Res. 2019;14:197–200. doi: 10.4103/1673-5374.244781.
    1. Lulli M., Witort E., Papucci L., Torre E., Schipani C., Bergamini C., Dal Monte M., Capaccioli S. Coenzyme Q10 Instilled as Eye Drops on the Cornea Reaches the Retina and Protects Retinal Layers from Apoptosis in a Mouse Model of Kainate-Induced Retinal Damage. Investig. Ophthalmol. Visual Sci. 2012;53:8295–8302. doi: 10.1167/iovs.12-10374.
    1. Davis B.M., Tian K., Pahlitzsch M., Brenton J., Ravindran N., Butt G., Malaguarnera G., Normando E.M., Guo L., Cordeiro M.F. Topical Coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension. Mitochondrion. 2017;36:114–123. doi: 10.1016/j.mito.2017.05.010.
    1. Itagaki S., Ochiai A., Kobayashi M., Sugawara M., Hirano T., Iseki K. Interaction of Coenzyme Q10 with the Intestinal Drug Transporter P-Glycoprotein. J. Agric. Food Chem. 2008;56:6923–6927. doi: 10.1021/jf800992p.
    1. Fato R., Bergamini C., Leoni S., Pinna A., Carta F., Cardascia N., Ferrari T.M., Sborgia C., Lenaz G. Coenzyme Q10 vitreous levels after administration of coenzyme Q10 eyedrops in patients undergoing vitrectomy. Acta Ophthalmol. 2010;88:150–151. doi: 10.1111/j.1755-3768.2009.01632.x.
    1. Nakajima Y., Inokuchi Y., Nishi M., Shimazawa M., Otsubo K., Hara H. Coenzyme Q10 protects retinal cells against oxidative stress in vitro and in vivo. Brain Res. 2008;1226:226–233. doi: 10.1016/j.brainres.2008.06.026.
    1. Beal M.F. Methods in Enzymology. Volume 382. Academic Press; Cambridge, MA, USA: 2004. Therapeutic Effects of Coenzyme Q10 in Neurodegenerative Diseases; pp. 473–487.
    1. Turunen M., Olsson J., Dallner G. Metabolism and function of coenzyme Q. Biochim. Biophys. Acta (BBA) Biomembr. 2004;1660:171–199. doi: 10.1016/j.bbamem.2003.11.012.
    1. Bogeski I., Gulaboski R., Kappl R., Mirceski V., Stefova M., Petreska J., Hoth M. Calcium Binding and Transport by Coenzyme Q. J. Am. Chem. Soc. 2011;133:9293–9303. doi: 10.1021/ja110190t.
    1. Pinton P., Giorgi C., Siviero R., Zecchini E., Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008;27:6407. doi: 10.1038/onc.2008.308.
    1. Weinreb R.N., Khaw P.T. Primary open-angle glaucoma. Lancet. 2004;363:1711–1720. doi: 10.1016/S0140-6736(04)16257-0.
    1. Chrysostomou V., Rezania F., Trounce I.A., Crowston J.G. Oxidative stress and mitochondrial dysfunction in glaucoma. Curr. Opin. Pharm. 2013;13:12–15. doi: 10.1016/j.coph.2012.09.008.
    1. Osborne N.N., del Olmo-Aguado S. Maintenance of retinal ganglion cell mitochondrial functions as a neuroprotective strategy in glaucoma. Curr. Opin. Pharmacol. 2013;13:16–22. doi: 10.1016/j.coph.2012.09.002.
    1. Nucci C., Tartaglione R., Cerulli A., Mancino R., Spanò A., Cavaliere F., Rombolà L., Bagetta G., Corasaniti M.T., Morrone L.A. International Review of Neurobiology. Volume 82. Academic Press; Cambridge, MA, USA: 2007. Retinal Damage Caused by High Intraocular Pressure–Induced Transient Ischemia is Prevented by Coenzyme Q10 in Rat; pp. 397–406.
    1. Russo R., Cavaliere F., Rombolà L., Gliozzi M., Cerulli A., Nucci C., Fazzi E., Bagetta G., Corasaniti M.T., Morrone L.A. Rational basis for the development of coenzyme Q10 as a neurotherapeutic agent for retinal protection. In: Nucci C., Cerulli L., Osborne N.N., Bagetta G., editors. Progress in Brain Research. Volume 173. Elsevier; Amsterdam, The Netherlands: 2008. pp. 575–582.
    1. Lee D., Shim M.S., Kim K.-Y., Noh Y.H., Kim H., Kim S.Y., Weinreb R.N., Ju W.-K. Coenzyme Q10 inhibits glutamate excitotoxicity and oxidative stress-mediated mitochondrial alteration in a mouse model of glaucoma. Investig. Ophthalmol. Visual Sci. 2014;55:993–1005. doi: 10.1167/iovs.13-12564.
    1. Fernández-Vega B., Nicieza J., Álvarez-Barrios A., Álvarez L., García M., Fernández-Vega C., Vega J.A., González-Iglesias H. The Use of Vitamins and Coenzyme Q10 for the Treatment of Vascular Occlusion Diseases Affecting the Retina. Nutrients. 2020;12:723. doi: 10.3390/nu12030723.
    1. Bhardwaj M., Kumar A. Neuroprotective mechanism of Coenzyme Q10 (CoQ10) against PTZ induced kindling and associated cognitive dysfunction: Possible role of microglia inhibition. Pharmacol. Rep. 2016;68:1301–1311. doi: 10.1016/j.pharep.2016.07.005.
    1. Lucas S.-M., Rothwell N.J., Gibson R.M. The role of inflammation in CNS injury and disease. Br. J. Pharm. 2009;147:S232–S240. doi: 10.1038/sj.bjp.0706400.
    1. Papucci L., Schiavone N., Witort E., Donnini M., Lapucci A., Tempestini A., Formigli L., Zecchi-Orlandini S., Orlandini G., Carella G., et al. Coenzyme Q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J. Biol. Chem. 2003;278:28220–28228. doi: 10.1074/jbc.M302297200.
    1. Mancuso M., Orsucci D., Calsolaro V., Choub A., Siciliano G. Coenzyme Q10 and Neurological Diseases. Pharmaceuticals. 2009;2:134–149. doi: 10.3390/ph203134.
    1. Al Shaal L., Shegokar R., Müller R.H. Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int. J. Pharm. 2011;420:133–140. doi: 10.1016/j.ijpharm.2011.08.018.
    1. Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001.
    1. Mukherjee P.K., Maity N., Nema N.K., Sarkar B.K. Bioactive compounds from natural resources against skin aging. Phytomedicine. 2011;19:64–73. doi: 10.1016/j.phymed.2011.10.003.
    1. Pegoraro N.S., Barbieri A.V., Camponogara C., Mattiazzi J., Brum E.S., Marchiori M.C.L., Oliveira S.M., Cruz L. Nanoencapsulation of coenzyme Q10 and vitamin E acetate protects against UVB radiation-induced skin injury in mice. Colloids Surf. B Biointerfaces. 2017;150:32–40. doi: 10.1016/j.colsurfb.2016.11.013.
    1. Gupta S., Gupta S., Jindal N., Jindal A., Bansal R. Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol. Online J. 2013;4:267. doi: 10.4103/2229-5178.120635.
    1. Osmałek T., Froelich A., Tasarek S. Application of gellan gum in pharmacy and medicine. Int. J. Pharm. 2014;466:328–340. doi: 10.1016/j.ijpharm.2014.03.038.
    1. Kumar A., Kaur H., Devi P., Mohan V. Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome. Pharm. Ther. 2009;124:259–268. doi: 10.1016/j.pharmthera.2009.07.003.
    1. Linnane A.W., Kopsidas G., Zhang C., Yarovaya N., Kovalenko S., Papakostopoulos P., Eastwood H., Graves S., Richardson M. Cellular Redox Activity of Coenzyme Q 10: Effect of CoQ 10 Supplementation on Human Skeletal Muscle. Free Radic. Res. 2002;36:445–453. doi: 10.1080/10715760290021306.
    1. Folkers K., Vadhanavikit S., Mortensen S.A. Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10. Proc. Natl. Acad. Sci. USA. 1985;82:901–904. doi: 10.1073/pnas.82.3.901.
    1. Belardinelli R., Muçaj A., Lacalaprice F., Solenghi M., Seddaiu G., Principi F., Tiano L., Littarru G.P. Coenzyme Q10 and exercise training in chronic heart failure. Eur. Heart J. 2006;27:2675–2681. doi: 10.1093/eurheartj/ehl158.
    1. Di Lorenzo A., Iannuzzo G., Parlato A., Cuomo G., Testa C., Coppola M., D’Ambrosio G., Oliviero D.A., Sarullo S., Vitale G., et al. Clinical Evidence for Q10 Coenzyme Supplementation in Heart Failure: From Energetics to Functional Improvement. J. Clin. Med. 2020;9:1266. doi: 10.3390/jcm9051266.
    1. Jankowski J., Korzeniowska K., Cieślewicz A., Jabłecka A. Coenzyme Q10–A new player in the treatment of heart failure? Pharmacol. Rep. 2016;68:1015–1019. doi: 10.1016/j.pharep.2016.05.012.
    1. Molyneux S.L., Florkowski C.M., George P.M., Pilbrow A.P., Frampton C.M., Lever M., Richards A.M. Coenzyme Q10: An Independent Predictor of Mortality in Chronic Heart Failure. J. Am. Coll. Cardiol. 2008;52:1435–1441. doi: 10.1016/j.jacc.2008.07.044.
    1. Gvozdjáková A., Kucharská J., Mizera S., Braunová Z., Schreinerová Z., Schrameková E., Pecháň I., Fabián J. Coenzyme Q10 depletion and mitochondrial energy disturbances in rejection development in patients after heart transplantation. BioFactors. 1999;9:301–306. doi: 10.1002/biof.5520090227.
    1. Barth P.G., Scholte H.R., Berden J.A., Van Der Klei-Van Moorsel J.M., Luyt-Houwen I.E.M., Van’T Veer-Korthof E.T., Van Der Harten J.J., Sobotka-Plojhar M.A. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J. Neurol. Sci. 1983;62:327–355. doi: 10.1016/0022-510X(83)90209-5.
    1. Schlame M., Ren M. Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett. 2006;580:5450–5455. doi: 10.1016/j.febslet.2006.07.022.
    1. Schlame M., Rua D., Greenberg M.L. The biosynthesis and functional role of cardiolipin. Prog. Lipid Res. 2000;39:257–288. doi: 10.1016/S0163-7827(00)00005-9.
    1. Chicco A.J., Sparagna G.C. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am. J. Physiol. Cell Physiol. 2007;292:C33–C44. doi: 10.1152/ajpcell.00243.2006.
    1. Paradies G., Ruggiero F.M. Effect of hyperthyroidism on the transport of pyruvate in rat-heart mitochondria. Biochim. Biophys. Acta (BBA) Bioenerg. 1988;935:79–86. doi: 10.1016/0005-2728(88)90110-7.
    1. Paradies G., Ruggiero F.M., Dinoi P. The influence of hypothyroidism on the transport of phosphate and on the lipid composition in rat-liver mitochondria. Biochim. Biophys. Acta (BBA) Biomembr. 1991;1070:180–186. doi: 10.1016/0005-2736(91)90161-Z.
    1. Lee H.-J., Mayette J., Rapoport S.I., Bazinet R.P. Selective remodeling of cardiolipin fatty acids in the aged rat heart. Lipids Health Dis. 2006;5:2. doi: 10.1186/1476-511X-5-2.
    1. Sparagna G.C., Johnson C.A., McCune S.A., Moore R.L., Murphy R.C. Quantitation of cardiolipin molecular species in spontaneously hypertensive heart failure rats using electrospray ionization mass spectrometry. J. Lipid Res. 2005;46:1196–1204. doi: 10.1194/jlr.M500031-JLR200.
    1. Paradies G., Petrosillo G., Gadaleta M.N., Ruggiero F.M. The effect of aging and acetyl-l-carnitine on the pyruvate transport and oxidation in rat heart mitochondria. FEBS Lett. 1999;454:207–209. doi: 10.1016/S0014-5793(99)00809-1.
    1. Petrosillo G., Francesca M.R., Di Venosa N., Paradies A.G. Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: Role of reactive oxygen species and cardiolipin. FASEB J. 2003;17:714–716. doi: 10.1096/fj.02-0729fje.
    1. Yan N., Liu Y., Liu L., Du Y., Liu X., Zhang H., Zhang Z. Bioactivities and Medicinal Value of Solanesol and Its Accumulation, Extraction Technology, and Determination Methods. Biomolecules. 2019;9:334. doi: 10.3390/biom9080334.
    1. Kaurola P., Sharma V., Vonk A., Vattulainen I., Róg T. Distribution and dynamics of quinones in the lipid bilayer mimicking the inner membrane of mitochondria. Biochim. Biophys. Acta (BBA) Biomembr. 2016;1858:2116–2122. doi: 10.1016/j.bbamem.2016.06.016.
    1. Agmo Hernández V., Eriksson E.K., Edwards K. Ubiquinone-10 alters mechanical properties and increases stability of phospholipid membranes. Biochim. Biophys. Acta Biomembr. 2015;1848:2233–2243. doi: 10.1016/j.bbamem.2015.05.002.
    1. Hoehn K.L., Salmon A.B., Hohnen-Behrens C., Turner N., Hoy A.J., Maghzal G.J., Stocker R., Van Remmen H., Kraegen E.W., Cooney G.J., et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc. Natl. Acad. Sci. USA. 2009;106:17787–17792. doi: 10.1073/pnas.0902380106.
    1. Anderson E.J., Lustig M.E., Boyle K.E., Woodlief T.L., Kane D.A., Lin C.-T., Price Iii J.W., Kang L., Rabinovitch P.S., Szeto H.H., et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Investig. 2009;119:573–581. doi: 10.1172/JCI37048.
    1. Fazakerley D.J., Chaudhuri R., Yang P., Maghzal G.J., Thomas K.C., Krycer J.R., Humphrey S.J., Parker B.L., Fisher-Wellman K.H., Meoli C.C., et al. Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance. eLife. 2018;7:e32111. doi: 10.7554/eLife.32111.
    1. Quinlan C.L., Orr A.L., Perevoshchikova I.V., Treberg J.R., Ackrell B.A., Brand M.D. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 2012;287:27255–27264. doi: 10.1074/jbc.M112.374629.
    1. Zhang Y., Åberg F., Appelkvist E.-L., Dallner G., Ernster L. Uptake of Dietary Coenzyme Q Supplement is Limited in Rats. J. Nutr. 1995;125:446–453.
    1. Brand M.D., Goncalves R.L.S., Orr A.L., Vargas L., Gerencser A.A., Borch Jensen M., Wang Y.T., Melov S., Turk C.N., Matzen J.T., et al. Suppressors of Superoxide-H(2)O(2) Production at Site I(Q) of Mitochondrial Complex I Protect against Stem Cell Hyperplasia and Ischemia-Reperfusion Injury. Cell Metab. 2016;24:582–592. doi: 10.1016/j.cmet.2016.08.012.
    1. Orr A.L., Vargas L., Turk C.N., Baaten J.E., Matzen J.T., Dardov V.J., Attle S.J., Li J., Quackenbush D.C., Goncalves R.L.S., et al. Suppressors of superoxide production from mitochondrial complex III. Nat. Chem. Biol. 2015;11:834–836. doi: 10.1038/nchembio.1910.
    1. Cederberg H., Stančáková A., Yaluri N., Modi S., Kuusisto J., Laakso M. Increased risk of diabetes with statin treatment is associated with impaired insulin sensitivity and insulin secretion: A 6 year follow-up study of the METSIM cohort. Diabetologia. 2015;58:1109–1117. doi: 10.1007/s00125-015-3528-5.
    1. Preiss D., Seshasai S., Welsh P., Murphy S.A., Ho J.E., Waters D.D., Demicco D.A., Barter P., Cannon C.P., Sabatine M.S., et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: A meta-analysis. JAMA. 2011;305:2556–2564. doi: 10.1001/jama.2011.860.
    1. Cordero M.D., Moreno-Fernández A.M., de Miguel M., Bonal P., Campa F., Jiménez-Jiménez L.M., Ruiz-Losada A., Sánchez-Domínguez B., Sánchez Alcázar J.A., Salviati L., et al. Coenzyme Q10 distribution in blood is altered in patients with Fibromyalgia. Clin. Biochem. 2009;42:732–735. doi: 10.1016/j.clinbiochem.2008.12.010.
    1. Cordero M.D., De Miguel M., Moreno Fernández A.M., Carmona López I.M., Garrido Maraver J., Cotán D., Gómez Izquierdo L., Bonal P., Campa F., Bullon P., et al. Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: Implications in the pathogenesis of the disease. Arthritis Res. Ther. 2010;12:R17. doi: 10.1186/ar2918.
    1. Bagis S., Tamer L., Sahin G., Bilgin R., Guler H., Ercan B., Erdogan C. Free radicals and antioxidants in primary fibromyalgia: An oxidative stress disorder? Rheumatol. Int. 2005;25:188–190. doi: 10.1007/s00296-003-0427-8.
    1. Cordero M.D., Alcocer-Gómez E., Culic O., Carrión A.M., de Miguel M., Díaz-Parrado E., Pérez-Villegas E.M., Bullón P., Battino M., Sánchez-Alcazar J.A. NLRP3 Inflammasome Is Activated in Fibromyalgia: The Effect of Coenzyme Q10. Antioxid. Redox Signal. 2014;20:1169–1180. doi: 10.1089/ars.2013.5198.
    1. Menu P., Vince J.E. The NLRP3 inflammasome in health and disease: The good, the bad and the ugly. Clin. Exp. Immunol. 2011;166:1–15. doi: 10.1111/j.1365-2249.2011.04440.x.
    1. Cordero M.D., Díaz-Parrado E., Carrión A.M., Alfonsi S., Sánchez-Alcazar J.A., Bullón P., Battino M., de Miguel M. Is Inflammation a Mitochondrial Dysfunction-Dependent Event in Fibromyalgia? Antioxid. Redox Signal. 2013;18:800–807. doi: 10.1089/ars.2012.4892.
    1. Avogaro P., Cazzolato G. Familial hyper-HDL-(α)-cholesterolemia. Atherosclerosis. 1975;22:63–77. doi: 10.1016/0021-9150(75)90068-4.
    1. Suárez-Rivero J.M., de la Mata M., Pavón A.D., Villanueva-Paz M., Povea-Cabello S., Cotán D., Álvarez-Córdoba M., Villalón-García I., Ybot-González P., Salas J.J., et al. Intracellular cholesterol accumulation and coenzyme Q10 deficiency in Familial Hypercholesterolemia. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2018;1864:3697–3713. doi: 10.1016/j.bbadis.2018.10.009.
    1. Griffin S., Preta G., Sheldon I.M. Inhibiting mevalonate pathway enzymes increases stromal cell resilience to a cholesterol-dependent cytolysin. Sci. Rep. 2017;7:17050. doi: 10.1038/s41598-017-17138-y.
    1. Marzetti E., Csiszar A., Dutta D., Balagopal G., Calvani R., Leeuwenburgh C. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: From mechanisms to therapeutics. Am. J. Physiol. Heart Circ. Physiol. 2013;305:H459–H476. doi: 10.1152/ajpheart.00936.2012.
    1. Vercesi A.E., Castilho R.F., Kowaltowski A.J., Oliveira H.C. Mitochondrial energy metabolism and redox state in dyslipidemias. IUBMB Life. 2007;59:263–268. doi: 10.1080/15216540601178091.
    1. Mohammadi-Bardbori A., Najibi A., Amirzadegan N., Gharibi R., Dashti A., Omidi M., Saeedi A., Ghafarian-Bahreman A., Niknahad H. Coenzyme Q10 remarkably improves the bio-energetic function of rat liver mitochondria treated with statins. Eur. J. Pharmacol. 2015;762:270–274. doi: 10.1016/j.ejphar.2015.05.041.
    1. Villalba J.M., Parrado C., Santos-Gonzalez M., Alcain F.J. Therapeutic use of coenzyme Q10 and coenzyme Q10-related compounds and formulations. Expert Opin. Investig. Drugs. 2010;19:535–554. doi: 10.1517/13543781003727495.
    1. Yamada Y., Nakamura K., Abe J., Hyodo M., Haga S., Ozaki M., Harashima H. Mitochondrial delivery of Coenzyme Q10 via systemic administration using a MITO-Porter prevents ischemia/reperfusion injury in the mouse liver. J. Control. Release. 2015;213:86–95. doi: 10.1016/j.jconrel.2015.06.037.
    1. Onoue S., Uchida A., Kuriyama K., Nakamura T., Seto Y., Kato M., Hatanaka J., Tanaka T., Miyoshi H., Yamada S. Novel solid self-emulsifying drug delivery system of coenzyme Q10 with improved photochemical and pharmacokinetic behaviors. Eur. J. Pharm. Sci. 2012;46:492–499. doi: 10.1016/j.ejps.2012.03.015.
    1. Zhou H., Liu G., Zhang J., Sun N., Duan M., Yan Z., Xia Q. Novel lipid-free nanoformulation for improving oral bioavailability of coenzyme Q10. BioMed Res. Int. 2014;2014 doi: 10.1155/2014/793879.
    1. Beg S., Javed S., Kohli K. Bioavailability enhancement of coenzyme Q10: An extensive review of patents. Recent Patents Drug Deliv. Formul. 2010;4:245–255. doi: 10.2174/187221110793237565.
    1. Li H., Chen F. Preparation and quality evaluation of coenzyme Q10 long-circulating liposomes. Saudi J. Biol. Sci. 2017;24:797–802. doi: 10.1016/j.sjbs.2015.10.025.
    1. Yang S., Chen J., Zhao D., Han D., Chen X. Comparative study on preparative methods of DC-Chol/DOPE liposomes and formulation optimization by determining encapsulation efficiency. Int. J. Pharm. 2012;434:155–160. doi: 10.1016/j.ijpharm.2012.05.041.
    1. Pund S., Shete Y., Jagadale S. Multivariate analysis of physicochemical characteristics of lipid based nanoemulsifying cilostazol—Quality by design. Colloids Surf. B Biointerfaces. 2014;115:29–36. doi: 10.1016/j.colsurfb.2013.11.019.
    1. Khattab A., Hassanin L., Zaki N. Self-Nanoemulsifying Drug Delivery System of Coenzyme (Q10) with Improved Dissolution, Bioavailability, and Protective Efficiency on Liver Fibrosis. AAPS PharmSciTech. 2017;18:1657–1672. doi: 10.1208/s12249-016-0632-x.
    1. Singh A., Singh V., Juyal D., Rawat G. Self emulsifying systems: A review. Asian J. Pharm. 2015;9:13–18. doi: 10.4103/0973-8398.150031.
    1. Ullmann U., Metzner J., Schulz C., Perkins J., Leuenberger B. A new coenzyme Q10 tablet-grade formulation (all-Q (R)) is bioequivalent to Q-Gel (R) and both have better bioavailability properties than Q-SorB (R) J. Med. Food. 2005;8:397–399. doi: 10.1089/jmf.2005.8.397.
    1. Thanatuksorn P., Kawai K., Hayakawa M., Hayashi M., Kajiwara K. Improvement of the oral bioavailability of coenzyme Q10 by emulsification with fats and emulsifiers used in the food industry. LWT-Food Sci. Technol. 2009;42:385–390. doi: 10.1016/j.lwt.2008.03.006.
    1. Nepal P.R., Han H.-K., Choi H.-K. Enhancement of solubility and dissolution of Coenzyme Q10 using solid dispersion formulation. Int. J. Pharm. 2010;383:147–153. doi: 10.1016/j.ijpharm.2009.09.031.
    1. Belhaj N., Dupuis F., Arab-Tehrany E., Denis F.M., Paris C., Lartaud I., Linder M. Formulation, characterization and pharmacokinetic studies of coenzyme Q10 PUFA’s nanoemulsions. Eur. J. Pharm. Sci. 2012;47:305–312. doi: 10.1016/j.ejps.2012.06.008.
    1. Porter C., Trevaskis N., Charman W. Lipids and Lipid-Based Formulations: Optimizing the Oral Delivery of Lipophilic Drugs. Nature Reviews Drug Discovery. 2007;6:231–248. doi: 10.1038/nrd2197.
    1. Trevaskis N.L., Charman W.N., Porter C.J.H. Lipid-based delivery systems and intestinal lymphatic drug transport: A mechanistic update. Adv. Drug Deliv. Rev. 2008;60:702–716. doi: 10.1016/j.addr.2007.09.007.
    1. Cornaire G., Woodley J., Hermann P., Cloarec A., Arellano C., Houin G. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int. J. Pharm. 2004;278:119–131. doi: 10.1016/j.ijpharm.2004.03.001.
    1. Zaki N.M. Strategies for oral delivery and mitochondrial targeting of CoQ10. Drug Deliv. 2016;23:1868–1881. doi: 10.3109/10717544.2014.993747.
    1. Read J.L., Whittaker R.G., Miller N., Clark S., Taylor R., McFarland R., Turnbull D. Prevalence and severity of voice and swallowing difficulties in mitochondrial disease. Int. J. Lang. Commun. Disord. 2012;47:106–111. doi: 10.1111/j.1460-6984.2011.00072.x.
    1. Re G.L., Terranova M.C., Vernuccio F., Calafiore C., Picone D., Tudisca C., Salerno S., Lagalla R. Swallowing impairment in neurologic disorders: The role of videofluorographic swallowing study. Pol. J. Radiol. 2018;83:e394–e400. doi: 10.5114/pjr.2018.79203.
    1. Masotta N.E., Martinefski M.R., Lucangioli S., Rojas A.M., Tripodi V.P. High-dose coenzyme Q10-loaded oleogels for oral therapeutic supplementation. Int. J. Pharm. 2019;556:9–20. doi: 10.1016/j.ijpharm.2018.12.003.
    1. You Y.-Q.N., Ling P.-R., Qu J.Z., Bistrian B.R. Effects of medium-chain triglycerides, long-chain triglycerides, or 2-monododecanoin on fatty acid composition in the portal vein, intestinal lymph, and systemic circulation in rats. JPEN J. Parenter. Enter. Nutr. 2008;32:169–175. doi: 10.1177/0148607108314758.
    1. Ashwell M. Concepts of Functional Foods. ILSI; Washington, DC, USA: 2002. pp. 1–35.
    1. Yang H., Song J. [Inclusion of coenzyme Q10 with beta-cyclodextrin studied by polarography] Yao Xue Xue Bao. 2006;41:671–674.
    1. Žmitek J., Šmidovnik A., Fir M., Prošek M., Žmitek K., Walczak J., Pravst I. Relative bioavailability of two forms of a novel water-soluble coenzyme Q10. Ann. Nutr. Metab. 2008;52:281–287. doi: 10.1159/000129661.
    1. Wang Y., Hekimi S. Micellization of coenzyme Q by the fungicide caspofungin allows for safe intravenous administration to reach extreme supraphysiological concentrations. Redox. Biol. 2020;36:101680. doi: 10.1016/j.redox.2020.101680.
    1. Pepić I., Lovrić J., Hafner A., Filipović-Grčić J. Powder form and stability of Pluronic mixed micelle dispersions for drug delivery applications. Drug Dev. Ind. Pharm. 2014;40:944–951. doi: 10.3109/03639045.2013.791831.
    1. Rabanel J.-M., Aoun V., Elkin I., Mokhtar M., Hildgen P. Drug-Loaded Nanocarriers: Passive Targeting and Crossing of Biological Barriers. Curr. Med. Chem. 2012;19:3070–3102. doi: 10.2174/092986712800784702.
    1. Rangel-Yagui C.O., Pessoa A., Tavares L.C. Micellar solubilization of drugs. J. Pharm. Pharm. Sci. 2005;8:147–165.
    1. Nir Y., Paz A., Sabo E., Potasman I. Fear of injections in young adults: Prevalence and associations. Am. J. Trop. Med. Hyg. 2003;68:341–344. doi: 10.4269/ajtmh.2003.68.341.

Source: PubMed

Подписаться