Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation

Kiichi Nakahira, Sun-Young Kyung, Angela J Rogers, Lee Gazourian, Sojung Youn, Anthony F Massaro, Carolina Quintana, Juan C Osorio, Zhaoxi Wang, Yang Zhao, Laurie A Lawler, Jason D Christie, Nuala J Meyer, Finnian R Mc Causland, Sushrut S Waikar, Aaron B Waxman, Raymond T Chung, Raphael Bueno, Ivan O Rosas, Laura E Fredenburgh, Rebecca M Baron, David C Christiani, Gary M Hunninghake, Augustine M K Choi, Kiichi Nakahira, Sun-Young Kyung, Angela J Rogers, Lee Gazourian, Sojung Youn, Anthony F Massaro, Carolina Quintana, Juan C Osorio, Zhaoxi Wang, Yang Zhao, Laurie A Lawler, Jason D Christie, Nuala J Meyer, Finnian R Mc Causland, Sushrut S Waikar, Aaron B Waxman, Raymond T Chung, Raphael Bueno, Ivan O Rosas, Laura E Fredenburgh, Rebecca M Baron, David C Christiani, Gary M Hunninghake, Augustine M K Choi

Abstract

Background: Mitochondrial DNA (mtDNA) is a critical activator of inflammation and the innate immune system. However, mtDNA level has not been tested for its role as a biomarker in the intensive care unit (ICU). We hypothesized that circulating cell-free mtDNA levels would be associated with mortality and improve risk prediction in ICU patients.

Methods and findings: Analyses of mtDNA levels were performed on blood samples obtained from two prospective observational cohort studies of ICU patients (the Brigham and Women's Hospital Registry of Critical Illness [BWH RoCI, n = 200] and Molecular Epidemiology of Acute Respiratory Distress Syndrome [ME ARDS, n = 243]). mtDNA levels in plasma were assessed by measuring the copy number of the NADH dehydrogenase 1 gene using quantitative real-time PCR. Medical ICU patients with an elevated mtDNA level (≥3,200 copies/µl plasma) had increased odds of dying within 28 d of ICU admission in both the BWH RoCI (odds ratio [OR] 7.5, 95% CI 3.6-15.8, p = 1×10(-7)) and ME ARDS (OR 8.4, 95% CI 2.9-24.2, p = 9×10(-5)) cohorts, while no evidence for association was noted in non-medical ICU patients. The addition of an elevated mtDNA level improved the net reclassification index (NRI) of 28-d mortality among medical ICU patients when added to clinical models in both the BWH RoCI (NRI 79%, standard error 14%, p<1×10(-4)) and ME ARDS (NRI 55%, standard error 20%, p = 0.007) cohorts. In the BWH RoCI cohort, those with an elevated mtDNA level had an increased risk of death, even in analyses limited to patients with sepsis or acute respiratory distress syndrome. Study limitations include the lack of data elucidating the concise pathological roles of mtDNA in the patients, and the limited numbers of measurements for some of biomarkers.

Conclusions: Increased mtDNA levels are associated with ICU mortality, and inclusion of mtDNA level improves risk prediction in medical ICU patients. Our data suggest that mtDNA could serve as a viable plasma biomarker in medical ICU patients.

Conflict of interest statement

All of the authors except SW declare no conflict of interests. SW has declared: “I've received funding for investigator-initiated studies from Merck, Genzyme, Otsuka, and Satellite Healthcare. I've provided consulting services to BioTrends Research Group, Harvard Clinical Research Institute, and GE Healthcare. I serve on a DSMB for Takeda.”

Figures

Figure 1. Representative standard curve, amplification plot,…
Figure 1. Representative standard curve, amplification plot, and dissociation curve, and amplification plot from the patients' samples.
(A) NADH dehydrogenase 1 complementary DNA was serially (1∶10) diluted to prepare a series of calibrators (mtDNA standard) with known DNA copy number. The assay was linear over the range (8.48–848000 copies) of DNA copy numbers (R2 = 0.997866). (B) The amplification plot (ΔRn versus cycle [log] view) shows no irregular amplification for the standard diluents (848,000, 84,800, 8,480, 848, 84.8, 8.48). (C) The dissociation curve shows a single melting temperature of the specific products generated with standard template. Also, there is no melting temperature observed in the no-template control wells (blank). These dissociation curves indicate that the reactions are free of primer-dimer or any other spurious products. (D) Similar amplification plots were observed after qPCR using patients' samples. The amplification curves generated from human samples were paralleled with the curves from standards and were in the range of amplification plots for standard diluents.
Figure 2. Cell-free mtDNA level in the…
Figure 2. Cell-free mtDNA level in the plasma of ICU patients.
Boxplots comparing measures of cell-free mtDNA level (mtDNA [NADH dehydrogenase 1] expressed as copy number/µl of plasma) in the plasma of (A) patients who died within 28 d after ICU admission (red) versus those who survived (gray), (B) patients with (green) versus without (gray) sepsis, and (C) patients with (blue) versus without (gray) ARDS in the BWH RoCI (left) and ME ARDS (right) cohorts. mtDNA copy number in the plasma is presented as median value (black line), interquartile range (box), and 5th and 95th percentiles (whiskers). p-Values are noted in the figure for each cohort.
Figure 3. Survival of BWH RoCI MICU…
Figure 3. Survival of BWH RoCI MICU patients stratified by mtDNA level.
Kaplan-Meier estimates of survival for patients who had plasma mtDNA levels ≥3,200 copies/µl (n = 101) and <3,200 copies/µl (n = 99) in the BWH MICU. The middle black line indicates the Kaplan-Meier survival curve for patients who had mtDNA <3,200 copies/µl, with 95% confidence intervals (outer black lines and gray shading). The middle red line indicates the Kaplan-Meier survival curve for patients who had mtDNA ≥3,200 copies/µl, with 95% confidence intervals (outer red lines and pink shading). Survival in patients with mtDNA ≥3,200 copies/µl was significantly lower than in patients with mtDNA <3,200 copies/µl (p-value noted in the figure).
Figure 4. Receiver operating characteristic curves, mtDNA,…
Figure 4. Receiver operating characteristic curves, mtDNA, and death in ICU patients.
Comparisons of receiver operating characteristic (ROC) curves for a clinical model (including age, gender, race/ethnicity, APACHE II score, and sepsis) (solid lines) and a clinical model with an mtDNA level ≥3,200 copies/µl (dashed lines) to predict 28-d mortality in ICUs. (A) The area under the curve was 0.76 for a clinical model and was 0.83 for a clinical model with an mtDNA level ≥3,200 copies/µl in the BWH RoCI cohort. (B) The area under the curve was 0.85 for a clinical model and was 0.86 for a clinical model with an mtDNA level ≥3,200 copies/µl in the ME ARDS cohort when all patients were included. (C) The area under the curve was 0.87 for a clinical model and was 0.89 for a clinical model with an mtDNA level ≥3,200 copies/µl in the subpopulation of ME ARDS MICU patients.

References

    1. Pierrakos C, Vincent JL (2010) Sepsis biomarkers: a review. Crit Care 14: R15.
    1. Schetz MR, Van den Berghe G (2005) Do we have reliable biochemical markers to predict the outcome of critical illness? Int J Artif Organs 28: 1197–1210.
    1. Aduen J, Bernstein WK, Khastgir T, Miller J, Kerzner R, et al. (1994) The use and clinical importance of a substrate-specific electrode for rapid determination of blood lactate concentrations. JAMA 272: 1678–1685.
    1. Christ-Crain M, Jaccard-Stolz D, Bingisser R, Gencay MM, Huber PR, et al. (2004) Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet 363: 600–607.
    1. Pyle A, Burn DJ, Gordon C, Swan C, Chinnery PF, et al. (2010) Fall in circulating mononuclear cell mitochondrial DNA content in human sepsis. Intensive Care Med 36: 956–962.
    1. Suliman HB, Welty-Wolf KE, Carraway MS, Schwartz DA, Hollingsworth JW, et al. (2005) Toll-like receptor 4 mediates mitochondrial DNA damage and biogenic responses after heat-inactivated E. coli. FASEB J 19: 1531–1533.
    1. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, et al. (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464: 104–107.
    1. Lu CH, Chang WN, Tsai NW, Chuang YC, Huang CR, et al. (2010) The value of serial plasma nuclear and mitochondrial DNA levels in adult community-acquired bacterial meningitis. QJM 103: 169–175.
    1. Cossarizza A, Pinti M, Nasi M, Gibellini L, Manzini S, et al. (2011) Increased plasma levels of extracellular mitochondrial DNA during HIV infection: a new role for mitochondrial damage-associated molecular patterns during inflammation. Mitochondrion 11: 750–755.
    1. Sursal T, Stearns-Kurosawa DJ, Itagaki K, Oh SY, Sun S, et al. (2013) Plasma bacterial and mitochondrial DNA distinguish bacterial sepsis from sterile systemic inflammatory response syndrome and quantify inflammatory tissue injury in nonhuman primates. Shock 39: 55–62.
    1. Krysko DV, Agostinis P, Krysko O, Garg AD, Bachert C, et al. (2011) Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol 32: 157–164.
    1. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, et al. (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12: 222–230.
    1. Collins LV, Hajizadeh S, Holme E, Jonsson IM, Tarkowski A (2004) Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol 75: 995–1000.
    1. Dolinay T, Kim YS, Howrylak J, Hunninghake GM, An CH, et al. (2012) Inflammasome-regulated cytokines are critical mediators of acute lung injury. Am J Respir Crit Care Med 185: 1225–1234.
    1. Gong MN, Sai Y, Zhou W, Thompson BT, Xu LL, et al. (2003) Genotyping patients with recent blood transfusions. Epidemiology 14: 744–747.
    1. Sheu CC, Gong MN, Zhai R, Chen F, Bajwa EK, et al. (2010) Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS. Chest 138: 559–567.
    1. Clermont G, Acker CG, Angus DC, Sirio CA, Pinsky MR, et al. (2002) Renal failure in the ICU: comparison of the impact of acute renal failure and end-stage renal disease on ICU outcomes. Kidney Int 62: 986–996.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, et al. (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31: 1250–1256.
    1. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, et al. (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149: 818–824.
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13: 818–829.
    1. Abraham E, Laterre PF, Garg R, Levy H, Talwar D, et al. (2005) Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med 353: 1332–1341.
    1. Hill ME, Rosenwaike I (2001) The Social Security Administration's Death Master File: the completeness of death reporting at older ages. Soc Secur Bull 64: 45–51.
    1. Bajwa EK, Khan UA, Januzzi JL, Gong MN, Thompson BT, et al. (2009) Plasma C-reactive protein levels are associated with improved outcome in ARDS. Chest 136: 471–480.
    1. McGill MR, Sharpe MR, Williams CD, Taha M, Curry SC, et al. (2012) The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest 122: 1574–1583.
    1. Moreira VG, Prieto B, Rodriguez JS, Alvarez FV (2010) Usefulness of cell-free plasma DNA, procalcitonin and C-reactive protein as markers of infection in febrile patients. Ann Clin Biochem 47: 253–258.
    1. Nga TV, Karkey A, Dongol S, Thuy HN, Dunstan S, et al. (2010) The sensitivity of real-time PCR amplification targeting invasive Salmonella serovars in biological specimens. BMC Infect Dis 10: 125.
    1. Zozaya-Hinchliffe M, Martin DH, Ferris MJ (2008) Prevalence and abundance of uncultivated Megasphaera-like bacteria in the human vaginal environment. Appl Environ Microbiol 74: 1656–1659.
    1. Chiu RW, Chan LY, Lam NY, Tsui NB, Ng EK, et al. (2003) Quantitative analysis of circulating mitochondrial DNA in plasma. Clin Chem 49: 719–726.
    1. Hosmer DW, Taber S, Lemeshow S (1991) The importance of assessing the fit of logistic regression models: a case study. Am J Public Health 81: 1630–1635.
    1. Cook NR (2007) Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 115: 928–935.
    1. May Clinic Division of Biomedical Statistics and Informatics (2013) Locally written SAS macros. Available: . Accessed 23 August13.
    1. van der Vaart M, Pretorius PJ (2008) Circulating DNA. Its origin and fluctuation. Ann N Y Acad Sci 1137: 18–26.
    1. Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29: 707–735.
    1. Henao-Mejia J, Elinav E, Strowig T, Flavell RA (2012) Inflammasomes: far beyond inflammation. Nat Immunol 13: 321–324.
    1. Makabe H, Kojika M, Takahashi G, Matsumoto N, Shibata S, et al. (2012) Interleukin-18 levels reflect the long-term prognosis of acute lung injury and acute respiratory distress syndrome. J Anesth 26: 658–663.
    1. Escames G, Lopez LC, Garcia JA, Garcia-Corzo L, Ortiz F, et al. (2012) Mitochondrial DNA and inflammatory diseases. Hum Genet 131: 161–173.
    1. Kung CT, Hsiao SY, Tsai TC, Su CM, Chang WN, et al. (2012) Plasma nuclear and mitochondrial DNA levels as predictors of outcome in severe sepsis patients in the emergency room. J Transl Med 10: 130.
    1. Baudouin SV, Saunders D, Tiangyou W, Elson JL, Poynter J, et al. (2005) Mitochondrial DNA and survival after sepsis: a prospective study. Lancet 366: 2118–2121.
    1. Kraft P, Wacholder S, Cornelis MC, Hu FB, Hayes RB, et al. (2009) Beyond odds ratios—communicating disease risk based on genetic profiles. Nat Rev Genet 10: 264–269.
    1. Kathiresan S, Melander O, Anevski D, Guiducci C, Burtt NP, et al. (2008) Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med 358: 1240–1249.
    1. Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, et al. (1995) The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA 273: 117–123.
    1. Pittet D, Rangel-Frausto S, Li N, Tarara D, Costigan M, et al. (1995) Systemic inflammatory response syndrome, sepsis, severe sepsis and septic shock: incidence, morbidities and outcomes in surgical ICU patients. Intensive Care Med 21: 302–309.
    1. Dowler WM, Shaw PD, Gottlieb D (1963) Terminal oxidation in cell-free extracts of fungii. J Bacteriol 86: 9–17.

Source: PubMed

Подписаться