Bone Marrow Aspirate in the Treatment of Chondral Injuries

James Holton, Mohamed A Imam, Martin Snow, James Holton, Mohamed A Imam, Martin Snow

Abstract

The ability of mesenchymal stem cells (MSCs) to transdifferentiate into a desired cell lineage has captured the imagination of scientists and clinicians alike. The limited ability for chondrocytes to regenerate in chondral injuries has raised the concept of using MSCs to help regenerate and repair damaged tissue. The expansion of cells in a laboratory setting to be delivered back to the patient is too costly for clinical use in the present tough economic climate. This process is slow with due to the complexity of trying to imitate the natural environment and biological stimulation of chondral cell replication and proliferation. Bone marrow aspirate concentrate (BMAC) has the potential to provide an easily accessible and readily available source of MSCs with key growth factors that can be used in treating chondral injuries. This review summarizes the underlying basic science of MSCs and the therapeutic potential of BMAC.

Keywords: aspirate; bone; cartilage; concentrate; marrow.

References

    1. Cucchiarini M, Orth P, Rey-Rico A, Venkatesan JK, Madry H. Current perspectives in stem cell research for knee cartilage repair. Stem Cells Cloning (2014) 7:1–17.10.2147/SCCAA.S42880
    1. Frisch J, Venkatesan JK, Rey-Rico A, Schmitt G, Madry H, Cucchiarini M. Influence of insulin-like growth factor I overexpression via recombinant adeno-associated vector gene transfer upon the biological activities and differentiation potential of human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther (2014) 5(4):103.10.1186/scrt491
    1. Lee EH, Hui JHP. The potential of stem cells in orthopaedic surgery. J Bone Joint Surg Br (2006) 88(7):841–51.10.1302/0301-620X.88B7.17305
    1. Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J (2004) 18(9):980–2.
    1. Ramachandran M. Basic Orthopaedic Sciences: The Stanmore Guide (Hodder Arnold Publication). 1 ed London: CRC Press; (2006). 304 p.
    1. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health (2009) 1(6):461–8.10.1177/1941738109350438
    1. Newman AP. Articular cartilage repair. Am J Sports Med (1998) 26(2):309–24.
    1. Frenkel SR, Di Cesare PE. Degradation and repair of articular cartilage. Front Biosci (1999) 4:D671–85.10.2741/Frenkel
    1. Wang Y, Yuan M, Guo Q, Lu S, Peng J. Mesenchymal stem cells for treating articular cartilage defects and osteoarthritis. Cell Transplant (2015) 24(9):1661–78.10.3727/096368914X683485
    1. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage (2002) 10(6):432–63.10.1053/joca.2002.0801
    1. Kan H, Arai Y, Nakagawa S, Inoue H, Minami G, Ikoma K, et al. Arthroscopic microfracture technique for cartilage damage to the lateral condyle of the Tibia. Case Rep Orthop (2015) 2015:795759.10.1155/2015/795759
    1. Zelken JA. First-person long-term follow-up using autologous mosaicplasty for osteochondral lesion accompanying femoral head fracture. J Orthop Trauma (2016) 30(2):e70–4.10.1097/BOT.0000000000000439
    1. Grassel S, Lorenz J. Tissue-engineering strategies to repair chondral and osteochondral tissue in osteoarthritis: use of mesenchymal stem cells. Curr Rheumatol Rep (2014) 16(10):452.10.1007/s11926-014-0452-5
    1. Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am (2003) 85-A(2):185–92.
    1. Lim H-C, Bae J-H, Song S-H, Park Y-E, Kim S-J. Current treatments of isolated articular cartilage lesions of the knee achieve similar outcomes. Clin Orthop (2012) 470(8):2261–7.10.1007/s11999-012-2304-9
    1. Vasiliadis HS, Wasiak J. Autologous chondrocyte implantation for full thickness articular cartilage defects of the knee. Cochrane Database Syst Rev (2010) 10:CD003323.
    1. Rodriguez-Merchan EC. The treatment of cartilage defects in the knee joint: microfracture, mosaicplasty, and autologous chondrocyte implantation. Am J Orthop (Belle Mead NJ) (2012) 41(5):236–9.
    1. Bentley G, Biant LC, Vijayan S, Macmull S, Skinner JA, Carrington RWJ. Minimum ten-year results of a prospective randomised study of autologous chondrocyte implantation versus mosaicplasty for symptomatic articular cartilage lesions of the knee. J Bone Joint Surg Br (2012) 94(4):504–9.10.1302/0301-620X.94B4.27495
    1. Biant LC, Bentley G, Vijayan S, Skinner JA, Carrington RWJ. Long-term results of autologous chondrocyte implantation in the knee for chronic chondral and osteochondral defects. Am J Sports Med (2014) 42(9):2178–83.10.1177/0363546514539345
    1. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy (2006) 8(4):315–7.10.1080/14653240600855905
    1. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol (2005) 33(11):1402–16.10.1016/j.exphem.2005.07.003
    1. Delorme B, Charbord P. Culture and characterization of human bone marrow mesenchymal stem cells. Methods Mol Med (2007) 140:67–81.10.1007/978-1-59745-443-8_4
    1. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells (2001) 19(3):180–92.10.1634/stemcells.19-3-180
    1. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant (2016) 25(5):829–48.10.3727/096368915X689622
    1. Qin Y, Guan J, Zhang C. Mesenchymal stem cells: mechanisms and role in bone regeneration. Postgrad Med J (2014) 90(1069):643–7.10.1136/postgradmedj-2013-132387
    1. Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med (2012) 1(2):142–9.10.5966/sctm.2011-0018
    1. Li H, Fu X. Mechanisms of action of mesenchymal stem cells in cutaneous wound repair and regeneration. Cell Tissue Res (2012) 348(3):371–7.10.1007/s00441-012-1393-9
    1. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood (2005) 105(4):1815–22.10.1182/blood-2004-04-1559
    1. Kassem M, Kristiansen M, Abdallah BM. Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol (2004) 95(5):209–14.10.1111/j.1742-7843.2004.pto950502.x
    1. Abdallah BM, Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther (2008) 15(2):109–16.10.1038/sj.gt.3303067
    1. Barry F, Boynton R, Murphy M, Haynesworth S, Zaia J. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun (2001) 289(2):519–24.10.1006/bbrc.2001.6013
    1. Barry FP, Boynton RE, Haynesworth S, Murphy JM, Zaia J. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem Biophys Res Commun (1999) 265(1):134–9.10.1006/bbrc.1999.1620
    1. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood (1991) 78(1):55–62.
    1. Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone (1992) 13(1):69–80.10.1016/8756-3282(92)90363-2
    1. Augustyniak E, Trzeciak T, Richter M, Kaczmarczyk J, Suchorska W. The role of growth factors in stem cell-directed chondrogenesis: a real hope for damaged cartilage regeneration. Int Orthop (2015) 39(5):995–1003.10.1007/s00264-014-2619-0
    1. Bianco P, Robey PG. Skeletal stem cells. Dev Camb Engl (2015) 142(6):1023–7.
    1. Katagiri W, Yamada Y, Nakamura S, Ito K, Hara K, Hibi H, et al. Regulation of the WNT signaling pathways during cell culture of human mesenchymal stem cells for efficient bone regeneration. Oral Sci Int (2010) 7(2):37–46.10.1016/S1348-8643(10)80001-1
    1. Etheridge SL, Spencer GJ, Heath DJ, Genever PG. Expression profiling and functional analysis of WNT signaling mechanisms in mesenchymal stem cells. Stem Cells (2004) 22(5):849–60.10.1634/stemcells.22-5-849
    1. Narcisi R, Cleary MA, Brama PA, Hoogduijn MJ, Tüysüz N, ten Berge D, et al. Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation. Stem Cell Rep (2015) 4(3):459–72.10.1016/j.stemcr.2015.01.017
    1. Im G-I, Quan Z. The effects of WNT inhibitors on the chondrogenesis of human mesenchymal stem cells. Tissue Eng Part A (2010) 16(7):2405–13.10.1089/ten.TEA.2009.0359
    1. Tang Y, Wang B. Gene- and stem cell-based therapeutics for cartilage regeneration and repair. Stem Cell Res Ther (2015) 6:78.10.1186/s13287-015-0058-5
    1. Tao K, Frisch J, Rey-Rico A, Venkatesan JK, Schmitt G, Madry H, et al. Co-overexpression of TGF-beta and SOX9 via rAAV gene transfer modulates the metabolic and chondrogenic activities of human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther (2016) 7(1):20.10.1186/s13287-016-0280-9
    1. Richter W. Mesenchymal stem cells and cartilage in situ regeneration. J Intern Med (2009) 266(4):390–405.10.1111/j.1365-2796.2009.02153.x
    1. Xie A, Nie L, Shen G, Cui Z, Xu P, Ge H, et al. The application of autologous platelet-rich plasma gel in cartilage regeneration. Mol Med Rep (2014) 10(3):1642–8.
    1. Hyer CF, Berlet GC, Bussewitz BW, Hankins T, Ziegler HL, Philbin TM. Quantitative assessment of the yield of osteoblastic connective tissue progenitors in bone marrow aspirate from the iliac crest, tibia, and calcaneus. J Bone Joint Surg Am (2013) 95(14):1312–6.10.2106/JBJS.L.01529
    1. Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells (2004) 22(5):675–82.10.1634/stemcells.22-5-675
    1. Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev (2008) 129(3):163–73.10.1016/j.mad.2007.12.002
    1. Batinic D, Marusic M, Pavletic Z, Bogdanic V, Uzarevic B, Nemet D, et al. Relationship between differing volumes of bone marrow aspirates and their cellular composition. Bone Marrow Transplant (1990) 6(2):103–7.
    1. Muschler GF, Boehm C, Easley K. Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am (1997) 79(11):1699–709.
    1. Peters AE, Watts AE. Biopsy needle advancement during bone marrow aspiration increases mesenchymal stem cell concentration. Front Vet Sci (2016) 3:23.10.3389/fvets.2016.00023
    1. Kasten P, Beyen I, Egermann M, Suda AJ, Moghaddam AA, Zimmermann G, et al. Instant stem cell therapy: characterization and concentration of human mesenchymal stem cells in vitro. Eur Cell Mater (2008) 16:47–55.
    1. Hernigou P, Mathieu G, Poignard A, Manicom O, Beaujean F, Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. Surgical technique. J Bone Joint Surg Am (2006) 88(Suppl 1 Pt 2):322–7.
    1. Evans CH. Advances in regenerative orthopedics. Mayo Clin Proc (2013) 88(11):1323–39.10.1016/j.mayocp.2013.04.027
    1. Martino MM, Tortelli F, Mochizuki M, Traub S, Ben-David D, Kuhn GA, et al. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci Transl Med (2011) 3(100):100ra89.10.1126/scitranslmed.3002614
    1. Filardo G, Kon E, Roffi A, Di Martino A, Marcacci M. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy (2013) 29(1):174–86.10.1016/j.arthro.2012.05.891
    1. Kon E, Roffi A, Filardo G, Tesei G, Marcacci M. Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy (2015) 31(4):767–75.10.1016/j.arthro.2014.11.017
    1. Im GI, Kim DY, Shin JH, Hyun CW, Cho WH. Repair of cartilage defect in the rabbit with cultured mesenchymal stem cells from bone marrow. J Bone Joint Surg Br (2001) 83(2):289–94.10.1302/0301-620X.83B2.10495
    1. Jung M, Kaszap B, Redohl A, Steck E, Breusch S, Richter W, et al. Enhanced early tissue regeneration after matrix-assisted autologous mesenchymal stem cell transplantation in full thickness chondral defects in a minipig model. Cell Transplant (2009) 18(8):923–32.10.3727/096368909X471297
    1. Fortier LA, Potter HG, Rickey EJ, Schnabel LV, Foo LF, Chong LR, et al. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am (2010) 92(10):1927–37.10.2106/JBJS.I.01284
    1. McIlwraith CW, Frisbie DD, Rodkey WG, Kisiday JD, Werpy NM, Kawcak CE, et al. Evaluation of intra-articular mesenchymal stem cells to augment healing of microfractured chondral defects. Arthroscopy (2011) 27(11):1552–61.10.1016/j.arthro.2011.06.002
    1. Enea D, Cecconi S, Calcagno S, Busilacchi A, Manzotti S, Gigante A. One-step cartilage repair in the knee: collagen-covered microfracture and autologous bone marrow concentrate. A pilot study. Knee (2015) 22(1):30–5.10.1016/j.knee.2014.10.003
    1. Gobbi A, Karnatzikos G, Scotti C, Mahajan V, Mazzucco L, Grigolo B. One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up. Cartilage (2011) 2(3):286–99.10.1177/1947603510392023
    1. Gobbi A, Scotti C, Karnatzikos G, Mudhigere A, Castro M, Peretti GM. One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc (2016).10.1007/s00167-016-3984-6
    1. Giannini S, Buda R, Cavallo M, Ruffilli A, Cenacchi A, Cavallo C, et al. Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury (2010) 41(11):1196–203.10.1016/j.injury.2010.09.028
    1. Krych AJ, Nawabi DH, Farshad-Amacker NA, Jones KJ, Maak TG, Potter HG, et al. Bone marrow concentrate improves early cartilage phase maturation of a scaffold plug in the knee: a comparative magnetic resonance imaging analysis to platelet-rich plasma and control. Am J Sports Med (2016) 44(1):91–8.10.1177/0363546515609597
    1. Centeno C, Pitts J, Al-Sayegh H, Freeman M. Efficacy of autologous bone marrow concentrate for knee osteoarthritis with and without adipose graft. Biomed Res Int (2014) 2014:370621.10.1155/2014/370621
    1. Skowroński J, Skowroński R, Rutka M. Large cartilage lesions of the knee treated with bone marrow concentrate and collagen membrane–results. Ortop Traumatol Rehabil (2013) 15:69–76.10.5604/15093492.1012405
    1. Kim YS, Choi YJ, Koh YG. Mesenchymal stem cell implantation in knee osteoarthritis: an assessment of the factors influencing clinical outcomes. Am J Sports Med (2015) 43(9):2293–301.10.1177/0363546515588317
    1. Maijenburg MW, Kleijer M, Vermeul K, Mul EPJ, van Alphen FPJ, van der Schoot CE, et al. The composition of the mesenchymal stromal cell compartment in human bone marrow changes during development and aging. Haematologica (2012) 97(2):179–83.10.3324/haematol.2011.047753
    1. Kim J-D, Lee GW, Jung GH, Kim CK, Kim T, Park JH, et al. Clinical outcome of autologous bone marrow aspirates concentrate (BMAC) injection in degenerative arthritis of the knee. Eur J Orthop Surg Traumatol (2014) 24(8):1505–11.10.1007/s00590-013-1393-9

Source: PubMed

Подписаться