Bio-efficacy of new long-lasting insecticide-treated bed nets against Anopheles funestus and Anopheles gambiae from central and northern Mozambique

Ana Paula Abílio, Pelágio Marrune, Nilsa de Deus, Francisco Mbofana, Pedro Muianga, Ayubo Kampango, Ana Paula Abílio, Pelágio Marrune, Nilsa de Deus, Francisco Mbofana, Pedro Muianga, Ayubo Kampango

Abstract

Background: Long-lasting insecticide-treated nets (LLINs) are one of the main methods used for controlling malaria transmission in Mozambique. The proliferation of several types of LLINs and the re-emergence of insecticide resistance in the local vector populations poses challenges to the local malaria control programme on selecting suitable insecticide-based vector control products. Therefore, this study evaluated the insecticide susceptibility and bio-efficacy of selected new LLINs against wild populations of Anopheles funestus sensu lato and A. gambiae s.l. from Northern and Central Mozambique. The study also investigated whether the insecticide contents on the LINNs fabrics were within the WHOPES recommended target range.

Methods: The susceptibility of 2-5 day old wild female A. funestus and A. gambiae sensu stricto against the major classes of insecticides used for vector control, viz: deltamethrin (0.05 %), permethrin (0.75 %), propoxur (0.1 %), bendiocarb (0.1 %) and DDT (4 %), was determined using WHO cylinder susceptibility tests. WHO cone bioassays were conducted to determine the bio-efficacy of both pyrethroid-only LLINs (Olyset(®), Permanet 2.0(®), NetProtect(®) and Interceptor(®)) and, Permanet 3.0(®) a combination LLIN against A. funestus s.s, from Balama, Mocuba and Milange districts, respectively. The bio-efficacy of LLINs against the insectary-susceptible A. arabiensis (Durban strain) was assessed, as well. Untreated bed net swatches were used as negative controls. Chemical analyses, by high performance liquid chromatography, were undertaken to assess whether the insecticide contents on the LLINs fabrics fell within recommended target dose ranges. The frequency of kdr gene mutations was determined from a random sample of A. gambiae s.s. from both WHO susceptibility and cone bioassay experiments.

Results: Anopheles funestus from Balama district showed resistance to deltamethrin and possible resistance to permethrin, propoxur and bendiocarb, whilst A. gambiae from Mocuba district was susceptible to deltamethrin, bendiocarb and propoxur. There were no kdr mutants found in the sample of 256 A. gambiae tested. Overall, 186 LLIN swatches were tested. Mosquitoes exposed to Olyset(®) had the lowest knockdown (±standard error) and mortality rate (±standard error) in all studied sites regardless of vectors species tested. Permanet 3.0 showed the highest bio-efficacy independent of vector species tested and level of insecticide resistance detected. All types of LLINs effectively killed susceptible A. arabiensis Durban strain. The insecticide content of Olyset(®) and Permanet 2.0(®) was higher than the target dose but NetProtect(®) had a lower insecticide content than the target dose.

Conclusion: The study shows evidence of considerable heterogeneity in both insecticide susceptibility and the level of bio-efficacy of commonly available types of LLINs against wild A. funestus and A. gambiae from Balama, Mocuba and Milange districts, located in north and centre of Mozambique. The findings suggest that vector control approaches combining different types of insecticides might help to tackle the apparent problem of pyrethroid resistance in the vector populations from these three sites. Results from bioassays on laboratory-susceptible A. arabiensis strongly suggest that LLINs can offer some protection against susceptible malaria vectors.

Figures

Fig. 1
Fig. 1
Map of Mozambique showing the geographical location of the sites where Anopheles funestus (Balama and Mocuba district) and Anopheles gambiae (Milange district) larvae were collected. In Balama district, larvae were collected in Malava, Impiri and Kwekwe villages; in Milange district larvae were collected in Majaua and Molumbo villages and in Mocuba district larvae were collected in Mocuba town
Fig. 2
Fig. 2
Response curves showing the probability of knockdown of Anopheles funestusa from Balama distric and Anopheles gambiae s.sb from Mocuba district exposed to selected types of insecticides over 60 min exposure-time
Fig. 3
Fig. 3
Comparison of mortality rates of Anopheles gambiae s.s (Milange distric) and Anopheles funestus (Mocuba and Balama district) mosquito females exposed to different brands of LLINs. Letters above each bar display the significance of the difference of Mortality rates between pairs of bed nets, obtained by TukeyHSD at 5 % significance level. Mortality rates followed by the same letter are not statistically significant. The letters were sorted starting from lower (a) to higher (d) significant Mortality rate. P-values were adjusted using Westfall procedure (see Additional file 1 for further details)
Fig. 4
Fig. 4
Comparison of mortality rates of Anopheles gambiae s.s (Milange distric) and Anopheles. funestus (Mocuba and Balama district) mosquito females exposed to sides and roof of Permanet 3.0. Letters above each bar display the significance of the difference of Mortality rates between pairs of bed nets, obtained by TukeyHSD at 5 % significance level. Mortality rates followed by the same letter are not statistically significant. The letters were sorted starting from lower (a) to higher (d) significant Mortality rate. P-values were adjusted using Westfall procedure (see Additional file 2)

References

    1. Snow RW, Lindsay SW, Hayes RJ, Greenwood BM. Permethrin-treated bed nets (mosquito nets) prevent malaria in Gambian children. Trans R Soc Trop Med Hyg. 1988;82:838–842. doi: 10.1016/0035-9203(88)90011-9.
    1. Strode C, Donegan S, Garner P, Enayati AA, Hemingway J. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes: systematic review and meta-analysis. PLoS Med. 2014;11:e1001619. doi: 10.1371/journal.pmed.1001619.
    1. Millennium Development Goal (MDG) 6: Combat HIV/AIDS and other diseases. .
    1. Programa Nacional de Controlo da Malária . Plano Estratégico da Malária. Maputo: Ministério da Saúde, República de Moçambique; 2012.
    1. Norris LC, Norris DE. Efficacy of long-lasting insecticidal nets in use in Macha, Zambia, against the local Anopheles arabiensis population. Malar J. 2011;10:254. doi: 10.1186/1475-2875-10-254.
    1. Mouchet J. Mini review: agriculture and vector resistance. Insect Sci Appl. 1988;9:297–302.
    1. Diabaté A, Baldet T, Chandre F, Akogbeto M, Guiguemde TR, Darriet F, et al. The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. Am J Trop Med Hyg. 2002;67:617–622.
    1. Thompson R, Begtrup K, Cuamba N, Dgedge M, Mendis C, Gamage-Mendis A, et al. The Matola malaria project: a temporal and spatial study of malaria transmission and disease in a suburban area of Maputo, Mozambique. Am J Trop Med Hyg. 1997;57:550–559.
    1. Mendis C, Jacobsen JL, Gamage-Mendis A, Bule E, Dgedge M, Thompson R, et al. Anopheles arabiensis and An. funestus are equally important vectors of malaria in Matola coastal suburb of Maputo, southern Mozambique. Med Vet Entomol. 2000;14:171–180. doi: 10.1046/j.1365-2915.2000.00228.x.
    1. Charlwood JD, Cuamba N, Tomas EV, Briet OJ. Living on the edge: a longitudinal study of Anopheles funestus in an isolated area of Mozambique. Malar J. 2013;12:208. doi: 10.1186/1475-2875-12-208.
    1. Charlwood JD, Macia GA, Manhaca M, Sousa B, Cuamba N, Braganca M. Population dynamics and spatial structure of human-biting mosquitoes, inside and outside of houses, in the Chockwe irrigation scheme, southern Mozambique. Geospat Health. 2013;7:309–320. doi: 10.4081/gh.2013.89.
    1. Cuamba N, Mendis C. The role of Anopheles merus in malaria transmission in an area of southern Mozambique. J Vector Borne Dis. 2009;46:157–159.
    1. Brooke BD, Kloke G, Hunt RH, Koekemoer LL, Temu EA, Taylor ME, et al. Bioassay and biochemical analyses of insecticide resistance in southern African Anopheles funestus (Diptera: culicidae) Bull Entomol Res. 2001;91:265–272. doi: 10.1079/BER2001108.
    1. Casimiro S, Coleman M, Mohloai P, Hemingway J, Sharp B. Insecticide resistance in Anopheles funestus (Diptera: culicidae) from Mozambique. J Med Entomol. 2006;43:267–275. doi: 10.1093/jmedent/43.2.267.
    1. Abilio AP, Kleinschmidt I, Rehman AM, Cuamba N, Ramdeen V, Mthembu DS, et al. The emergence of insecticide resistance in central Mozambique and potential threat to the successful indoor residual spraying malaria control programme. Malar J. 2011;10:110. doi: 10.1186/1475-2875-10-110.
    1. Casimiro S, Coleman M, Hemingway J, Sharp B. Insecticide resistance in Anopheles arabiensis and Anopheles gambiae from Mozambique. J Med Entomol. 2006;43:276–282. doi: 10.1093/jmedent/43.2.276.
    1. WHO. Global plan for insecticide resistance management in malaria vectors. World Health Organization, Geneva, WHO Press; 2012.
    1. The spatial distribution of Plasmodium falciparum malaria stratified by endemicity class map in 2010 in Mozambique. .
    1. Giardina F, Kasasa S, Sie A, Utzinger J, Tanner M, Vounatsou P. Effects of vector-control interventions on changes in risk of malaria parasitaemia in sub-Saharan Africa: a spatial and temporal analysis. Lancet Glob Health. 2014;2:e601–e615. doi: 10.1016/S2214-109X(14)70300-6.
    1. WHO . Manual on pratical entomology in malaria. Part II: Methods and Techniques. Geneva: World Health Organization; 1975.
    1. Gillies MT, De Meillon B. The Anophelinae of the Africa south of the sahara (Ethiopian zoographical region) South Africa: South African Institute for Medical Research; 1968.
    1. Koekemoer LL, Kamau L, Hunt RH, Coetzee M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg. 2002;66:804–811.
    1. Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–529.
    1. WHO . Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticide on treated surfaces. Geneva: World Health Organization; 1998.
    1. Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7:179–184. doi: 10.1046/j.1365-2583.1998.72062.x.
    1. Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000;9:491–497. doi: 10.1046/j.1365-2583.2000.00209.x.
    1. Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371–391. doi: 10.1146/annurev.ento.45.1.371.
    1. Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, Ball A, et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malar J. 2007;6:111. doi: 10.1186/1475-2875-6-111.
    1. Permanet 3.0 Brochure. .
    1. Technical basis for deployment of PermanetNet 3.0 in areas with pyrethroid-resistant malaria vectors. .
    1. Moores GD, Bingham G. Use of “temporal synergism” to overcome insecticide resistance. Outlook Pest Manag. 2005;16:7–9. doi: 10.1564/16feb03.
    1. WHO . Guidelines for laboratory and field testing of long-lasting insecticidal mosquito nets. Geneva: World Health Organization; 2005.
    1. Ouattara JP, Pigeon O, Spanoghe P. Validation of a multi-residue method to determine deltamethrin and alpha-cypermethrin in mosquito nets by gas chromatography with electron capture detection (GC-muECD) Parasit Vectors. 2013;6:77. doi: 10.1186/1756-3305-6-77.
    1. Collaborative International Pesticides Analytical Council (CIPA). .
    1. Jenkins DW, Hensens A, Lloyd J, Payne M, Cizmarik P, Hamel S. Development and validation of a ‘universal’ HPLC method for pyrethroid quantification in long-lasting insecticidal mosquito nets for malaria control and prevention. Trop Med Int Health. 2013;18:2–11. doi: 10.1111/tmi.12011.
    1. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol. 2009;24:127–135. doi: 10.1016/j.tree.2008.10.008.
    1. Bates D, Maechler M, Bolder B, Walker S. lme4: Linear mixed-effects models using Eigen and S4 (arXiv 2014, 1406:5823v1).
    1. Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biometrical J. 2008;50:346–363. doi: 10.1002/bimj.200810425.
    1. Bretz F, Hothorn T, Westfall P: Multiple Comparison Using R. Chapman & Hall/CRC; 2010.
    1. R Core Team . A language and environment for statistical computing. Vienna: R Foundation for Statistical, Computing; 2015.
    1. Feyereisen R. Insect P450 enzymes. Annu Rev Entomol. 1999;44:507–533. doi: 10.1146/annurev.ento.44.1.507.
    1. Riveron JM, Yunta C, Ibrahim SS, Djouaka R, Irving H, Menze BD, et al. A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector. Genome Biol. 2014;15:R27. doi: 10.1186/gb-2014-15-2-r27.
    1. Amenya DA, Naguran R, Lo TC, Ranson H, Spillings BL, Wood OR, Brooke BD, et al. Over expression of a cytochrome P450 (CYP6P9) in a major African malaria vector, Anopheles funestus, resistant to pyrethroids. Insect Mol Biol. 2008;17:19–25. doi: 10.1111/j.1365-2583.2008.00776.x.
    1. Cuamba N, Morgan JC, Irving H, Steven A, Wondji CS. High level of pyrethroid resistance in an Anopheles funestus population of the Chokwe District in Mozambique. PLoS One. 2010;5:e11010. doi: 10.1371/journal.pone.0011010.
    1. Hemingway J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem Mol Biol. 2000;30:1009–1015. doi: 10.1016/S0965-1748(00)00079-5.
    1. N’Guessan R, Darriet F, Doannio JM, Chandre F, Carnevale P. Olyset net efficacy against pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus after 3 years field use in Cote d’Ivoire. Med Vet Entomol. 2001;15:97–104. doi: 10.1046/j.1365-2915.2001.00284.x.
    1. D’Alessandro U, Olaleye BO, McGuire W, Thomson MC, Langerock P, Bennett S, et al. A comparison of the efficacy of insecticide-treated and untreated bed nets in preventing malaria in Gambian children. Trans R Soc Trop Med Hyg. 1995;89:596–598. doi: 10.1016/0035-9203(95)90401-8.
    1. Prevention and Management of Insecticide Resistance in Vectors of Public Heath Importance. .
    1. Guillet P, N’Guessan R, Darriet F, Traore-Lamizana M, Chandre F, Carnevale P. Combined pyrethroid and carbamate ‘two-in-one’ treated mosquito nets: field efficacy against pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus. Med Vet Entomol. 2001;15:105–112. doi: 10.1046/j.1365-2915.2001.00288.x.
    1. Koudou BG, Koffi AA, Malone D, Hemingway J. Efficacy of PermaNet(R) 2.0 and PermaNet(R) 3.0 against insecticide-resistant Anopheles gambiae in experimental huts in Cote d’Ivoire. Malar J. 2011;10:172. doi: 10.1186/1475-2875-10-172.
    1. Awolola ST, Adeogun AO, Olojede JB, Oduola AO, Oyewole IO, Amajoh CN. Impact of PermaNet 3.0 on entomological indices in an area of pyrethroid resistant Anopheles gambiae in south-western Nigeria. Parasit Vectors. 2014;7:236. doi: 10.1186/1756-3305-7-236.
    1. WHO . Report of the Twelfth WHOPES Working Group Meeting. Geneva: World Health Organization; 2009.
    1. Okia M, Ndyomugyenyi R, Kirunda J, Byaruhanga A, Adibaku S, et al. Bioefficacy of long-lasting insecticidal nets against pyrethroid-resistant populations of Anopheles gambiae s.s. from different malaria transmission zones in Uganda. Parasit Vectors. 2013;6:130. doi: 10.1186/1756-3305-6-130.

Source: PubMed

Подписаться